
Learning about State
Geoff Gordon

Machine Learning Department
Carnegie Mellon University

joint work with Byron Boots, Sajid Siddiqi, Le Song, Alex Smola



Geoff Gordon—15-780—Apr, 2011

. . . . . .

What’s out there?

2

ot-2 ot-1 ot ot+1 ot+2



Geoff Gordon—15-780—Apr, 2011

. . . . . .

What’s out there?

2

ot-2 ot-1 ot ot+1 ot+2



Geoff Gordon—15-780—Apr, 2011

. . . . . .
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What’s out there?

2

ot-2 ot-1 ot ot+1 ot+2



Geoff Gordon—15-780—Apr, 2011

What’s out there?  A dynamical system
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Given past observations from 
a partially observable system

Learning a dynamical system
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Given past observations from 
a partially observable system

Predict future observations

Learning a dynamical system
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Examples

• Baum-Welsh EM algorithm for HMMs

• Tomasi-Kanade structure from motion

• Black-Scholes model of stock price

• SLAM (from lidars, cameras, beacons, …)

• System identification for Kalman filters

• …

5
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A general principle
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If bottleneck = rank constraint, get a spectral method
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Why spectral methods?

• Many ways to learn models of dynamical systems

‣ max likelihood via EM, gradient descent, …

‣ Bayesian inference via Gibbs, MH, …

• In contrast to these, spectral methods give

‣ no local optima!
‣ ⇒ huge gain in computational efficiency

‣ slight loss in statistical efficiency

7
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Example: SSID for Kalman filter

• Past data = last k observations

• Future data = next k’ observations

‣ must have k and k’ big enough

• Prediction = linear regression

‣ look at empirical covariance of past & future

• Spectral: bottleneck = SVD of covariance

x = A x– + noise
o = C x + noise
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Kalman SSID

• Assume for simplicity 
m ≥ n, both A and C 
full rank

• For k ≥ 1,

9

x = A x– + noise
o = C x + noise A

C
P CT

E[ot+ko�t ] = E[E[ot+ko�t | xt]]
= E[E[ot+k | xt]E[o�t | xt]]
= E[CAkxt(Cxt)�]
= CAkE[xtx

�
t ]C�

= CAkPC�
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Kalman SSID

• Let U = left n leading singular vectors of Σ1

10

Σk = E[ot+ko�t ] = CAkPC�

Â
def= U�Σ2(U�Σ1)†

= U�CA2PC�(U�CAPC�)†

= (U�CA)APC�(PC�)†(U�CA)−1

= SAS−1

Ĉ
def= U(SAS−1)−1

= USA−1S−1

= U(U�CA)A−1S−1 = CS−1
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Kalman SSID

• Algorithm: estimate Σ1 and Σ2 from data, get Û 
by SVD, plug in for Â and Ĉ

• Consistent: continuity of formulas for Â and 
Ĉ, law of large numbers for Σ1 and Σ2

‣ wrinkle: SVD for Û isn’t continuous, but 
range(Û) is

• Can also recover steady-state x

11
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Variations

• Use arbitrary features of length-k window of 
past and future observations

‣ work from covariance of past, future features

‣ good features make a big difference in 
practice

• Impose constraints on learned model (e.g., 
stability)

12
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Kalman SSID: example

• Works well for video textures

‣ steam grate example above

‣ fountain:

13

observation = raw 
pixels (vector of 
reals over time)
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feature 1, step 2

Structure from motion

• Track N features 
over T steps

14
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Structure from motion

• xit is projection of feature i onto camera’s 
horizontal axis at time t (and yit, vertical)

‣ [ui, vi, wi] = feature i coordinates

‣ [h1t, h2t, h3t] = camera horizontal axis @t

‣ [v1t, v2t, v3t] = camera vertical axis @t
15
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Structure from motion
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• xit is projection of feature i onto camera’s 
horizontal axis at time t (and yit, vertical)

‣ [ui, vi, wi] = feature i coordinates

‣ [h1t, h2t, h3t] = camera horizontal axis @t
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Structure from motion

• only determined up to an invertible transform

17
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SfM as SSID

• Past data: indicator of time step & h/v axis

‣ means we get to memorize each time step—
no attempt to learn dynamics

• Future data: observed screen coordinates 
(column of matrix)

18
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Kalman SSID: failure

HMM (Baum-Welsh) Kalman Filter (SSID) Preview…

19

all models: 10 latent dimensions



Geoff Gordon—15-780—Apr, 2011

Kalman SSID: failure

HMM (Baum-Welsh) Kalman Filter (SSID) Preview…

19

all models: 10 latent dimensions



Geoff Gordon—15-780—Apr, 2011

Kalman SSID: failure

HMM (Baum-Welsh) Kalman Filter (SSID) Preview…

19

all models: 10 latent dimensions



Geoff Gordon—15-780—Apr, 2011

Kalman SSID: failure

HMM (Baum-Welsh) Kalman Filter (SSID) Preview…

19

all models: 10 latent dimensions



Geoff Gordon—15-780—Apr, 2011

Can we generalize?

• Get rid of Gaussian noise assumption

• HMM: same form as Kalman filter, but

‣ A ≥ 0,  A1 = 1,  C ≥ 0,  C1 = 1
‣ noise ~ multinomial

‣ x, o are indicators: e.g., “4” = [0 0 0 1 0]T

20

x = A x– + noise
o = C x + noise A Cn

n n
m
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Derivations for Kalman v. HMM
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HMM SSID: first try

• As before, recover Â and Ĉ 
from E[ot+1ot

T] & E[ot+2ot
T]

• Doesn’t satisfy A ≥ 0,  A1 = 1, 
C ≥ 0,  C1 = 1
‣ is this a problem?

22

A
C

P CT

U�Σ2(U�Σ1)† = U�CA2PC�(U�CAPC�)†

= (U�CA)APC�(PC�)†(U�CA)−1

= SAS−1



Geoff Gordon—15-780—Apr, 2011

Merging A & C

• HMM tracking: write bt = P[xt | o1:t]

‣ P[xt | o1:t-1] = bt-0.5 = A bt-1

‣ P[ot | o1:t-1] = C bt-0.5

‣ if ot = o:

‣ P(xt=x | o1:t) = P(o | xt=x) P(xt=x | o1:t-1) / Z

‣ i.e., bt = diag(Co,:) bt-0.5 / Z

• Write Ao = diag(Co,:) A

‣ bt = Ao bt-1 / Z

23

where Z = P(ot=o | bt-1)
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It’s enough to 
estimate Ao

where Z = P(ot=o | bt-1)

P(ot=o | bt-1) = 1T Ao bt-1
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HMM SSID: try #2

24

Σo
2

def= E[ot+2(δ�o ot+1)o�t ]
= E[E[ot+2(δ�o ot+1)o�t | xt]]
= E[E[ot+2(δ�o ot+1) | xt]E[o�t | xt]]
= E[E[ot+2 | xt, ot+1 = o]P[ot+1 = o | xt](Cxt)�]
= E[E[ot+2 | xt, ot+1 = o](1�Aoxt)(Cxt)�]

= E
�
CA

�
Aoxt

1�Aoxt

�
(1�Aoxt)(Cxt)�

�

= E[CAAoxt(Cxt)�]
= CAAoE[xtx

�
t ]C�

= CAAoPC�
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HMM SSID: try #2

• Estimate Σ1 and Σ  from data; get Û = SVD(Σ1)

• Plug in to get Âo (for each o)

• Also need e = S-11 = leading left eigenvector 
of A1 + A2 + …

25

Âo
def= U�Σo

2(U
�Σ1)†

= U�CAAoPC�(U�CAPC�)†

= (U�CA)AoPC�(PC�)†(U�CA)−1

= SAoS
−1

2
o

x = Aox– / P(o)
o ~ Cx–

Co,: = eTAo
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Example: clock

• Discrete observations: 
sampled frames from 
training video

‣ when tracking: nearest 
neighbor or Parzen 
windows (mixture of 
Gaussians HMM)

• 10 latent dimensions

26
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Can we generalize?

• HMMs had x ∈ Δ
‣ intuition:  number of discrete states = 

number of dimensions

• We now have x ∈ SΔ
‣ essentially equally restrictive

• Can we allow x ∈ X for general X?

‣ # states > # dims

27
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# states > # dims: the picture
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SSID for OOMs

29

OOM: HMM:

• OOM: defined by transition matrices Ao, 
normalization vector e

‣ like HMM, but lift restriction of X = SΔ
‣ instead of Aox ≥ 0, have Aox ∈ λX, λ ≥ 0

‣ includes HMM as special case

≈ PSRs without actions, multiplicity automata, …

x = Aox– / P(o)
o ~ Cx–

Co,: = eTAo

x = Aox– / P(o)
o ~ Cx–

Co,: = eTAo
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OOM SSID

• No change!

30
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OOM example

• No change!

‣ our HMM SSID was 
actually learning 
OOMs all along…

31


