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Abstract— Interactions are frequently seen between the robot
and the targets being tracked within the robotics community.
Modeling the interactions using knowledge of robot cognition
improves the performance of the tracker. Communication im-
proves the performance of a multi-agent system. The focus of this
paper is to present our solution to integrate the communication
information into our team-driven multi-model motion tracking.
We present the probabilistic tracking algorithm in detail and
present empirical results both in simulation and in a Segway
soccer team. The information from team communication allows
the robot to much more effectively track mobile targets.

I. I NTRODUCTION

Target tracking is widely used in robot applications, e.g.
[1]. We identify two kinds of tracking problems in which:
(i) the tracker is static or does not actuate on the tracked
target and (ii) the tracker actuates on the target. As mobile
robots become more and more useful in everyday life, the
scenarios are more frequently seen where they actuate on the
targets. It is important to predict the location and velocity
of targets in the robot’s vicinity after executing actions over
them [2]. When tracking is performed by a robot executing
specific tasks actuating on the target being tracked, such as a
soccer robot grabbing a ball and passing it to a teammate,
the motion model of the target relies on the robot’s own
actions. The robot’s tactic provides valuable information in
terms of the target behavior, and we introduced a tactic-based
motion modeling and tracking algorithms [3]. Further, when
a team of robots are cooperating on a common task, any robot
can actuate on the targets, which makes the motion model of
the target even more complex. We proposed an extension to
the tactic-based tracking to solve the plan-dependent multi-
target tracking problem [4]. The dynamic multiple motion
models are based on the predefined team coordination plan.
Communication between robots is not used in their approach
and every robot coordinates based on observation only. In
some cases, when the tactics of the team member are not
exactly determined, the motion model of the target is unprecise
so that the tracking performance will be affected seriously.

However, communication improves the performance of such
a multi-agent system [5]. When communication is enabled,
a shared world model that stores the state of the team can be
constructed. The focus of this paper is to present our solution

to integrate the communication information into our team-
driven multi-model motion tracking. The techniques that we
describe are applicable to any domain where a team of agents
are cooperating on a specific task and any of them can actuate
on the targets in the field. Actuation on the targets is sent as
communication message to a specified team member to update
and synchronize the motion model of the tracked target.

The paper is organized as follows. We first give a brief
description of the Segway RMP soccer robot, which is the
testing environment of our approach. Next we show our team-
driven multi-model tracking scheme which incorporates the
team communication information. We then describe our track-
ing algorithm in detail, leading to our experimental results,
related work and conclusions.

II. SEGWAY RMP SOCCERROBOT

The Segway platform is unique due to its combination of
wheel actuators and dynamic balancing [6]. Segway RMP,
or Robot Mobility Platform, provides an extensible control
platform for robotics research. It imbues the robot with the
novel characteristics of a fast platform and travel long ranges,
able to carry significant payloads, able to navigate in relatively
tight spaces for its size, and provides the opportunity to mount
sensors at a height comparable to human eye level.

In our previous work, we have developed a Segway RMP
robot base capable of playing Segway soccer. We briefly
describe the two major components of the control architecture,
the sensor and the robot cognition, which are highly related
to our team-driven motion tracking. We give an example to
motivate our purpose to include the team actuation models
and communication to help tracking.

A. Vision Sensor and Infrared Sensors

The goal of vision is to provide as many valid estimates
of targets as possible. Tracking then fuses this information to
track the most interesting targets of relevance to the robot.
We use one pan-tilt camera as the vision sensor. We do
not discuss the localization of the robot in the sense that a
lot of soccer tasks can be done by the Segway RMP robot
without localization knowledge. Also we use global reference
for position and velocity in this paper which means it is



Fig. 1. A sequence of views from Segway Robot’s pan-tilt camera.

relative to the reference point where the robot starts to do
dead reckoning.

We have equipped each robot with infrared sensors (IR) to
reliably detect the objects located in the catchable area of the
robot. Its measurement is a binary value indicating whether or
not an object is there. In most cases, this is the blind area of the
pan-tilt camera. Therefore, the infrared sensor is particularly
useful when the robot is grabbing the ball.

B. Robot Cognition

A control architecture, called Skills-Tactics-Plays, was pro-
posed in [7] to achieve the goals of responsive, adversarial
team control. The key component of STP is the division
between single robot behavior and team behavior.

We construct the robot cognition using a similar archi-
tecture. Plays, tactics, and skills, form a hierarchy for team
control. Plays control the team behavior through tactics, while
tactics encapsulate individual robot behavior and instantiate
actions through sequences of skills. Skills implement the
focused control policy for actually generating useful actions.
Figure 2 shows theSSMs and transitions for an example
tactic: CatchKickToTeammate, which contains six skills. Each
node in the figure is a skill and the edges show the transition
between skills.
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Fig. 2. Skill state machines for an example tactic:CatchKickToTeammate.

C. Team Actuation Models Help Tracking

In order to motivate our purpose to include the team
actuation models and communication to help tracking, let us

first look at what the robot sees from its own camera. Figure
1 shows a sequence of views from a Segway Robot’s pan-tilt
camera. Each picture corresponds to one frame identified by
the frame id shown at the right-lower corner. The current frame
rate is approximately 30 frames/sec. Note that the camera has
a limited field of view (FOV), which makes tracking more
useful. Because the estimation from the tracker is translated
into a command to guide the camera where to look, which
makes it possible that the target consistently located in the
camera’s FOV.

The robot is trying to track the ball with its pan-tilt camera.
Hence the role of the robot is to keep the ball in its view
without losing it. At the beginning, the ball is static and the
robot finds the ball at frame# 72.At frame# 431, the ball is
kicked towards the robot. Since the ball moves fast, the robot
with the limited and narrow FOV loses the ball in its vision but
quickly finds the ball again at frame# 445 and keeps tracking
it well. In this experiment, the robot knows the team member
will pass the ball towards him. So when the ball is lost, the
robot calculate the estimated ball position with the help of
motion model (teammate actuation), trying to find the ball
at the estimated position which is right beneath its kicker.
Otherwise, if the robot cognition is not integrated, the robot
might have great difficulty locating the ball in a short time
because the actuation at frame# 431 makes the motion of the
ball highly discontinuous and nonlinear. Furthermore, should
the teammate announces the actuation as soon as he kicks the
ball, the robot would be able to select a correct motion model
and track the ball even better.

III. T EAM-DRIVEN MOTION MODELLING

In this section, we take a multi-model tracking problem as
a detailed example to show our team-driven motion modeling
method. First we give an introduction of the environment and
targets under the Segway soccer setup. Second, we define the
communication information and we include it into the tracking.
Finally, we give the multi-model regularized particle filtering
algorithm.



A. Tracking Scenario

In a Segway soccer game, there are multiple moving objects
on the field. e.g, the ball, the human team member and the
two opponents. In this paper, we focus on the ball tracking
problem.

The general parameterized state-space system for the target
xt at time t is given by:

xt = fm(xt−1,um
t−1,v

m
t−1) (1)

zt = hm(xt,nm
t ) (2)

where fm and hm are the parameterized state transition
and measurement functions for themth model of the target;
x,u, z are the state, input and measurement vectors;v,n are
the process and measurement noise vectors of known statistics;
m is the model index that can take any one ofN values, where
N is the number of models of the target being tracked;

In our Segway RMP soccer robot environment, we define
five motion models (state and measurement transition func-
tions), namelyFree-Ball, Robot-Grab-Ball, Robot-Kick-Ball,
Teammate-Grab-Ball, Teammate-Kick-Ball to model the ball
motion (for the rest of this paper, for simplicity, we usext to
represent the ball state). They are similar models as introduced
in [4]. Generally,Free-Ball is a motion model that the ball
moves without external actuation.Robot-Grab-Ball andRobot-
Kick-Ball are the two motion models that describe the robot’s
own actuation effects on the ball.Teammate-Kick-Ball and
Teammate-Grab-Ball are the two motion models that describe
the teammate’s actuation effects on the ball.

Though we are using the similar models as [4], we have
different strategy on how to infer which model to use and
how to transits from one model to another. Briefly speaking,
their approach assumes the robot infers teammate’s tactic
from team play, and assign transitional probabilities based on
the assumed teammate’s tactic. While we obtain teammate’s
tactic directly from the communication message, which will
be further discussed in the following sections.

B. Communication Information

Current communication between robots is through peer-
to-peer UDP sockets. Each announcement will be repeated
for the several following time steps to avoid possible data
loss in transimition. We define three kinds of communication
messages in terms of different actuation model. Each kind of
message has a unique message ID.

• Hold: After grabbing the ball, robot announces “hold”
indicating the ball is under its kicker.

• Shoot: Robot announces “shoot” when it kicks the ball
to the opponent’s goal.

• Pass: Robot announces “pass“ when it decides to pass
the ball to its teammate.

With the communication information, robots do not need to
infer teammate’s tactic from the team play any more [4].
Instead, every actuation on the ball is announced to keep
the ball motion updated among team members. we can use
dynamic Bayesian network (DBN) to represent the whole
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Fig. 3. A DBN for ball tracking with a Segway RMP robot.

system for the ball tracking in a natural and compact way
as shown in Figure 3. In this graph, the system state is
represented by variables (robot’s own tacticT , communication
messageC, infrared sensor measurements, ball statex, ball
motion model indexm, vision sensor measurementz). The
variables change over time in discrete intervals. The edges
indicate dependencies between the variables. For instance,
in Figure 3 the ball motion model indexmt depends on
mt−1, Tt−1, Ct−1, st andxt−1, hence there are edges coming
from the latter five variables tomt. Note that the motion
model is not dependent on teammate’s play or tactics, since the
communication message contains all the information presented
by teammate’s tactics.

C. Team-Driven Model Transitions

Given the communication information (Ct−1 =
{None,Hold, Shoot, Pass}), the robot can infer which
motion model the ball should take. The motion model of the
ball (mt) is therefore affected by what tactic the robot (Tt−1)
is executing and what actuation the teammate is doing.

We know that the model indexm determines the present
motion model being used. For our ball tracking example,mt =
i, i = 1, · · · , 5. In our approach, it is assumed that the team
member motion model index,mt, conditioned on the previous
tactic executedTt−1 by the robot, the communication message
Ct−1 which indication teammate actuation, and other useful
informationvt (such as ball state and infrared sensor reading),
is governed by an underlying Markov process, such that, the
conditioning parameter can branch at the next time-step with
probability.

hi,j = p(mt = i|mt−1 = j, Tt−1, Ct−1, vt) (3)

Note thatCt−1 = None indicates no message is received
in the current time step. WhileCt−1 �= None indicates a
message is received concerned with a teammate actuation.

IV. M ULTI -MODEL MOTION TRACKING

We give the ball-tracking algorithm following Figure 3.
We use the sequential Monte Carlo method to track the



motion model m and the object statex. Particle filtering
is a general purpose Monte Carlo scheme for tracking in a
dynamic system. It maintains the belief state at timet as a
set of particlesp(1)

t , p
(2)
t , · · · , p(Ns)

t , where eachp(i)
t is a full

instantiation of the tracked variables{p(i)
t , w

(i)
t }, w

(i)
t is the

weight of particlep
(i)
t and Ns is the number of particles. In

our case,p(i)
t = 〈x(i)

t ,m
(i)
t 〉.

The equations below follow from the ball-tracking DBN.

m
(i)
t ∼ p(mt|m(i)

t−1,x
(i)
t−1, st, Tt−1, Ct−1) (4)

x(i)
t ∼ p(xt|m(i)

t ,x(i)
t−1) (5)

Note that Equation 4 is implemented as a regime transition
[8]. Also note in Equation 5, the ball state is conditioned on
the ball motion modelm(i)

t sampled from Equation 4.
Then we use the regularized particle filter to update the state

estimate and resampling from a continuous approximation of
the posterior density. The sampling algorithm is as follows:

[{x(i)
t , m

(i)
t , w

(i)
t }Ns

i=1] = RPF[{x(i)
t−1, m

(i)
t−1, w

(i)
t−1}Ns

i=1, zt, st, Tt−1, Ct−1]

01 for i = 1 : Ns

02 drawm
(i)
t ∼ p(mt|m(i)

t−1,x
(i)
t−1, st, Tt−1, Ct−1).

03 drawx
(i)
t ∼ p(xt|m(i)

t ,x
(i)
t−1).

04 setw(i)
t = w

(i)
t−1 · p(zt|x(i)

t )
05 end for
06 Calculate total weight:w =

∑
[{wi

t}Ns
i=1]

07 for i = 1 : Ns

08 Normalize:wi
t = wi

t/w
09 end for
10 if N̂eff < Nthr

11 Calculate covariance matrixSk of {xi
k, wi

k}N
i=1

12 ComputerDk such thatDkDT
k = Sk

13 Resample
14 for i = 1 : Ns

15 drawεi ∼ K from Gaussian kernel
16 xi∗

k = xi
k + hoptDkεi

17 end for
18 end if

The inputs of the algorithm are samples drawn from the
previous posterior〈x(i)

t−1,m
(i)
t−1, w

(i)
t−1〉, the present vision and

infrared sensory measurementzt, st, the robot’s tacticTt−1,
and the communication messageCt−1. The outputs are the
updated weighted samples〈x(i)

t ,m
(i)
t , w

(i)
t 〉. In the sampling

algorithm, first, a new ball motion model index,m(i)
t , is

sampled according to Equation 4. Then given the model index,
and previous ball state, a new ball state is sampled according to
Equation 5. The importance weight of each sample is given by
the likelihood of the vision measurement given the predicted
new ball state. Finally, each weight is normalized and the
samples are resampled. Then we can estimate the ball state
based on the mean of all thex(i)

t . Ball motion model can
be estimated based onm(i)

t . For details about the regularized
particle filter, refer to [9].

V. EXPERIMENT

In this section, we evaluate the effectiveness of our tracking
system in both simulated and real-world tests.

A. Simulation Experiments

It is difficult to know the ground truth of the target’s position
and velocity in the real robot test. We do the simulation
experiments to evaluate the performance of tracking using
various metrics.

A tracking scenario with multi-agent actuators is selected
to illustrate the communication-based multi-model tracking.
A static robot is observing the target, which starts from the
point (-36.5, -67) of thex-y plane at a speed of 0.3m/s and a
heading of 1.31rad. After 78 seconds, another robot actuates
on the target which accelerate it for 52 seconds. The next
actuation on the target begins at 130 seconds and ends at 180
seconds which finalize the simulated run. Figure 4 shows the
target trajectory. Whenever an actuation happens, the robot
who executes the action send message to others informing the
actuation model ID. In all simulated tests, the sample time is
taken as 1.0s.
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Fig. 4. Simulated target trajectory. The cross indicates the starting point,
and the square indicates the ending point.

Three types of motion models are employed. The first
assumes constant velocity in the Cartesian frame with small
deviations in velocityvt on x-y axis by zeros-mean, Gaussian
white noisewt with covarianceQcv. The second and third
model, employed to track the motion actuated by a robot,
assumes constant acceleration motion onx-y axis with small
deviations in accelerationat by zeros-mean, Gaussian white
noisewt with covarianceQca. The second model uses a high
disturbance covariance, the third model uses a low disturbance
covariance. The Markov transition probability matrix is de-
fined as

H1 =




0.95 0.33 0
0.05 0.34 0.05
0 0.33 0.95




and the initial probabilities are set to

p(m0) =
[

0.6 0.2 0.2
]T

When there is no communication about actuation model,H1

is the only transition matrix we use. When communication



is enabled, we have two more transition matrix defined cor-
responding to receiving message of actuation model 2 and 3
respectively, where

H2 =




0.05 0.03 0.05
0.9 0.9 0.85
0.05 0.07 0.1


 ,H3 =




0.05 0.03 0.02
0.15 0.2 0.1
0.8 0.77 0.88




In all scenarios, observation are taken of the Cartesian position
of the target, corrupted by zero-mean, Gaussian noise with
variance R = 0.01 on each axis.
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We simulate the experiment for 50 runs. For comparison
purposes, the normalized position error (NPE), defined as
the ratio of the mean-square position estimation error to the
mean-square measurement error overM simulations [8] is
applied. Figure 5 plots the variation in NPE for tracking with
and without communication. With communication enabled, the
position estimation is better, which is expected because the
estimated motion model is more precise with communication
enabled. To illustrate the superior tracking of the tracking with
communication, Figure 6 and 7 plots the corresponding model
weighting from each tracker. We can clearly see that the model
transition in Figure 7 exactly describes what happens in real-
time (motion model transits from 1 to 2, then 2 to 3).

B. Real Robot Test

In the real-world test, we do experiments on the Segway
RMP soccer robot executing theCatch tactic to receive
ball from robot teammate. The teammate robot is execut-
ing the GrabKickToTeammate tactic. When the kick mo-
tion is done, the teammate announces the “pass” message
through peer-to-peer communication. We implement multi-
model tracker with and without including communication
information to compare the performance.

Figure 8 plots the ball speed estimation results from each
tracker in one of the experiment. As is shown in the figure,
the estimation without communication lags from the true value
about 0.5 s, while the estimation with communication is
well predicted because the announcement is received right
after the actuation is made. To illustrate the superior tracking
of the tracking with communication, Figure 9 and 10 plots
the corresponding model weighting from each tracker. We
can clearly see that the model transition in Figure 7 exactly
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describes the real world testing scenario in which motion
model transits fromFree-Ball to Teammate-Kick-Ball, then
Free-Ball and at lastRobot-Grab-Ball.

VI. RELATED WORK

There are several approaches incorporating some kind of
prior knowledge related to the general problem of tracking
under no actuation. For example, hard constraints on target po-
sition, speed or acceleration have been considered in tracking
problems to improve tracking performance [10]. This kind of
information is simple and easy to be represented as a truncated
density. The only thing we need to do is to sample from a
truncated density using rejection sampling technique.

Another example is the situation where a number of targets
are moving in formation, and there is a strong dependency
between the individual sensor measurements, which provides
valuable information on target behavior. Actually this problem
can be modelled as independent individual target motions
superimposed on a common group effect. A model of this type
was introduced in [11], in which the motion of the group and
disposition of the measurement sources relative to the group
are modelled as two separate components.

In terrain-aided tracking problem, using the ground moving
target indicator (GMTI), one may have some prior information
of the terrain, road maps, and visibility conditions [12]. The
algorithm is referred to as the variable structure multiple-
model particle filter, since it adaptively selects a subsets of
modes that are active at a particular time. This approach
outperformed normal tracking method without integrating the
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prior information due to the better dynamics models, which
capture the motion dynamics with terrain information in an
intricate but accurate manner.

All the above approaches deal with the problem of track-
ing under no actuation. The first effort reporting a track-
ing approach concerned with our problem of actuation over
tracked objects is presented in [2]. In this approach, the
author acclaims that the physical interaction between observer
and target is one of the difficult issues. One of the novel
contributions of this approach is its idea to model different
interactions between the ball and the environment. The tran-
sition probabilities between the states are fixed. Their values
were tuned manually. By additionally sampling the non-linear
parts (robot motion and ball-environment interaction) of the
observer motion, the target and its motion can be estimated
accurately using Kalman filters conditioned on these samples.
Then a tracking algorithm incorporating single and multi-robot
control and coordination knowledge is proposed by [3] and
[4], in which the transition probabilities between the states are
dependent on the robot’s tactic and team plan. If the teammate
is a human, not a robot, the certainty that the teammate is
executing the expected play or tactic could be reduced. That
is, the human teammate could fail to execute the desired play
or tactic, which cause the motion model to be unprecise.

In this paper, communication information between multiple
agents is recognized as another source of prior knowledge.
We integrate this information to our team-driven multi-model
motion tracking scheme and obtain better performance.

VII. C ONCLUSIONS

Motivated by the interactions between a team and the
tracked object, we contribute a method to achieve efficient
tracking through using a communication-based motion model
and combined vision and infrared sensory information. This
method gives the robot a more exact task-specific motion
model when executing different tactics over the tracked object.
Then we represent the system in a compact dynamic Bayesian
network and use particle filter to keep track of the motion
model and target state through sampling. The empirical re-
sults from the simulated and the real experiments show the
efficiency of the multi-model tracking when communication

is enabled and integrated.
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Fig. 9. Model weightings when communication is disabled.
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