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Pseudorandom generators from 
general one-way functions III

15-859I
Spring 2003

Review:

Our goal is to construct a PRG from any 
OWF
A False Entropy Generator is a function 
f:{0,1}n→{0,1}ℓ(n) that has f(Un) 
computationally indistinguishable from some 
ptc ensemble Dn: {0,1}ℓ(n) where H(D) > 
H(f(U)).
Using universal hash functions and product 
distributions, we can construct a PRG from a 
F.E.G. (4 pages from [HILL99])

Review: f ’ construction

Let f:{0,1}n→{0,1}ℓ(n) be a one-way function, 
and let h: {0,1}p(n) × {0,1}n → {0,1}n+log 2n be a 
universal hash function.  Define

f’(x,i,r) = (f(x),hr(x)|1…i+log 2n, i, r)
Let Y ← Un, then when I < D̃f(f(X)), we will 
have  (f’(X,I,R),Y,X•Y) ≅ (f’’(X,I,R),Y,U1) .
To formalize, define two sets:

T =   {(x,i) : x ∈ {0,1}n, i ∈ {0,…, D̃f(f(x))} }
TC = {(x,i) : x ∈ {0,1}n, i ∈ {D̃f(f(x))+1, …,n-1} }

Review: FEG Construction

Let k(n) ≥ 125n3, I∈U {0,…,n-1}, and define
pn = Pr[I ≤ D̃f(f(x))]
m(n) = k(n)pn – 2k(n)2/3

Let X’,Y’ ← Unk(n),I’ ∈U {0,…,n-1}k(n), 
R’←Uk(n)p(n)., Z←Um(n).
Let h’ : {0,1}p’(n) × {0,1}k(n) → {0,1}m(n) be a 
universal hash function, and V ← Up’(n)
Define g(pn,X’,Y’,I’,R’,V) = 

(h’V(X’•Y’),f’k(n)(X’,I’,R’),V,Y’)

Review: Main Theorem

False Entropy Theorem: g is a mildly nonuniform
false entropy generator.
Proof: Delayed…
Main Theorem: If there exists a one-way function, 
then there exists a pseudorandom generator.
Proof: Compose previous theorems: False Entropy 
Theorem, FEG → (mildly nonuniform) PEG theorem, 
PEG → PRG theorem, mildly nonuniform PRG →
PRG theorem.
We’re done!  Oh wait, that pesky False entropy 
theorem…

Review: False Entropy Theorem

Proof: Consider the distributions:
D = g(pn,X’,Y’,I’,R’,V) and
E = (Z,f’k(n)(X’,I’,R’),V,Y’)

Lemma 1: H(E) ≥ H(D) + 10n2.
Lemma 2: D ≅ E
Thus, g is a false entropy generator given pn.  We 
will show in the proof of lemma 2 that it is OK to use 
a value ρ with pn ≤ ρ ≤ pn+1/n.  Therefore we only 
need log n bits of advice.  So g is a mildly 
nonuniform false entropy generator. QED
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Lemma 2: D ≅ E

Recall:
D = hV(X’•Y’), f’k(n)(X’,I’,R’), V, Y’
E = (Z,f’k(n)(X’,I’,R’),V,Y’)

Another way to describe D:
For each j, choose Cj=1 with probability pn

When Cj = 1, choose (Xj’,Ij’) ∈ T, else (Xj’,Ij’) ∈ TC

Define the distribution D’:
Same as D, except when Cj = 1 replace jth input to 
h  (X’j•Y’j) by Bj ← U1.

Lemma 2 intuition…

Notice that by the Leftover Hash Lemma, 
L1(D’,E) ≤ 2-k(n)⅓ = 2-5n, so D’ ≅ E.  
Intuitively, in D’ we just replace Xj’•Yj’ by Bj
when (Xj’,Ij’) ∈ T; and we have already shown 
that in this case Xj’•Yj’ ≅ Bj.  So we would 
expect D≅D’, giving D≅E.
The hybrid argument fails, however, because 
we can’t efficiently sample from D’

Hybrid argument for D≅D’

Suppose we have A such that 
Pr[A(D)=1] – Pr[A(D’)=1] = δ(n)

Define the hybrid distributions F(j) so that F(j)

is distributed identically to D’ up to position j 
and D afterwards, i.e., F(j) is chosen like D 
except that for i≤j, when Ci=1 we replace 
Xi’•Yi’ by Bi.  Thus F(0) = D, F(k(n)) = D’
If J ∈U {1,…,k(n)}, then we have that 

EJ[ A(F(J-1))  - A(F(J)) ] = δ(n)/k(n)

How to fix our Hybrid argument?

Notice that when Cj = 0, A has no advantage, 
yet when Cj=1 A has significant advantage.
So A “knows” when an element W∈T, given 
f’(W,R).
We will take advantage of this to build hybrid 
distributions which are “close” to F(j) allowing 
us to get by the problem.
This is the last 4 technical pages of [HILL99]

New Hybrids…

We will define two sets of hybrid distributions, 
E(j), D(j) for j ∈{0,…,k(n)}.
We will have E(0) = E, D(0) = D, and 
E(k(n))≈D(k(n)).
Define δ(j) = Pr[A(D(j)) = 1] – Pr[A(E(j))=1].
Then δ(0) = δ(n) and δ(k(n)) ≈ 0
We will also have: EJ[δ(J-1) - δ(J)] ≥ δ(n)/k(n)
This will allow us to (indirectly) invert f’ later.

Definition of D(j), E(j)

Define parameters: 
ρ = δ(n)/16k(n)
τ = 64n2/ρ

Define: D(0) = D; E(0) = E; B←Uk(n).
Suppose D(j-1) is defined.  Then to sample 
from D(j):

Choose cj ∈{0,1} so that Pr[cj=1] = pn

Sample xm←Un, im ∈U{1…n}, let wm = (xm,im), 
1 ≤ m ≤τ.
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D(j) and E(j) continued…

Define D(j-1)(cj,wm) to be the same as D(j-1)

except that (Xj’,Ij’) is fixed to wm and the jth
input bit of h’ is set to xm•Yj’ if cj=0 and Bj
otherwise.
Define E(j-1)(wm) to be the same as E(j-1)

except (Xj’,Ij’) is fixed to wm.
Define δ(j-1)(cj,wm) = Pr[A(D(j-1)(cj,wm)) = 1] –
Pr[A(E(j-1)(wm)) = 1].

Sampling from D(j) and E(j)…

Use A and draw O(n/ρ2) samples from 
D(j-1)(cj,wm), E(j-1)(wm) to get an estimate 
∆(j-1)(cj,wm) such that

Pr[|∆(j-1)(cj,wm) - δ(j-1)(cj,wm)| >ρ] ≤ 2-n

(i.e., take average over O(n/ρ2) samples)
Let µ ∈ {1,…,τ} be such that ∆(j-1)(cj,wµ) is 
maximized.
Define D(j) = D(j-1)(cj, wµ), E(j) = E(j-1)(wµ)

Using our hybrids

Define D(j)(w,r,b,y) to be D(j) with 
f’(X’j+1,Y’j+1,R’j+1) replaced by f’(w,r), the j+1 
input bit to h’ replaced by b, and Y’j+1
replaced by y; Same for E(j)(w,r,y).
Define MA(f’(w,r),b,y) =

Choose j∈U{0,…,k(n)-1}
Draw d ← D(j)(w,r,b,y), e ←E(j)(w,r,y), b’ ←U1.
If A(d) = A(e), output b’; else output A(d).

Hybrid claim

Hybrid Claim: if A distinguishes D and E with 
probability δ(n), MA distinguishes 
f’(W,R),X•Y,Y from f’(W,R),B,Y with 
probability at least δ(n)/16k(n)
(Hang in there… only 2pp left!)

Proof of Hybrid claim

Pr[M(f(w,r),b,y) = 1] =
½ Pr[A(D(j)(w,r,b,y)) = A(E(j)(w,r,y)]

+ Pr[A(D(j)(w,r,b,y)) = 1 & A(E(j)(w,r,y)=0)]
= ½ Pr[A(D(j)(w,r,b,y) = 1) & A(E(j)(w,r,y)) = 1] +

½ Pr[A(D(j)(w,r,b,y) = 0) & A(E(j)(w,r,y)) = 0] +
Pr[A(D(j)(w,r,b,y)) = 1 & A(E(j)(w,r,y)) = 0]

= ½ + ½(E[A(D(j)(w,r,b,y)] – E[A(E(j)(w,r,y)])
≡ ½ + ½(d(j,w,r,b,y) – e(j,w,r,y))

Proof, con’t…

Notice that:
E[d(j,w,R,x•Y,Y) – e(j,w,R,Y)] = δ(j)(0,w)
E[d(j,w,R,B,Y) – e(j,w,R,Y)] = δ(j)(1,w)

Define ε(j) = E[δ(j)(0,W) - δ(j)(1,W)]
Then the advantage of MA is:
E[MA(f’(W,R),X•Y,Y)] – E[MA(f’(W,R),B,Y)] =
E[δ(j)(0,W)/2] – E[δ(j)(1,W)/2] = Ej[ε(j)]/2
So we just need to show that 

Ej[ε(j)] ≥ δ(n)/8k(n)
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Alternatively…

Alternatively we can show that
E[Σj ε(j)] ≥ 2ρk(n)

We will prove this by showing that:
(a) E[δ(k(n))] ≤ 2-n+1

(b) E[δ(j) - δ(j+1)] ≤ ε(j) + 4ρ
This will give us:

8ρk(n) = δ(n)/2
< δ(n) – E[δk(n)]
= Σj E[δ(j) - δ(j+1)]
≤ 4k(n)ρ + E[Σj ε(j)].

Proof of (a) E[δ(k(n))] ≤ 2-n+1

Notice that E(k(n)) and D(k(n)) are identical except that 
the first m(n) bits of E(k(n)) are Z and the first m(n) 
bits of D(k(n)) are the output of h’.
But HR(input to h’ | rest of D(k(n))) ≥ Σj cj.
A Chernoff bound gives us that with probability at 
least 1-2-n, 

Σj cj ≥ k(n)pn – k(n)2/3 = m(n) + k(n)2/3

When this is true, we get from the  Leftover hash 
lemma that L1(D(k(n)),E(k(n))) ≤ 2-k(n)⅔/2 < 2-n.
This gives us E[δ(k(n))] ≤ 2-n+1.

Proof of (b) E[δ(j) - δ(j+1)] ≤ ε(j) + 4ρ

Recall that W ∈U T.  Define WC ∈U TC.
Then since the j+1 input to h’ in D(j) is always 
X’j+1•Y’j+1,  we have
δ(j) = pnE[δ(j)(0,W)] + (1-pn)E[δ(j)(0,WC)]

= pnE[δ(j)(1,W)] + pn(E[δ(j)(0,W)] - E[δ(j)(1,W)]) + 
(1-pn)E[δ(j)(0,WC)]

< ε(j) + pnE[δ(j)(1,W)] + (1-pn)E[δ(j)(0,WC)]
We will complete the proof by showing that

E[δ(j+1)]  + 4ρ ≥ pnE[δ(j)(1,W)] + (1-pn)E[δ(j)(0,WC)].

To show:
E[δ(j+1)]+4ρ≥pnE[δ(j)(1,W)]+(1-pn)E[δ(j)(0,WC)]

A Chernoff Bound gives us that with 
probability at least 1-2-n, for stage j, at least 
n/ρ of the wm are in T and at least n/ρ of the 
wm are in TC.  
Thus with probability at least 1-2-n, we have:
maxm {δ(j)(c,wm)} ≥

max{E[δ(j)(c,W)],E[δ(j)(c,WC)]} - ρ
Also recall that with probability at least 1-2-n, 
we have |∆(j)(c,wm) - δ(j)(c,wm)| < ρ

To show:
E[δ(j+1)]+4ρ≥pnE[δ(j)(1,W)]+(1-pn)E[δ(j)(0,WC)]

So δ(j)(c,wµ) ≥ ∆(j)(c,wµ) - ρ
= maxm {∆(j)(c,wm)} - ρ
≥ maxm {δ(j)(c,wm)} - 2ρ
≥ max{E[δ(j)(c,W)],E[δ(j)(c,WC)]} - 3ρ

With probability at least 1 - 3·2-n.  Thus:
E[δ(j+1)(c)] = E[δ(j)(c,wµ)]

≥ max{E[δ(j)(c,W)],E[δ(j)(c,WC)]} - 4ρ
Giving the required inequality.

So we are done

This completes the proof that A distinguishes 
f’(w,r),x•y,y from f’(w,r),b,y .
Thus completing the proof that a F.E. 
Generator can be constructed from any one-
way function…
HUGE issue:  suppose we compose the 
various constructions to get a pseudorandom 
generator.  Then to get inputs to f of size n, 
the inputs to the resulting generator will have 
size n34.  [HILL99]
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Open problem

Now we don’t actually require all of the 
intermediate product distributions…  [HILL99] 
claim that the same techniques can chip it 
down to inputs of size n8.
Open problem: construct a pseudorandom 
generator from any one-way function f such 
that the security of f on inputs of size n is 
related to the security of g on inputs of size n2 

or n3.


