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Review:

Our goal is to construct a PRG from any
OWF

A False Entropy Generator is a function
f:{0,1}"—{0,1}4" that has f(U,)
computationally indistinguishable from some
ptc ensemble D, : {0,1}" where H(D) >
H(f(U)).

Using universal hash functions and product
distributions, we can construct a PRG from a
F.E.G. (4 pages from [HILL99])

Review: f’ construction

Let f:{0,1}"—{0,1}" be a one-way function,
and let h: {0,1}PM x {0,1}" — {0,1}n*leg2nl pe 3
universal hash function. Define

f’(x,i,r) = (f(x)!hr(x)|1...i+r|og 2n» i’ r)
Let Y < U,, then when | < D(f(X)), we will
have (F(X,I,R),Y,XY) = (F'(X,,R),Y,U,).
To formalize, define two sets:
a T= {(xi):xe{0,13ie{0,..., D(f(x))} }
a TC={(x,i) : x € {0,1}", i & {B(f(x))+1, ...,n-1}}

Review: FEG Construction

Let k(n) 2 125n3, I, {0,...,n-1}, and define
Pn = Prll = Dg(f(x))]
m(n) = k(n)p, — 2k(n)?3
L?t XY — Unkin I ey {0,...,n-1}kn),
R —Ukmp(n).s Z=Ym:
Let h': {0,1}(™ x {0,1}xm — {0,1}™™ be a
universal hash function, and V «— U
Define g(p,.X,Y’,I''R",V) =
(hy(X*Y’), (X, I, R"),V,Y’)

p'(n)

Review: Main Theorem

False Entropy Theorem: g is a mildly nonuniform
false entropy generator.

Proof: Delayed...

Main Theorem: If there exists a one-way function,
then there exists a pseudorandom generator.

Proof: Compose previous theorems: False Entropy

Theorem, FEG — (mildly nonuniform) PEG theorem,

PEG — PRG theorem, mildly nonuniform PRG —
PRG theorem.

We're done! Oh wait, that pesky False entropy
theorem...

Review: False Entropy Theorem

Proof: Consider the distributions:
D =g(p, XY I'R,V)and

E = (Z,F(X,I,R),V,Y)
Lemma 1: H(E) 2 H(D) + 10n2.
Lemma2:D=zE

Thus, g is a false entropy generator given p,. We
will show in the proof of lemma 2 that it is OK to use
a value p with p, < p < p,+1/n. Therefore we only
need log n bits of advice. So g is a mildly
nonuniform false entropy generator. QED




Lemma2: D= E

Recall:
D =hy(XeY), FKO(X IR, V, Y’
E = (Z,fXO(X,I,R),V,Y’)

Another way to describe D:

a For each j, choose C=1 with probability p,,

a When C; = 1, choose (X/,I) € T, else (X/,I) € T°
Define the distribution D’:

o Same as D, except when C; = 1 replace j" input to
h (X;Y’) by B, « U,.

Lemma 2 intuition...

Notice that by the Leftover Hash Lemma,
L,(D’,E) < 2% = 250 50 D’ = E.

Intuitively, in D" we just replace X/'*Y; by B
when (X/,I) € T; and we have already shown
that in this case X/*Y; = B;. So we would
expect D=D’, giving D=E.

The hybrid argument fails, however, because
we can't efficiently sample from D’

Hybrid argument for D=’

Suppose we have A such that
Pr[A(D)=1] — Pr[A(D’)=1] = 8(n)
Define the hybrid distributions Fi) so that F0)
is distributed identically to D’ up to position j
and D afterwards, i.e., F0) is chosen like D
except that for isj, when C;=1 we replace
X/*Y; by B,. Thus F© =D, Fk) =D’
IfJ e, {1,....k(n)}, then we have that
EJLAFUD) - A(FU) ] = 5(n)k(n)

How to fix our Hybrid argument?

Notice that when Cj = 0, A has no advantage,
yet when C;=1 A has significant advantage.
So A “knows” when an element WeT, given
f(W,R).

We will take advantage of this to build hybrid
distributions which are “close” to F0) allowing
us to get by the problem.

This is the last 4 technical pages of [HILL99]

New Hybrids...

We will define two sets of hybrid distributions,
E®, DO for j €{0,...,k(n)}.

We will have E@ = E, DO =D, and

Ekm)=D kM),

Define 30 = Pr[A(D®) = 1] — Pr{A(E®)=1].
Then 50 = §(n) and 3k ~ 0

We will also have: E j[5¢1 - 8] 2 §(n)/k(n)
This will allow us to (indirectly) invert f’ later.

Definition of DO, EO

Define parameters:

a p = 8(n)/16k(n)

0 1=64n%p

Define: D© = D; EO = E; B—Uyn)-

Suppose D01 is defined. Then to sample

from DO

o Choose ¢, €{0,1} so that Pr[c=1] = p,

a Sample x,«U,, i, € {1...n}, let w,, = (X,irm)s
1<m=rt.




D®and EO continued...

Define DU-)(c;,w,,) to be the same as D(-")
except that (X ,I) is fixed to w,, and the j"
input bit of h' is set to x,°Y; if ¢=0 and B,
otherwise.

Define E¢-)(w,,) to be the same as Ei-"
except (X)) is fixed to wi,,.

Define 80-1)(c,w,,) = PrIA(DG-D(c,w,,)) = 1] -
Pr{A(EG(w,,)) = 1].

Sampling from DO and E0. ..

Use A and draw O(n/p?) samples from
DG")(c;,w,), EF-I(w,,) to get an estimate
Al)(c,wy,,) such that

Pr{jAFY(c,wy,) - 36 (c,wy,) >p] < 27
(i.e., take average over O(n/p?) samples)
Let u e {1,...,7} be such that At-"(c,w,) is
maximized.
Define DO = Di-)(c;, w,), EO) = E¢-D(w,)

Using our hybrids

Define DU)(w,r,b,y) to be D) with
f(X'41,Y'+1,R'j41) replaced by f'(w,r), the j+1
input bit to h’ replaced by b, and Y’
replaced by y; Same for EQ(w,r,y).

Define MA(f(w,r),b,y) =

o Choose je{0,...,k(n)-1}

a Draw d « DO(w,r,b,y), e —EW0(w,r,y), b’ <U,.
o If A(d) = A(e), output b’; else output A(d).

Hybrid claim

Hybrid Claim: if A distinguishes D and E with
probability 5(n), MA distinguishes
f(W,R),XeY,Y from f(W,R),B,Y with
probability at least 3(n)/16k(n)

(Hang in there... only 2pp left!)

Proof of Hybrid claim

PriM(f(w,r),b,y) = 11 =
Y5 PrA(DO(w,r,b,y)) = A(EO(w,r,y)]
+ PrfA(DO(w,r,b,y)) = 1 & A(E0(w,r,y)=0)]

=% Pr{A(DO(w,r,b,y) = 1) & A(EW)(w,r,y)) = 1] +

% Pr{A(DO(w,r,b,y) = 0) & A(E0(w,r,y)) = 0] +

Pr[A(D(w,r,b,y)) = 1 & A(ED(w,r,y)) = 0]
= Y2 + V2(E[A(DO(w,r,b,y)] — E[A(EN(W,r,y)])
=2+ V2(d(j,w,r,b,y) — e(j,w,r,y))

Proof, con’t...

Notice that:
o E[d(,w,R,xY,Y) — e(j,w,R,Y)] = 50)(0,w)
o E[d(,w,R,B,Y) — e(j,w,R,Y)] = 80(1,w)
Define ) = E[50)(0,W) - §0)(1,W)]
Then the advantage of MA is:
E[MA(F(W,R),X*Y,Y)] — E[MA(f(W,R),B,Y)] =
E[59(0,W)/2] — E[30(1,W)/2] = E;[e0)/2
So we just need to show that
E;[e9] = §(n)/8k(n)




Alternatively...

Alternatively we can show that
E[Z; £9] 2 2pk(n)

We will prove this by showing that:

E[S(k(n))] < 2-n+1

E[50 - 80*1] < &0 + 4p

This will give us:
8pk(n) 8(n)/2

3(n) — E[5%M]

ZJ E[50) - 60*1 1
4k(n)p + E[Z; £0)].

I/\ n A 1

Proof of (a) E[6*®)] < 2-n+1

Notice that E&™) and D&M are identical except that
the first m(n) bits of E(k“‘)) are Z and the first m(n)
bits of D& are the output of h’.
But Hg(input to h’ | rest of D) = %, ¢,
A Chernoff bound gives us that with probability at
least 1-2",

%, ¢z k(n)p, — k(n)?® = m(n) + k(n)?*
When this is true, we get from the Leftover hash
lemma that L, (D&, Ek) < 2-kn*2 < 2-n,
This gives us E[s&M)] < 2-n+1,

Proof of (b) E[80 - 8(*1] < &) + 4p

Recall that W €, T. Define WC ¢, TC.
Then since the j+1 input to h’ in DO is always
X1*Y'jq, We have
30 = p E[50(0,W)] + (1-p,)E[39(0,W°)]
= PE[8O(1,W)] + p,(E[39(0,W)] - E[39(1,W)]) +
(1-p,)E[39(0,WC)]
< &0+ p E[30(1,W)] + (1-p,)E[30(0,WC)]
We will complete the proof by showing that

E[30*M] +4p 2 p E[39(1,W)] + (1-p,)E[39(0,WO)].

To show:
B3] +4p2p, E[30(1LW)]+(1-p,) B3O 0.W )

A Chernoff Bound gives us that with

probability at least 1-2-, for stage j, at least

n/p of the w,, are in T and at least n/p of the

w,, are in TC.

Thus with probability at least 1-2", we have:

max,, {80(c,w,,)} =
max{E[50)(c,W)],E[80)(c,WC)]} - p

Also recall that with probability at least 1-2,

we have |AQ(c,w,,) - 80(c,w,,)| < p

To show:
E[00*D]+4p2p, E[6D(1,W)]+(1-p,)E[6D(0,WC)]
So 80(c,w,) 2 Al(c,w,) - p

= maxy, {AV(c,wp,)} - p

= max,, {30(c,w,,)} - 2p

2 max{E[60(c,W)],E[60(c,WC)]} - 3p
With probability at least 1 - 3-2". Thus:

E[30*1(c)] = E[8%(c,w,)]

= max{E[60(c,W)],E[60)(c,WC)]} - 4p

Giving the required inequality.

So we are done

This completes the proof that A distinguishes
f(w,r),xey,y from f(w,r),b,y .

Thus completing the proof that a F.E.
Generator can be constructed from any one-
way function...

HUGE issue: suppose we compose the
various constructions to get a pseudorandom
generator. Then to get inputs to f of size n,
the inputs to the resulting generator will have
size n34. [HILL99]




Open problem

Now we don’t actually require all of the
intermediate product distributions... [HILL99]
claim that the same techniques can chip it
down to inputs of size n8.

Open problem: construct a pseudorandom
generator from any one-way function f such
that the security of f on inputs of size n is
related to the security of g on inputs of size n?
or nd,




