Pseudorandom generators from general one-way functions III

15-859I Spring 2003

Review:

- Our goal is to construct a PRG from any OWF
- A False Entropy Generator is a function f:{0,1}ⁿ→{0,1}^{ℓ(n)} that has f(U_n) computationally indistinguishable from some ptc ensemble D_n: {0,1}^{ℓ(n)} where H(D) > H(f(U)).
- Using universal hash functions and product distributions, we can construct a PRG from a F.E.G. (4 pages from [HILL99])

Review: f' construction

■ Let $f:\{0,1\}^n \to \{0,1\}^{\ell(n)}$ be a one-way function, and let $h:\{0,1\}^{p(n)} \times \{0,1\}^n \to \{0,1\}^{n+\lceil \log 2n \rceil}$ be a universal hash function. Define

$$f'(x,i,r) = (f(x),h_r(x)|_{1\dots i+\lceil\log 2n\rceil},\,i,\,r)$$

- Let $Y \leftarrow U_n$, then when $I < \tilde{\mathbf{D}}_f(f(X))$, we will have $(f'(X,I,R),Y,X \bullet Y) \cong (f'(X,I,R),Y,U_1)$.
- To formalize, define two sets:

```
□ T = {(x,i) : x ∈ {0,1}<sup>n</sup>, i ∈ {0,..., \tilde{\mathbf{D}}_{f}(f(x))} }
□ T<sup>C</sup> = {(x,i) : x ∈ {0,1}<sup>n</sup>, i ∈ {\tilde{\mathbf{D}}_{f}(f(x))+1, ...,n-1} }
```

Review: FEG Construction

- Let $k(n) \ge 125n^3$, $l \in_U \{0,...,n-1\}$, and define $p_n = Pr[I \le \tilde{\mathbf{D}}_f(f(x))]$ $m(n) = k(n)p_n - 2k(n)^{2/3}$
- $\begin{array}{c} \blacksquare \ \ \text{Let} \ X', Y' \leftarrow U_{nk(n)}, I' \in_{U} \{0, \dots, n\text{-}1\}^{k(n)}, \\ R' \leftarrow U_{k(n)p(n)}, \ Z \leftarrow U_{m(n)}. \end{array}$
- Let h': $\{0,1\}^{p'(n)} \times \{0,1\}^{k(n)} \rightarrow \{0,1\}^{m(n)}$ be a universal hash function, and $V \leftarrow U_{p'(n)}$
- Define $g(p_n, X', Y', I', R', V) = (h'_V(X'•Y'), f'^{k(n)}(X', I', R'), V, Y')$

Review: Main Theorem

- False Entropy Theorem: g is a mildly nonuniform false entropy generator.
- Proof: Delayed...
- Main Theorem: If there exists a one-way function, then there exists a pseudorandom generator.
- Proof: Compose previous theorems: False Entropy Theorem, FEG → (mildly nonuniform) PEG theorem, PEG → PRG theorem, mildly nonuniform PRG → PRG theorem.
- We're done! Oh wait, that pesky False entropy theorem...

Review: False Entropy Theorem

Proof: Consider the distributions:

D = $g(p_n, X', Y', I', R', V)$ and

 $E = (Z,f'^{k(n)}(X',I',R'),V,Y')$

Lemma 1: $H(E) \ge H(D) + 10n^2$.

Lemma 2: D ≅ E

Thus, g is a false entropy generator given p_n . We will show in the proof of lemma 2 that it is OK to use a value ρ with $p_n \le \rho \le p_n + 1/n$. Therefore we only need log n bits of advice. So g is a mildly nonuniform false entropy generator. QED

Lemma 2: $D \cong E$

Recall:

D =
$$h_V(X' \cdot Y')$$
, $f'^{k(n)}(X', I', R')$, V, Y'
E = $(Z, f'^{k(n)}(X', I', R'), V, Y')$

- Another way to describe D:
 - □ For each j, choose C_i=1 with probability p_n
 - $\quad \quad \ \ \, \text{ \square When C_i = 1, choose } (X_i',I_i') \in T, \, \text{else } (X_i',I_i') \in T^C$
- Define the distribution D':
 - □ Same as D, except when $C_j = 1$ replace j^{th} input to h $(X'_i + Y'_j)$ by $B_i \leftarrow U_1$.

Lemma 2 intuition...

- Notice that by the Leftover Hash Lemma, $L_1(D',E) \le 2^{-k(n)^{1/3}} = 2^{-5n}$, so $D' \cong E$.
- Intuitively, in D' we just replace X_j'•Y_j' by B_j when (X_j',l_j') ∈ T; and we have already shown that in this case X_j'•Y_j' ≅ B_j. So we would expect D≅D', giving D≅E.
- The hybrid argument fails, however, because we can't efficiently sample from D'

Hybrid argument for D≅D'

- Suppose we have A such that $Pr[A(D)=1] Pr[A(D')=1] = \delta(n)$
- Define the hybrid distributions F^(j) so that F^(j) is distributed identically to D' up to position j and D afterwards, i.e., F^(j) is chosen like D except that for i≤j, when C_i=1 we replace X_i*Y_i* by B_i. Thus F⁽⁰⁾ = D, F^{(k(n))} = D'
- If $J \in_U \{1,...,k(n)\}$, then we have that $E_J[A(F^{(J-1)}) A(F^{(J)})] = \delta(n)/k(n)$

How to fix our Hybrid argument?

- Notice that when C_j = 0, A has no advantage, yet when C_j=1 A has significant advantage.
- So A "knows" when an element W∈T, given f'(W,R).
- We will take advantage of this to build hybrid distributions which are "close" to F^(j) allowing us to get by the problem.
- This is the last 4 technical pages of [HILL99]

New Hybrids...

- We will define two sets of hybrid distributions, $E^{(j)}$, $D^{(j)}$ for $j \in \{0,...,k(n)\}$.
- We will have $E^{(0)} = E$, $D^{(0)} = D$, and $E^{(k(n))} \approx D^{(k(n))}$.
- Define $\delta^{(j)} = \Pr[A(D^{(j)}) = 1] \Pr[A(E^{(j)}) = 1]$.
- Then $\delta^{(0)} = \delta(n)$ and $\delta^{(k(n))} \approx 0$
- We will also have: $E_{J}[\delta^{(J-1)} \delta^{(J)}] \ge \delta(n)/k(n)$
- This will allow us to (indirectly) invert f' later.

Definition of D^(j), E^(j)

- Define parameters:
 - $\rho = \delta(n)/16k(n)$
 - $\sigma = 64n^2/\rho$
- Define: $D^{(0)} = D$; $E^{(0)} = E$; $B \leftarrow U_{k(n)}$.
- Suppose D^(j-1) is defined. Then to sample from D^(j):
 - □ Choose $c_i \in \{0,1\}$ so that $Pr[c_i=1] = p_n$
 - □ Sample $x_m \leftarrow U_n$, $i_m ∈ U\{1...n\}$, let $w_m = (x_m, i_m)$, 1 ≤ m ≤ τ.

D^(j) and E^(j) continued...

- Define D^(j-1)(c_j,w_m) to be the same as D^(j-1) except that (X_j',I_j') is fixed to w_m and the jth input bit of h' is set to x_m•Y_j' if c_j=0 and B_j otherwise
- Define E^(j-1)(w_m) to be the same as E^(j-1) except (X_i',I_i') is fixed to w_m.
- Define $\delta^{(j-1)}(c_j, w_m) = \Pr[A(D^{(j-1)}(c_j, w_m)) = 1] \Pr[A(E^{(j-1)}(w_m)) = 1].$

Sampling from D^(j) and E^(j)...

- Use A and draw $O(n/\rho^2)$ samples from $D^{(j-1)}(c_j,w_m)$, $E^{(j-1)}(w_m)$ to get an estimate $\Delta^{(j-1)}(c_i,w_m)$ such that
 - $\Pr[|\Delta^{(j-1)}(c_j, w_m) \delta^{(j-1)}(c_j, w_m)| > \rho] \le 2^{-n}$ (i.e., take average over $O(n/\rho^2)$ samples)
- Let $\mu \in \{1,...,\tau\}$ be such that $\Delta^{(j-1)}(c_j,w_\mu)$ is maximized.
- Define $D^{(j)} = D^{(j-1)}(c_j, w_{\mu}), E^{(j)} = E^{(j-1)}(w_{\mu})$

Using our hybrids

- Define D^(j)(w,r,b,y) to be D^(j) with f'(X'_{j+1},Y'_{j+1},R'_{j+1}) replaced by f'(w,r), the j+1 input bit to h' replaced by b, and Y'_{j+1} replaced by y; Same for E^(j)(w,r,y).
- Define M^A(f'(w,r),b,y) =
 - □ Choose $j \in \{0,...,k(n)-1\}$
 - □ Draw d \leftarrow D^(j)(w,r,b,y), e \leftarrow E^(j)(w,r,y), b' \leftarrow U₁.
 - \Box If A(d) = A(e), output b'; else output A(d).

Hybrid claim

- Hybrid Claim: if A distinguishes D and E with probability δ(n), M^A distinguishes f'(W,R),X•Y,Y from f'(W,R),B,Y with probability at least δ(n)/16k(n)
- (Hang in there... only 2pp left!)

Proof of Hybrid claim

- Pr[M(f(w,r),b,y) = 1] = $\frac{1}{2} Pr[A(D^{(j)}(w,r,b,y)) = A(E^{(j)}(w,r,y)]$ + $Pr[A(D^{(j)}(w,r,b,y)) = 1 \& A(E^{(j)}(w,r,y)=0)]$
- = $\frac{1}{2}$ Pr[A(D^(j)(w,r,b,y) = 1) & A(E^(j)(w,r,y)) = 1] + $\frac{1}{2}$ Pr[A(D^(j)(w,r,b,y) = 0) & A(E^(j)(w,r,y)) = 0] + Pr[A(D^(j)(w,r,b,y)) = 1 & A(E^(j)(w,r,y)) = 0]
- = $\frac{1}{2}$ + $\frac{1}{2}$ (E[A(D^(j)(w,r,b,y)] E[A(E^(j)(w,r,y)])
- $= \frac{1}{2} + \frac{1}{2}(d(j,w,r,b,y) e(j,w,r,y))$

Proof, con't...

- Notice that:
 - □ $E[d(j,w,R,x•Y,Y) e(j,w,R,Y)] = \delta^{(j)}(0,w)$
 - \Box E[d(j,w,R,B,Y) e(j,w,R,Y)] = $\delta^{(j)}(1,w)$
- Define $\varepsilon^{(j)} = E[\delta^{(j)}(0,W) \delta^{(j)}(1,W)]$
- Then the advantage of M^A is: $E[M^{A}(f'(W,R),X^{\bullet}Y,Y)] - E[M^{A}(f'(W,R),B,Y)] =$ $E[\delta^{(j)}(0,W)/2] - E[\delta^{(j)}(1,W)/2] = E_{i}[\epsilon^{(j)}]/2$
- So we just need to show that $E_i[\varepsilon^{(j)}] \ge \delta(n)/8k(n)$

Alternatively...

- Alternatively we can show that $E[\Sigma_i \, \varepsilon^{(j)}] \ge 2\rho k(n)$
- We will prove this by showing that:
- (a) $E[\delta^{(k(n))}] \le 2^{-n+1}$
- (b) $E[\delta^{(j)} \delta^{(j+1)}] \le \varepsilon^{(j)} + 4\rho$
- This will give us:

```
8pk(n) = \delta(n)/2
< \delta(n) - E[\delta^{k(n)}]
= \Sigma_j E[\delta^{(j)} - \delta^{(j+1)}]
\leq 4k(n)\rho + E[\Sigma_i \epsilon^{(j)}].
```

Proof of (a) $E[\delta^{(k(n))}] \le 2^{-n+1}$

- Notice that E^{(k(n))} and D^{(k(n))} are identical except that the first m(n) bits of E^{(k(n))} are Z and the first m(n) bits of D^{(k(n))} are the output of h'.
- But H_R (input to h' | rest of $D^{(k(n))}$) $\geq \Sigma_i c_i$.
- A Chernoff bound gives us that with probability at least 1-2-n.

$$\Sigma_i c_i \ge k(n)p_n - k(n)^{2/3} = m(n) + k(n)^{2/3}$$

- When this is true, we get from the Leftover hash lemma that $L_1(D^{(k(n))}, E^{(k(n))}) \le 2^{-k(n)^{\frac{3}{2}}} < 2^{-n}$.
- This gives us $E[\delta^{(k(n))}] \le 2^{-n+1}$.

Proof of (b) $E[\delta^{(j)} - \delta^{(j+1)}] \le \varepsilon^{(j)} + 4\rho$

- Recall that $W \in_U T$. Define $W^C \in_U T^C$.
- Then since the j+1 input to h' in D^(j) is always

```
\begin{split} X'_{j+1} \bullet Y'_{j+1}, & \text{ we have } \\ \delta^{(j)} &= p_n E[\delta^{(j)}(0,W)] + (1-p_n) E[\delta^{(j)}(0,W^C)] \\ &= p_n E[\delta^{(j)}(1,W)] + p_n (E[\delta^{(j)}(0,W)] - E[\delta^{(j)}(1,W)]) + \\ & (1-p_n) E[\delta^{(j)}(0,W^C)] \end{split}
```

- $< \epsilon^{(j)} + p_n \mathsf{E}[\delta^{(j)}(1, \mathsf{W})] + (1 p_n) \mathsf{E}[\delta^{(j)}(0, \mathsf{W}^\mathsf{C})]$
- We will complete the proof by showing that $E[\delta^{(j+1)}] + 4\rho \ge p_n E[\delta^{(j)}(1,W)] + (1-p_n)E[\delta^{(j)}(0,W^C)].$

To show:

 $E[\delta^{(j+1)}] + 4\rho \ge p_n E[\delta^{(j)}(1,W)] + (1-p_n) E[\delta^{(j)}(0,W^C)]$

- A Chernoff Bound gives us that with probability at least 1-2⁻ⁿ, for stage j, at least n/ρ of the w_m are in T and at least n/ρ of the w_m are in T^C .
- Thus with probability at least 1-2⁻ⁿ, we have: $\max_{m} \{\delta^{(j)}(c, w_m)\} \ge \max\{E[\delta^{(j)}(c, W)], E[\delta^{(j)}(c, W^C)]\} \rho$
- Also recall that with probability at least 1-2-n, we have $|\Delta^{(j)}(c,w_m) \delta^{(j)}(c,w_m)| < \rho$

To show:

$$\mathrm{E}[\delta^{(j+1)}] \! + \! 4\rho \! \geq \! p_n \mathrm{E}[\delta^{(j)}(1,\!W)] \! + \! (1 \! - \! p_n) \mathrm{E}[\delta^{(j)}(0,\!W^C\!)]$$

So
$$\delta^{(j)}(c, w_{\mu}) \ge \Delta^{(j)}(c, w_{\mu}) - \rho$$

= $\max_{m} \{\Delta^{(j)}(c, w_{m})\} - \rho$
 $\ge \max_{m} \{\delta^{(j)}(c, w_{m})\} - 2\rho$
 $\ge \max\{E[\delta^{(j)}(c, W)], E[\delta^{(j)}(c, W^{C})]\} - 3\rho$

With probability at least 1 - 3·2-n. Thus:

$$\begin{split} E[\delta^{(j+1)}(c)] &= E[\delta^{(j)}(c,W_{\mu})] \\ &\geq \text{max}\{E[\delta^{(j)}(c,W)],E[\delta^{(j)}(c,W^C)]\} - 4\rho \end{split}$$
 Giving the required inequality.

So we are done

- This completes the proof that A distinguishes f'(w,r),x•y,y from f'(w,r),b,y.
- Thus completing the proof that a F.E.
 Generator can be constructed from any one-way function...
- HUGE issue: suppose we compose the various constructions to get a pseudorandom generator. Then to get inputs to f of size n, the inputs to the resulting generator will have size n³⁴. [HILL99]

Open problem

- Now we don't actually require all of the intermediate product distributions... [HILL99] claim that the same techniques can chip it down to inputs of size n8.
- Open problem: construct a pseudorandom generator from any one-way function f such that the security of f on inputs of size n is related to the security of g on inputs of size n² or n³.