Symmetric Cryptography

15-859I Spring 2003

Introduction

- Alice wants to send M to Bob
- Eve wants to find out what M is
- Alice and Bob don't want her to.
- Previously, Alice and Bob chose K (together) randomly, so that no one else would know it.
- Can they use one secret (K) to keep another secret (M)?

Encryption Schemes

- Alice and Bob want an Encryption Scheme:
- An encryption scheme is a triple SE = (G,E,D) of Algorithms:
 - □ G(1k): generates a key of length k
 - E_K: P→ C maps an input message space (plaintexts) to an output message space (ciphertexts)
 - \Box D_K:C \rightarrow P maps an ciphertexts to plaintexts
- For all K, for all M∈P, we require that $D_K(E_K(M)) = M$.

Security of Encryption schemes

- What does it mean for SE to be secure?
- Of course, given E_K(M), Eve should not be able to guess M.
- We will call an attack where Eve recovers M from only E_k(M) a plaintext recovery (pr) attack.
- What if M comes from very small subset of P?
- Ideally, we would like Eve to "get no information about M from $E_{\kappa}(M)$."

This problem is solved unconditionally

- Let P = {0,1}^k, define OTP = (G,E,D) as follows:
 - □ $G(1^k)$ = return $K \leftarrow U_k$.
 - $\Box E_{\kappa}(M) = K \oplus M$
 - \Box $D_{\kappa}(C) = K \oplus C$
- It is not hard to see that for M chosen from any distribution on P,
- \blacksquare H(M|E_K(M)) = H(M)
- i.e., E_k(M) gives no information about M.

Problem

- We can only use K once, to encrypt |K| bits.
- This means we have to know, beforehand, how many bits we plan to exchange (or an upper bound)
- Then we have to generate that many bits and keep them all secret.
- If we are never in a secure location again, we can never extend the number of bits we can transmit

Solution

- Instead of considering arbitrarily powerful Eve, we constrain Eve to run in polynomial time
- This suggests that pseudorandomness may be useful
- What should it mean for a polytime Eve to learn no information from E_k(M)?

Security against Plaintext Recovery

- Suppose Eve plays the following game:
- Exp^{pr}(Eve) =
 - □ Choose K ←U_k
 - □ Choose $M \leftarrow U_m$
 - □ If $Eve^{E_K(.)}(E_K(M)) = M$ output 1 else output 0
- Define Adv^{pr}(Eve) = Pr[Exp^{pr}(Eve) = 1]
- Define Insec^{pr}(SE,t,q,I) = max_{Eve}{Adv^{pr}(Eve)}
- Where we take the max over all Eve running in t operations, making q queries of L bits to E_k(.)

Security against Plaintext Recovery

We say SE is (t,q,l,ε) -secure against plaintext recovery if

Insec^{pr}(SE, t,q,l) $\leq \varepsilon$

Asymptotically, SE is secure against plaintext recovery (PR-CPA) if for every polynomial time Eve, Adv^{pr}(Eve) is negligible as a function of k.

Problem with plaintext recovery

- If Eve can reliably recover m/2 bits of the plaintext, she might be satisfied, and SE would still be secure against plaintext recovery.
- Need a stronger definition, which is equivalent to the information-theoretic notion of not being able to learn a single bit about the plaintext.

Indistinguishability under chosen plaintext attack

Define the oracle $LR_{\kappa}(b,.,.)$ as follows:

 $LR(b,m_0,m_1) = \\ If |m_0| \neq |m_1|, return "" \\ Else return E_K(m_b)$

Suppose Eve is allowed to choose m_0, m_1 . Then given $LR_K(b,...)$ for randomly chosen b, she has one bit of uncertainty about $D_K(LR_K(b,m_0,m_1))$.

Indistinguishability under chosen plaintext attack

In a *chosen plaintext attack*, Eve plays this game:

 $Exp^{cpa}(b,Eve) =$ Choose $K \leftarrow U_k$

Return Eve $^{LR_{K}(b,.,.)}(1^{k})$.

Define the advantage of Eve, $Adv^{cpa}(Eve)$, by $Pr[Exp^{cpa}(1,Eve) = 1] - Pr[Exp^{cpa}(0,Eve) = 1]$ And $Insec^{cpa}(SE, t,q,I) = max_{Eve}\{Adv^{cpa}(Eve)\}$

Indistinguishability under chosen plaintext attack

SE is called (t,q,l,ε) -indistuingishable under chosen plaintext attack if Insec^{cpa} $(SE,t,q,l) \le \varepsilon$

It is called indistinguishable under chosen plaintext attack (IND-CPA) if for every polynomial-time Eve, Adv^{cpa}(Eve) is negligible in k.

IND-CPA is stronger than PR-CPA

- Suppose we are given an Eve such that Adv^{pr}(Eve) is non-negligible. Then we will construct an IND-CPA adversary A which has Adv^{cpa}(A) ≥ Adv^{pr}(Eve) – 1/2^m
- This means that if we prove that 𝒯 is IND-CPA then it is also PR-CPA.

IND-CPA is stronger than PR-CPA

- A works as follows:
 - □ Randomly choose M_0 , $M_1 \leftarrow U_m$.
 - □ Compute C = $LR_K(M_0, M_1)$
 - $\hfill \square$ Run Eve(C), responding to oracle queries X with $LR_{\mbox{\tiny K}}(X,X).$
 - □ Let M = output of Eve(C).
 - \Box If (M = M₁), output 1, else output 0.
- Then: if b = 1, Pr[A^{LR}(1^k) = 1] = Adv^{pr}(Eve)
- If b = 0, Pr[A^{LR}(1^k) = 1] ≤ 1/2^m (M₁ is independent of Eve's view)

IND-CPA is stronger than PR-CPA

- So $Adv^{cpa}(A) \ge Adv^{pr}(Eve) 1/2^m$
- Giving Insec^{pr}(SE,t,q,l) ≤Insec(SE,t,q+1,l+m) + 2-m
- But in general it is much smaller...

Example where PR-CPA is much weaker than IND-CPA

- Suppose P_k is a strong pseudorandom permutation family on {0,1}^k. Let the message space be {0,1}^k.
- Define the scheme £CB = (G,E,D) as follows:
 - □ $G(1^k)$ = choose $K \leftarrow U_k$
 - \square $E_K(M) = P_K(M)$
 - $D_{K}(C) = P_{K}^{-1}(C).$
- Claim: Insec^{pr}(ECB,t,q,I) ≤ Insec^{prp}(P,t,q) + q2^{-k}
- Yet Insec^{cpa}(ECB,O(k),2,2k) = 1

IND-CPA encryption: CTR

- Let F_K: {0,1}^L → {0,1}^l be a collection of pseudorandom functions.
- Define the stateful encryption scheme CTR as follows:
 - □ $G(1^k)$ = Choose $K \leftarrow U_k$
 - $\Box E_{K}(m_{0}, m_{1}, ..., m_{l}) =$
 - Let c_i = F_K(j+i)⊕m_i
 - update j = j + l
 - return c₀,c₁,...,c₁.
 - $\Box D_{K}(c_{0},c_{1},...,c_{l}) = E_{K}(c_{0},c_{1},...,c_{l})$

IND-CPA security of CTR.

Claim: Given any Eve which makes at most $q < 2^L$ queries of at most $\mu < 12^L$ bits, we can design a PRF Adversary A with

 $Adv^{prf}(A) = \frac{1}{2} Adv^{cpa}(Eve).$

This gives us

$$\begin{split} &\text{Insec}^{cpa}(\mathit{CTR},t,q,\,\mu) \leq 2 \\ &\text{Insec}^{prf}(F,t,\,\mu/I) \end{split}$$
 So if F is a secure PRF than CTR is IND-CPA

Proof of claim

Given Eve, we define the PRF adversary A as follows:

 $A^{g}(1^{k}) =$

Choose b $\leftarrow U_1$.

Run Eve, responding to query $m_0, m_1, ..., m_l$ with $g(j) \oplus m_0, g(j+1) \oplus m_1, ..., g(j+l) \oplus m_l$, and updating j appropriately.

If Eve outputs b, output 1, else output 0.

Proof of CTR security

- What is Advprf(A)?
- First, notice that Pr[A^{r(L,I)} = 1] = ½
 - If g is a random function, then there is no correlation between the bit b and the responses to Eve's queries
- Claim: Pr[A^{FK}=1] = ½ + ½ Adv^{cpa}(Eve)
 - $Pr[A^F=1|b=0] = Pr[Eve^{LR(0,...)} = 0]$
 - □ Pr[AF=1|b=1] = Pr[Eve^{LR(1,...)} = 1]
 - □ So $Pr[A^F=1] = \frac{1}{2}(Pr[Eve^{LR(0,...)} = 0] + Pr[Eve^{LR(1,...)} = 1])$
 - $= \frac{1}{2}((1-\Pr[Eve^{LR(0,...)}=1]) + \Pr[Eve^{LR(1,...)}=1])$
 - $= \frac{1}{2} + \frac{1}{2} \text{ Adv}^{cpa}(\text{Eve})$

Randomized (stateless) CTR

- Define the scheme R-CTR as follows:
 - □ $G(1^k)$ = Choose $K \leftarrow U_k$.
 - \square $E_{K}(m_0, m_1, ..., m_l) =$

 $Choose \ r \leftarrow U_{\iota}$

Set $c_i = F_K(r+i) \oplus m_i$

Return $r,c_0,c_1,...,c_1$

 $\square D_{\kappa}(r,c_0,c_1,\ldots,c_l) =$

Set $m_i = F_K(r+i) \oplus c_i$

Return m_0, m_1, \dots, m_l

R-CTR is IND-CPA

Theorem:

Insec^{cpa}(\mathcal{R} - \mathcal{CTR} ,t,q, μ) \leq

 $2Insec^{prf}(F,t,\mu/I) + \mu q/I2^{L}$.

Proof: Given an adversary Eve, define the prf adversary A as before. It still holds that when A is given a pseudorandom oracle, it outputs 1 with probability ½ + ½ Adv^{cpa}(Eve).

R-CTR is IND-CPA

- It remains to bound the probability that A outputs 1 given a random function
 - If no input to the random function is repeated, then Pr[A outputs 1] = ½, as in previous argument.
 - If some input is repeated, A outputs 1 with probability at most 1. Call this event (a repeated input to the random function) COL.
 - □ So $Pr[A^f=1] \le \frac{1}{2} + Pr[COL]$

Claim: $Pr[COL] < q(\mu/l)2^{-L}$.

- Notice that there are at most (μ/l) inputs to the random function.
- Let n_i = the number of inputs to f as a result of query
 i.
- Suppose up to query i-1 there have been no repeated inputs to f.
- What is the probability of a collision on query i?
- We get a collision with the jth query if $r_j n_i < r_i < r_i + n_i + 1$, i.e., with probability $n_i + n_i / 2^L$

Pr[COL]

 Thus the probability of collision on the ith query is at most

$$((i-1)n_i + n_1 + n_2 + ... + n_{i-1})/2^{\perp}$$

 So the probability of a collision on any query is at most

 $q(\mu/I)2^{-L}$, as claimed.