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Cast of Characters:

Alice Bob

M, a message

K, a key

Eve

Introduction

Alice wants to send M to Bob
Eve wants to find out what M is
Alice and Bob don’t want her to.
Previously, Alice and Bob chose K (together) 
randomly, so that no one else would know it.

Can they use one secret (K) to keep another 
secret (M)?

Encryption Schemes

Alice and Bob want an Encryption Scheme:
An encryption scheme is a triple SE = (G,E,D) 
of Algorithms:

G(1k) : generates a key of length k
EK: P→ C maps an input message space 
(plaintexts) to an output message space 
(ciphertexts)
DK:C → P maps an ciphertexts to plaintexts

For all K, for all M∈P, we require that 
DK(EK(M)) = M.

Security of Encryption schemes

What does it mean for SE to be secure?
Of course, given EK(M), Eve should not be able to 
guess M.
We will call an attack where Eve recovers M from 
only EK(M) a plaintext recovery (pr) attack.
What if M comes from very small subset of P?  
Ideally, we would like Eve to “get no information 
about M from EK(M).”

This problem is solved unconditionally

Let P = {0,1}k, define OTP = (G,E,D) as 
follows:

G(1k) = return K ←Uk.
EK(M) = K⊕M
DK(C) = K⊕C

It is not hard to see that for M chosen from 
any distribution on P,
H(M|EK(M)) = H(M)
i.e., EK(M) gives no information about M.
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Problem

We can only use K once, to encrypt |K| bits.
This means we have to know, beforehand, 
how many bits we plan to exchange (or an 
upper bound)
Then we have to generate that many bits and 
keep them all secret.
If we are never in a secure location again, we 
can never extend the number of bits we can 
transmit

Solution

Instead of considering arbitrarily powerful 
Eve, we constrain Eve to run in polynomial 
time.
This suggests that pseudorandomness may 
be useful
What should it mean for a polytime Eve to 
learn no information from EK(M)?

Security against Plaintext Recovery

Suppose Eve plays the following game:
Exppr(Eve) = 

Choose K ←Uk
Choose M ←Um

If EveEK(.)(EK(M)) = M output 1 else output 0
Define Advpr(Eve) = Pr[Exppr(Eve) = 1]
Define Insecpr(SE,t,q,l) = maxEve{Advpr(Eve)}
Where we take the max over all Eve running in t 
operations, making q queries of L bits to Ek(.)

Security against Plaintext Recovery

We say SE is (t,q,l,ε)-secure against plaintext 
recovery if

Insecpr(SE, t,q,l) ≤ ε

Asymptotically, SE is secure against plaintext 
recovery (PR-CPA) if for every polynomial time 
Eve, Advpr(Eve) is negligible as a function of k.

Problem with plaintext recovery

If Eve can reliably recover m/2 bits of the 
plaintext, she might be satisfied, and SE
would still be secure against plaintext 
recovery.
Need a stronger definition, which is 
equivalent to the information-theoretic notion 
of not being able to learn a single bit about 
the plaintext.

Indistinguishability under chosen plaintext 
attack
Define the oracle LRK(b,.,.) as follows:

LR(b,m0,m1) = 
If |m0| ≠ |m1|, return “”
Else return EK(mb)

Suppose Eve is allowed to choose m0,m1.  
Then given LRK(b,.,.) for randomly chosen b, 
she has one bit of uncertainty about 
DK(LRK(b,m0,m1)).  
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Indistinguishability under chosen plaintext 
attack
In a chosen plaintext attack, Eve plays this 

game:
Expcpa(b,Eve) = 

Choose K ← Uk

Return EveLRK(b,.,.)(1k).
Define the advantage of Eve, Advcpa(Eve), by 
Pr[Expcpa(1,Eve) = 1] – Pr[Expcpa(0,Eve) = 1]
And Inseccpa(SE, t,q,l) = maxEve{Advcpa(Eve)}

Indistinguishability under chosen plaintext 
attack
SE is called (t,q,l,ε)-indistuingishable under 
chosen plaintext attack if Inseccpa(SE,t,q,l) ≤ ε

It is called indistinguishable under chosen 
plaintext attack (IND-CPA) if for every 
polynomial-time Eve, Advcpa(Eve) is negligible 
in k.

IND-CPA is stronger than PR-CPA

Suppose we are given an Eve such that 
Advpr(Eve) is non-negligible.  Then we will 
construct an IND-CPA adversary A which has

Advcpa(A) ≥ Advpr(Eve) – 1/2m

This means that if we prove that SE is IND-
CPA then it is also PR-CPA.

IND-CPA is stronger than PR-CPA

A works as follows:
Randomly choose M0, M1 ←Um.
Compute C = LRK(M0,M1)
Run Eve(C), responding to oracle queries X with 
LRK(X,X).
Let M = output of Eve(C).
If (M = M1), output 1, else output 0.

Then: if b = 1, Pr[ALR(1k) = 1] = Advpr(Eve)
If b = 0, Pr[ALR(1k) = 1] ≤ 1/2m (M1 is 
independent of Eve’s view) 

IND-CPA is stronger than PR-CPA

So Advcpa(A) ≥ Advpr(Eve) – 1/2m

Giving Insecpr(SE,t,q,l) ≤Insec(SE,t,q+1,l+m) + 
2-m

But in general it is much smaller…

Example where PR-CPA is much weaker 
than IND-CPA

Suppose Pk is a strong pseudorandom permutation 
family on {0,1}k.  Let the message space be {0,1}k.
Define the scheme ECB = (G,E,D) as follows:

G(1k) = choose K ←Uk
EK(M) = PK(M)
DK(C) = PK

-1(C).
Claim: Insecpr(ECB,t,q,l) ≤ Insecprp(P,t,q) + q2-k

Yet Inseccpa(ECB,O(k),2,2k) = 1



4

IND-CPA encryption: CTR

Let FK : {0,1}L → {0,1}l be a collection of 
pseudorandom functions.
Define the stateful encryption scheme CTR as 
follows:

G(1k) = Choose K ← Uk
EK(m0,m1,…,ml) =

Let ci = FK(j+i)⊕mi
update j = j + l
return c0,c1,…,cl.

DK(c0,c1,…,cl) = EK(c0,c1,…,cl)

IND-CPA security of CTR

Claim: Given any Eve which makes at most q 
< 2L queries of at most µ < l2L bits, we can 
design a PRF Adversary A with

Advprf(A) = ½ Advcpa(Eve).
This gives us

Inseccpa(CTR,t,q, µ) ≤ 2Insecprf(F,t, µ/l)
So if F is a secure PRF than CTR is IND-CPA

Proof of claim

Given Eve, we define the PRF adversary A 
as follows:

Ag(1k) =
Choose b ←U1.
Run Eve, responding to query m0,m1,…,ml
with g(j)⊕m0,g(j+1)⊕m1,…,g(j+l)⊕ml, and 
updating j appropriately.
If Eve outputs b, output 1, else output 0.

Proof of CTR security

What is Advprf(A)?
First, notice that Pr[AF(L,l) = 1] = ½

If g is a random function, then there is no correlation 
between the bit b and the responses to Eve’s queries

Claim: Pr[AFK=1] = ½ + ½ Advcpa(Eve)
Pr[AF=1|b=0] = Pr[EveLR(0,.,.) = 0]
Pr[AF=1|b=1] = Pr[EveLR(1,.,.) = 1]
So Pr[AF=1] = ½(Pr[EveLR(0,.,.) = 0] + Pr[EveLR(1,.,.) = 1])
= ½((1-Pr[EveLR(0,.,.)=1]) + Pr[EveLR(1,.,.,)=1])
= ½ + ½ Advcpa(Eve)

Randomized (stateless) CTR

Define the scheme R-CTR  as follows:
G(1k) = Choose K←Uk.
EK(m0,m1,…,ml) = 

Choose r ← UL

Set ci = FK(r+i)⊕mi

Return r,c0,c1,…,cl

DK(r,c0,c1,…,cl) =
Set mi = FK(r+i)⊕ci

Return m0,m1,…,ml.

R-CTR is IND-CPA

Theorem:
Inseccpa(R-CTR,t,q,µ) ≤

2Insecprf(F,t,µ/l) + µq/l2L.

Proof: Given an adversary Eve, define the prf
adversary A as before.  It still holds that when 
A is given a pseudorandom oracle, it outputs 
1 with probability ½ + ½ Advcpa(Eve).
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R-CTR is IND-CPA

It remains to bound the probability that A 
outputs 1 given a random function

If no input to the random function is repeated, 
then Pr[A outputs 1] = ½, as in previous 
argument.
If some input is repeated, A outputs 1 with 
probability at most 1.  Call this event (a 
repeated input to the random function) COL.
So Pr[Af=1] ≤ ½ + Pr[COL]

Claim: Pr[COL] < q(µ/l)2-L.

Notice that there are at most (µ/l) inputs to the 
random function.
Let ni = the number of inputs to f as a result of query 
i.
Suppose up to query i-1 there have been no 
repeated inputs to f.
What is the probability of a collision on query i?
We get a collision with the jth query if rj – ni < ri < 
rj+nj+1, ie, with probability ni+nj/2L

Pr[COL]

Thus the probability of collision on the ith
query is at most 

((i-1)ni + n1+ n2+…+ni-1)/2L

So the probability of a collision on any query 
is at most

q(µ/l)2-L, as claimed.


