Message Authentication

15-859I Spring 2003

Motivation

- Suppose Alice is an ATM and Bob is a Bank, and Alice sends Bob messages about transactions over a public channel.
- Bob would like to know that when he receives a message saying "credit \$128 to Carol's Account – Alice", it originates from the ATM. Bob is concerned with the authenticity of the message.
- He also wants to know that Carol has not modified the message from "credit \$16 to Carol's Account – Alice." This concerns the integrity of the message.

Authentication and Encryption

- Should we expect to get good message authentication via encryption? i.e., is it enough to guarantee authenticity of M by transmitting E_K(M)?
- No! e.g., if E_K is CTR from lecture 6, then it is easy for Carol to change E_K(16) to E_K(128) via E_K(128) = E_K(16) ⊕ 144.
- In general, good encryption does not necessarily imply integrity.

Message Authentication Codes (MACs)

- Formally: A MAC is a trio of algorithms (G,T,V) such that:
- G(1^k) generates a k-bit key K.
- T_κ(M) generates a L(k)-bit tag σ
- ${\color{red} \bullet} \ V_K(M,\,\sigma)$ verifies the tag σ for the message M
- Require that for all K, M, random choices or states of T, V_K(M,T_K(M)) = 1.

If T_K is deterministic and stateless, V_K is trivial.

Security of MACs

- The adversary's goal might be to sign some specific message m.
- We want it to be hard to produce any (M,σ) pair such that $V_{\kappa}(M,\sigma)=1$.
- This should be true even if the adversary has seen several M',T_K(M') pairs
- Should be conservative: Allow the adversary to choose the M' messsages.

Existential Unforgeability

- Notation: let Q(A^O) denote the list of oracle queries that A makes with O as its oracle.
- Define the chosen-message attack (cma) advantage of A against MAC = (G,T,V) by:

$$Adv_{A,MAC}^{cma}(k) = \Pr[V_K(M,\sigma) = 1 \land M \notin L: \\ K \leftarrow G(1^k), (M,\sigma) \leftarrow A^{T_K}(1^k), L = Q(A^{T_K}(1^k))]$$

 Say that MAC is existentially unforgeable under chosen message attack if every ppt A has negligible advantage.

MAC Insecurity

For a fixed security parameter k, define the Insecurity of MAC=(G,T,V) against time-t adversaries which make q queries with total message length I by:

$$\label{eq:inSec} \begin{split} & \text{InSec}_{\mathit{MAC}}^{\text{uf-cma}}(t,q,l) = \max_{A:A(t,q,l)} \left\{ & \text{Adv}_{A,\mathit{MAC}}^{\text{cma}}(k) \right\} \end{split}$$

PRFs are good MACs

Let F: K × {0,1}^d → {0,1}^s be a function family. Then if F_K is pseudorandom, F_K is a good MAC for the message space {0,1}^d:

$$InSec_F^{uf-cma}(t,q,dq) \le InSec_F^{prf}(t',q) + 2^{-s}$$

 Proof: Let A be a chosen-message forger for F as a MAC. We show how to construct a PRF distinguisher D for F that has almost the same advantage as A, and runs in the same time.

PRFs are good MACs

Df(1k):

Run A(1^k): respond to q with f(q), add q to Q Set (M,σ) = output of A.

If $f(M) = \sigma$ and $M \notin Q$, return 1, else return 0.

Notice: $Pr[D^F(1^k) = 1] = Adv_{A,F}^{cma}(k)$. And since M was never queried, $Pr[D^F(1^k) = 1] \le 1/2^s$. So $Adv_{A,F}^{prf}(k) \ge Adv_{A,F}^{cma}(k) - 2^{-s}$

Almost-XOR-Universal₂ (AXU₂) Hash Functions

■ Let H: $K \times D \rightarrow \{0,1\}^L$ be a family of functions. Define the XOR-2-Universality of H by

$$Adv^{\text{xuh}}(H) = \max_{a_1, a_2 \in D, b \in \{0,1\}^L} \{ Pr_K[H_K(a_1) \oplus H_K(a_2) = b] \}$$

- We say H is ε-almost-XOR-Universal₂ (ε-AXU₂) if Adv^{xuh}(H) ≤ ε.
- H is XOR-Universal₂ if it is 1/2^L-AXU₂.
- Notice that Pairwise-independent hash functions are XOR-Universal₂.

ε-AXU₂ Hash Families for large domains

- Let h: $K \times \{0,1\}^{2L} \rightarrow \{0,1\}^L$ be ϵ AXU $_2$. Define the family $H: K^n \times \{0,1\}^{2^nL} \rightarrow \{0,1\}^L$ as follows:
- Claim: H is (nε)-AXU₂.
- Proof: If the inputs to h_{Kn} are not the same, then the xor-probability is at most ϵ . The probability that the inputs to h_{Kn} are the same is at most ϵ given that not all inputs to $h_{K(n-1)}$ are the same, and so on.

AXU₂ - MAC

- Let F: $\mathcal{K} \times \{0,1\}^l \to \{0,1\}^L$ be a PRF. Let H: $K \times D \to \{0,1\}^L$ be ϵ -AXU₂. Define the MAC C- \mathcal{VHM} as follows:
- G: Select K $\leftarrow \mathcal{K}$, $\kappa \leftarrow$ K. Return (K, κ)
- T_(K, κ)(M) =
- $\Box \text{ Let } x = H_{\kappa}(M); \ \tau = F_{\kappa}(\text{ctr}) \oplus x; \sigma = (\text{ctr}, \tau)$
- □ Set ctr = ctr+1
- $\ \ \, \square \,\, \text{Return} \,\, \sigma$
- $V_{(K,\kappa)}(M,(s,\tau)) = 1 \text{ iff } F_K(s) \oplus \tau = H_{\kappa}(M).$

C-UHM theorem

- Theorem: for any $q \le 2^l$, $InSec_{C-UHM}^{uf-cma}(t,q,l) \le ε + InSec_F^{prf}(t',q+1)$
- Proof: Let A be any MAC adversary.
 Suppose we choose f← F and run A against
 UHM instantiated with f in place of F_K.
 Denote the queries that A makes by M_i,
 1≤i≤q; denote the responses by σ_i = (i,τ_i)
- Finally, A returns some message M
 ∉{M₁,...,M₀}, and a tag (s,τ)

C-UHM Theorem, continued.

Let NEW be the event that s > q-1, that is, the s returned by A was not a value input to f in C-UHM. Let OLD be the event s < q.

Claim 1: $\Pr[V_{\kappa}^{f}(M,(s,\tau)) = 1 \mid OLD] \le \epsilon$ Proof:

 $Pr[V_{\kappa}^{f}(M,(s,\tau)) = 1] =$ $Pr[H_{\nu}(M) \oplus H_{\nu}(M_{s}) = \tau \oplus \tau_{s}] \leq \varepsilon.$

Claim 2: $\Pr[V_{\kappa}^{f}(M,(s,\tau)) = 1 \mid NEW] \le 2^{-L}$. Proof: $\Pr[H_{\kappa}(M) \oplus \tau = f(s)] = 2^{-L}$.

C-UHM Theorem, continued.

Thus:

 $\begin{aligned} \Pr[\mathsf{V}_\kappa^f(\mathsf{M},(\mathsf{s},\tau)) &= 1] = \\ \Pr[\mathsf{V}_\kappa^f(\mathsf{M},(\mathsf{s},\tau)) &= 1 \mid \mathsf{OLD}] \; \mathsf{Pr}[\mathsf{OLD}] \; + \\ \Pr[\mathsf{V}_\kappa^f(\mathsf{M},(\mathsf{s},\tau)) &= 1 \mid \mathsf{NEW}](\mathsf{1-Pr}[\mathsf{OLD}]) \\ &\leq \epsilon \mathsf{q} \; + 2^{-\mathsf{L}}(\mathsf{1-q}) \\ &\leq \epsilon \mathsf{q} \; + \epsilon(\mathsf{1-q}) = \epsilon. \end{aligned}$

The theorem follows, since we can distinguish F_K from f by trying to use A to forge a MAC and then checking if A was successful.

R-UHM

- Let F: $\mathcal{K} \times \{0,1\}^l \to \{0,1\}^L$ be a PRF. Let H: $K \times D \to \{0,1\}^L$ be ϵ -AXU₂. Define the MAC \mathcal{R} -VHM as follows:
- G: Select K $\leftarrow \mathcal{K}$, $\kappa \leftarrow$ K. Return (K, κ)
- T_(K, κ)(M) =
 - □ Choose s $\leftarrow \{0,1\}^{I}$.
- □ Let $x = H_{\kappa}(M)$; $\tau = F_{\kappa}(s) \oplus x$
- □ Return σ =(s, τ)
- $V_{(K, \kappa)}(M, (s, \tau)) = 1 \text{ iff } F_K(s) \oplus \tau = H_{\kappa}(M).$

R-UHM theorem

- Theorem: for any $q \le 2^{l/2}$, $InSec_{R-UHM}^{uf-cma}(t,q,l) \le \varepsilon + InSec_F^{prf}(t',q+1) + q(q-1)/2^{l+1}$
- Proof: Consider the same experiment as before. Clearly when there are no collisions in the values s₁,...,s_q, the same argument upper bounds the success probability of A. And when there is a collision, the success probability of A is at most 1. The probability of a collision is q(q-1)/2^{l+1}.

CBC-MAC

- Let F: {0,1}^k × {0,1}^l→{0,1}^l be a PRF. Define the MAC F^(m) on ml-bit messages as follows:
- $T_{K}(x_{1},...,x_{m}) =$
 - □ Let y₀ = 0¹
 - □ For i = 1,...,m
 - $y_i = F_K(M_i \oplus y_{i-1})$
- $_{ ext{o}}$ return $\mathbf{y}_{ ext{m}}$
- Theorem:

 $Insec_{F(m)}^{prf}(t,q) \leq Insec_{F}^{prf}(t+O(qml),qm) + 3q^2m^2/2^{l+1}$.

So F^(m) is a secure MAC if F is a secure PRF.

CBC-MAC Proof

- Lemma 1: If $f \leftarrow \mathcal{F}_{l,l}$ then $Insec_{f(m)}^{prf}(q) \le 3m^2q^2/2^{l+1}$
- Consider the 2¹-ary tree of depth m. A sequence of strings X = (x₁,...,x_n)∈{0,1}^{nl} uniquely specifies a node in this tree.
- Let f: $\{0,1\}^{I} \rightarrow \{0,1\}^{I}$, denote the labeling of a sequence $x_1...x_n$ by $Z_f() = 0^I$, $Y_f(x_1,...,x_n) = x_n \oplus Z_f(x_1,...,x_{n-1})$, $Z_f(X) = f(Y_f(X))$
- Call (X₁,...,X_n) a query sequence if every X_i has parent either the root or X_i for some j < i.

CBC-MAC proof

- Consider an (unbounded) adversary A trying to distinguish $f^{(m)}$ from a sample from $\mathscr{F}_{ml,l}$ with q queries. We let A make qm queries $X_1...X_{qm}$ in the form of a query tree, and whenever X_i is at depth m, A learns $Z_f(X_i)$.
- We let \mathcal{Z}_n be the depth-m labels A has learned after the n^{th} query, and $V_n = (X_1, \dots, X_n; \ \mathcal{Z}_n)$ denotes the View of A after the n^{th} query.
- If the labeling Z_f is collision-free, then A's view is identical to its view on a random function from ml bits to I bits. So we only need to bound the probability of a collision in Z_f.

CBC-MAC Proof

• Lemma 2: Let Z_n^1 and Z_n^2 be collision-free output labelings consistent with a depth-m labeling Z_n , Then:

$$Pr[Z_n = Z_n^1 | V_n = (X_1, ..., X_n; Z_n)] = Pr[Z_n = Z_n^2 | V_n = (X_1, ..., X_n; Z_n)].$$

 Proof: By induction. Obviously true for n=1, since the first node in a query tree is not at depth m.

Lemma 2 proof, con't

- Two cases for n>1:

 - $= Pr[Z_n = Z_n^i | V_{n-1}]$
 - $=\Pr[Z_{n-1}^- = Z_{n-1}^- | V_{n-1}] \Pr[Z_n(X_n) = Z_n^- (X_n) | Z_{n-1} = Z_{n-1}^- | V_{n-1}^-]$
 - = $Pr[Z_{n-1}=Z_{n-1}|V_{n-1}]2^{-1}$

These are equal for i=1,2 by IH.

- \square X at depth m. Then $Pr[Z_n = Z_n^i | V_n]$
- = $Pr[Z_{n-1} = Z_{n-1}^{i} | V_{n-1}, Z_{n}(X_{n}) = z]$
- = $2^{-1}Pr[Z_{n-1}=Z_{n-1}^{-1}|V_{n-1}]/Pr[Z_n(X_n)=z]$

Lemma 3

■ Lemma 3: Let CF(Z) denote the event that Z is collision-free. Let $\Pr_n[E]$ denote the quantity $\Pr[E \mid V_n = (X_1, \dots, X_n; \mathcal{Z}_n), \ CF(Z_n)]$. Let $n^2/4 + n -1 \le 2^l/2$ Let $(x_1, \dots, x_l) \in \{X_1, \dots, X_m\}$ and i<m; let z_S be a collision-free label of the nodes in S = $\{X_1, \dots, X_n\} \setminus \{(x_1, \dots, x_l)\}$ consistent with \mathcal{Z}_n . Then

(1) For any
$$(x_1...x_ix_{i+1}) \in S$$
, any $y^* \in \{0,1\}^l$:

$$Pr_n[Y_n(x_1...x_ix_{i+1}) = y^* \mid Z_n^S = Z_S] \le 2 2^{-1}$$

(2) For any $z^* \in \{0,1\}^l$, $Pr_n[Z_n(x_1...x_i)=z^*|Z_n^S=z_S] \le 22^{-l}$.

Proof of Lemma 3(1)

Let $y \in \{0,1\}^l$ be some fixed string. Define the labeling $Z_{z,y}(X_j) = z_{\rm S}(X_j)$ if $X_j \neq x_1...x_j$, and $y \oplus x_{i+1}$ otherwise. Let $Y_{z,y}$ be the labeling induced by $Z_{z,y}$:

$$\begin{array}{l} Y_{z,y}(X_j) = y_S(X_j) \text{ if } X_j \not\in \text{children}(x_1 \ldots x_i) \\ y \oplus x_{i+1} \oplus x'_{i+1} \text{ if } X_j = x_1 \ldots x_i x'_{i+1}. \end{array}$$

Let $\mathfrak{I}(z_s)$ be the set of all strings y such that $Z_{z,y}$ is collision-free. $y \notin \mathfrak{I}(z_s)$ iff either:

- □ $y \oplus x_{i+1} \in \{z_S(X_i) : 0 < j < n+1 \text{ and } X_i \neq (x_1...x_i)\}$; or
- $\begin{array}{l} \tiny \square \ \ \text{for some} \ x'_{i+1}, y \oplus x_{i+1} \oplus x'_{i+1} \in \{y_S(X_j), \ X_j \not\in \text{children}(x_1...x_i), \\ \ \ \text{and} \ 0 < j < n+1\} \end{array}$

Thus $|\{0,1\} \setminus \gamma(z_S)| \le (n-1) + (n-s)(s) \le n-1 + n^2/4 \le 2^j/2$. This proves (1).

Proof of Lemma 3(2)

Let $z \in \{0,1\}^I$ be some fixed string. Define the labeling $Z_{z,y}(X_j) = z_s(X_j)$ if $X_j \neq x_1...x_j$, and z otherwise. Let Y_z be the labeling induced by Z_z :

$$\begin{array}{l} Y_z(X_j) = y_S(X_j) \text{ if } X_j \not\in \text{children}(x_1...x_i) \\ z \oplus x_{i+1}^+ \text{ if } X_j = x_1...x_i x_{i+1}^+. \end{array}$$

Let $\mathcal{Z}(z_s)$ be the set of all strings z such that Z, is collision-free. $z \notin Z(z_s)$ iff either:

- □ $z \in \{z_S(X_i) : 0 < j < n+1 \text{ and } X_i \neq (x_1...x_i)\}$; or
- $\quad \quad \ \Box \ \ \text{for some} \ x'_{i+1}, \ z \oplus x'_{i+1} \in \{y_S(X_j), \ X_j \not\in \text{children}(x_1...x_j), \ \text{and} \ 0 <$

Thus $|\{0,1\}^l \setminus \gamma(z_s)| \le (n-1) + (n-s)(s) \le n-1 + n^2/4 \le 2^l/2$. This proves (2).

Lemma 4: Pr[not CF(Z)]

• Let $n^2/4 + n-1 < 2^1/2$. Let $X_1...X_n$ be a query sequence and Zbe the labeling of depth-m nodes. Then

 $Pr[\text{not } CF(Z_{n+1}) \mid V_n, CF(Z_n)] \le 3n \ 2^{-1}.$ Proof: Denote Pr[E|V_n,CF(Z_n)] by Pr_n[E].

- Case 1: X_{n+1} is at depth 1. Then let $X_{n+1} = x_1^*$. $Y(X_{n+1}) = x_1^*$ by definition. Now for each 1≤t≤n, $Pr_n[Y_n(X_t) = x_1^*] \le 2 2^{-1}$
- This is because if X_t is at level 1, $Pr[Y(X_t) = x_1^*] = 0$. Otherwise X_t is at depth at least 2, and is the child of some $(x_1...x_i) \in \{X_1...X_n\}$ and so the equation follows because of lemma 3.
- Then $Pr_n[not\ CF(Z_n)] \le Pr_n[X_1^* \in \{Y_n(X_1),...,Y_n(X_n)\}] + Pr_n[Z_{n+1}(X_{n+1}) \in \{Z_n(X_1)...Z_n(X_n)\} \mid x_1^* \notin \{Y_n(X_1),...,Y_n(X_n)\}]$ $\leq 2n/2^{1} + n/2^{1} = 3n/2^{1}$.

Lemma 4: Case 2

Case 2: X_{n+1} = x_1 ... $x_i x_{i+1}$, i > 0, is the child of some x_i ... $x_i \in \{X_1, \dots, X_n\}$. Let $S = \{X_1, \dots, X_n\} \setminus \{x_1, \dots, x_i\}$. Notice that for any $X_t \in \{X_1, \dots, X_n\}$.

 $\begin{aligned} &\Pr_n[Y_{n+1}(X_{n+1}) = Y_n(X_1)] \leq 2/2!. \\ &\text{Since if } X_{n+1} \text{ and } X_i \text{ are siblings, the probability is 0, and} \\ &\text{otherwise any collision free labeling } z_s \text{ determines } Y_n(X_1); \text{ thus} \end{aligned}$ $Pr_n[Y_{n+1}(X_{n+1}) = Y_n(X_t)]$

$$\begin{split} &\Gamma_{11} \prod_{n+1} (v_{n+1})^{-1} & \Gamma_{1}(v_{1})_{1} \\ &= \Sigma_{2} \Pr_{1} \Gamma_{1}(Y_{n+1}) = Y_{1}(X_{1}) \mid Z_{n}^{S} = Z_{S}] \Pr[Z_{n}^{S} = Z_{S}] \\ &= \Sigma_{2} \Pr_{1} \Gamma_{1}(Z_{n}(X_{1}...X_{1}) = Y_{n}(X_{1}) \oplus X_{n+1} \mid Z_{n}^{S} = Z_{S}] \Pr[Z_{n}^{S} = Z_{S}] \\ &\leq 2/2^{1} \Sigma_{2} \Pr[Z_{n}^{S} = Z_{S}] \leq 2/2^{1}. \end{split}$$

This gives us that

 $\text{Pr}_n[\text{not } \text{CF}(Z_{n+1})] \leq \text{Pr}_n[Y_{n+1}(X_{n+1}) \in \{Y_n(X_1), \dots, Y_n(X_n)\}] + \\$ $Pr_n[Z_{n+1}(X_{n+1}) \in \{Z_n(X_1)...Z_n(X_n)\} \mid Y_{n+1}(X_{n+1}) \notin$

 $\{Y_n(X_1), \dots, Y_n(X_n)\}]$ $\leq 2n/2^{1} + n/2^{1} = 3n/2^{1}$.

Pr[CF(Z)]

So

 $Pr[\text{not } CF(Z)] \leq \Sigma_n Pr[\text{not } CF(Z_n) \mid CF(Z_{n-1})]$ $\leq 3/2^{1} (qm)(qm-1)/2$ $= 3/2 q^2 m^2/2^1$.