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Motivation

Suppose Alice is an ATM and Bob is a Bank, and
Alice sends Bob messages about transactions over
a public channel.

Bob would like to know that when he receives a
message saying “credit $128 to Carol's Account —
Alice”, it originates from the ATM. Bob is concerned
with the authenticity of the message.

He also wants to know that Carol has not modified
the message from “credit $16 to Carol’'s Account —
Alice.” This concerns the integrity of the message.

Authentication and Encryption

Should we expect to get good message
authentication via encryption? i.e., is it
enough to guarantee authenticity of M by
transmitting E,(M)?

No! e.g., if E4 is CTR from lecture 6, then it
is easy for Carol to change E,(16) to E,(128)
via E((128) = E((16) © 144.

In general, good encryption does not
necessarily imply integrity.

Message Authentication Codes (MACs)

Formally: A MAC is a trio of algorithms
(G,T,V) such that:

G(1%) generates a k-bit key K.

T«(M) generates a L(k)-bit tag

V«(M, o) verifies the tag o for the message
M.

Require that for all K, M, random choices or
states of T, V((M,T¢(M)) = 1.

If T¢ is deterministic and stateless, V is trivial.

Security of MACs

The adversary’s goal might be to sign some
specific message m.

We want it to be hard to produce any (M,c)
pair such that V¢ (M,c)=1.

This should be true even if the adversary has
seen several M’ T(M’) pairs

Should be conservative: Allow the adversary
to choose the M’ messsages.

Existential Unforgeability

Notation: let Q(A°) denote the list of oracle queries
that A makes with O as its oracle.

Define the chosen-message attack (cma) advantage
of A against MAC = (G,T,V) by:

AdV;fotAc(k) =Pr[Vy(M,o)=1AM¢gL:
K« G(1"),(M,0) « A (1"),L = Q(A™ (1"))]

Say that MAC is existentially unforgeable under
chosen message attack if every ppt A has negligible
advantage.




MAC Insecurity

For a fixed security parameter k, define the
Insecurity of MAC=(G,T,V) against time-t
adversaries which make q queries with total
message length | by:

uf-cma cma

InSec)y;c (t’%l):Agl(g;fl){AdVA,MAc(k)}

PRFs are good MACs

Let F: Kx {0,1}¢ — {0,1}* be a function
family. Then if Fy is pseudorandom, Fy is a
good MAC for the message space {0,1}4:

InSect ™™ (¢,q,dq) < InSect" (¢',q)+ 2™

Proof: Let A be a chosen-message forger for
F as a MAC. We show how to construct a
PREF distinguisher D for F that has almost the
same advantage as A, and runs in the same
time.

PRFs are good MACs

Df(1%):

Run A(1%): respond to g with f(q), add g to Q
Set (M,o) = output of A.

If f{(M) = c and M ¢Q, return 1, else return 0.

Notice: Pr[DF(1¥) = 1] = Adv, (°3(k). And since
M was never queried, Pr[D#(1k) = 1] < 1/2s.
So Adv, (P(k) = Adv, gema(k) — 2+

Almost-XOR-Universal, (AXU,) Hash
Functions

Let H: K x D — {0,1}* be a family of functions.
Define the XOR-2-Universality of H by

Adv™ (H) = max ”L{Pr,([HK(aI Y® H (a,)=b]}
We say H is g-almost-XOR-Universal, (e-
AXU,) if Advih(H) < e.

H is XOR-Universal, if it is 1/2--AXU,,.

Notice that Pairwise-independent hash
functions are XOR-Universal,.

€-AXU, Hash Families for large domains

Let h: K x {0,1}?- — {0,1}* be ¢ AXU,. Define the
family H : K" x {0,1}2"t — {0,1}- as follows:

Hyt. kn(B15---82n) =

Hie.. kn(hk1(a1,82).hk1(@3,8,), - N4 (Bzn1,820));
Hk(ay.a;) = he(ay,ay)

Claim: H is (ng)-AXU,.

Proof: If the inputs to h,, are not the same, then the
xor-probability is at most . The probability that the
inputs to h,, are the same is at most ¢ given that not
all inputs to hy, 4, are the same, and so on.

AXU, - MAC

Let F: ¥ x {0,1} — {0,1}* be a PRF. LetH:
K x D — {0,1}* be e-AXU,. Define the MAC
C-UHM as follows:

G: Select K %, k «K. Return (K, )

T(K, K)(M) =

o Let x = H(M); © = F(ctr)®x;o=(ctr,1)

o Set ctr = ctr+1

o Return o

Vik, K)(M,(s,r)) = 1iff Fc(s)®t = H(M).




C-UHM theorem

Theorem: for any q < 2!,

InSece junitema(t,q,l) < & + InSecPf(t',q+1)
Proof: Let A be any MAC adversary.
Suppose we choose f« Fand run A against
UHM instantiated with f in place of F.
Denote the queries that A makes by M,
1<i<q; denote the responses by o, = (i,1))
Finally, A returns some message M
#{M;,...,M}, and a tag (s,t)

C-UHM Theorem, continued.

Let NEW be the event that s > g-1, that is, the s
returned by A was not a value input to f in C-
UHM. Let OLD be the events < q.

Claim 1: Pr[V,/(M,(s,7)) = 1 | OLD] <¢
Proof:

PriVJ(M,(s,7)) = 1] =

PrH (M)®H (M,) = t® 1] <e.
Claim2:  Pr[V f(M,(s,7)) =1 | NEW] < 2L,
Proof: = PrH (M)®z = f(s)] = 2.

C-UHM Theorem, continued.

Thus:

PrIVJ(M,(s,7)) = 1] =
PrlV /(M,(s,t)) = 1 | OLD] Pr[OLD] +
PriV./(M,(s,)) = 1 | NEW](1-Pr[OLD])
Seq+2%(1-q)
<eq+e(1-q) =«

The theorem follows, since we can distinguish

Fy from f by trying to use A to forge a MAC and
then checking if A was successful.

R-UHM

Let F: K x {0,1} — {0,1}* bea PRF. LetH:
K x D — {0,1}* be e&-AXU,. Define the MAC
R-UHM as follows:

G: Select K %, k «—K. Return (K, )

T oM) =

o Choose s «{0,1}.

o Letx = H (M); t = F(s)®x

o Return o=(s,1)

Vi o(M,(s,7)) = 1iff Fe(s)®t = H(M).

R-UHM theorem

Theorem: for any q < 2'2,
InSecg i ma(t,q,l) < € + InSecP(t,q+1) +
a(g-1)/2"

Proof: Consider the same experiment as
before. Clearly when there are no collisions
in the values Sq,.-1Sqs the same argument
upper bounds the success probability of A.
And when there is a collision, the success
probability of A is at most 1. The probability
of a collision is q(g-1)/2"*1.

CBC-MAC

Let F: {0,1} x {0,1Y—{0,1}' be a PRF. Define the
MAC F™ on ml-bit messages as follows:

Y; = F(M@®y,.,)
o returny,,
Theorem:
InsecemP(t,q) < InsecP(t+O(qml),gm) + 3g?m?2/2"*1.
So FM is a secure MAC if F is a secure PRF.




CBC-MAC Proof

Lemma 1: If f—®& then

Insec;mP(q) < 3m2q?/2™!
Consider the 2'-ary tree of depth m. A sequence of
strings X = (x4,...,X,)€{0,1}" uniquely specifies a
node in this tree.
Let f: {0,1}'—{0,1}, denote the labeling of a
sequence X,...x, by Z() = 0", Y/(x;,....x,) =
Xo®Z(Xy,... X 1), ZAX)=H(YH(X))
Call (X,,...,X,) a query sequence if every X has
parent either the root or X; for some j <i.

CBC-MAC proof

Consider an (unbounded) adversary A trying to
distinguish f(™ from a sample from’z,, with'q
queries. We let A make gm queries X{...Xq in the
form of a query tree, and whenever X Is at anepth m,
A learns Z(X)).

We let Z be the depth-m labels A has learned after
the nt query, and V, = (X,,...,X,; Z,) denotes the
View of A after the nh query.

If the labeling Z; is collision-free, then A’s view is
identical to its view on a random function from ml
bits to | bits. So we only need to bound the
probability of a collision in Z,.

CBC-MAC Proof

Lemma 2: Let Z" and Z,2 be collision-free
output labelings consistent with a depth-m
labeling z,, Then:

Priz,=Z"|V,=(Xq... X Z)] =

Priz,=Z.2|V, = (Xq... X5 Zo)]-

Proof: By induction. Obviously true for n=1,
since the first node in a query tree is not at
depth m.

Lemma 2 proof, con’t

Two cases for n>1:

o X, at depth <m. Then the view is independent of
Z(X,). Thus Pr{Zz,=2Z|V,]

= Pr[zn:Znilvn—1]

= PrZ,=Z, Vo lPHZy(X,) = Z /(XN Zpt=Z, ' Via]

=Pr[Z, =2, 4|V, ]2

These are equal for i=1,2 by IH.

o X atdepthm. Then Pr[Z, =Z]|V,]

= Pr.[Zn-1 = Zn-1i | Vn-1’Zn(xn) = Z]

= Pr[Zn(Xn) = len-1=Zn»1i’Vn»1]Pr[Zn-1=zn-1i|Vn»
JPHZ,(X,) = 2]

= 2PrZ,4=Z, |V oillPrIZ,(X,) = Z]

LLemma 3

Lemma 3: Let CF(Z) denote the event that Z
is collision-free. Let Pr,[E] denote the quantity
PrlE | V,=(Xy,....X,; Z,), CF(Z,)]. Letn%/4 +n
-1 =22 Let (x4...x) € {X;,...,X,} and i<m; let
zg be a collision-free label of the nodes in S =
{Xpo W XV {(%4... %)} consistent with Z,. Then
(1) For any (x,...xX.,)€S, any y*{0,1}

PrlY, (X;..XX) =y* | Z,S=2g] <2 21
(2) For any z*{0,1}, Pr,[Z,(X,...x)=2*|Z S=2¢] <2 2",

Proof of Lemma 3(1)

Let ye{0,1} be some fixed string. Define the labeling
Z, (X) = zg(X) if X; # x,...x, and y®x;,, otherwise. Let
Y,,, be the labeling induced by Z, :

Y, (X)) = yg(X) if X; & children(x,...x)

YOXi Xy I X=X XX .
Let ¥z;) be the set of all strings y such that Z,  is
collision-free. y¢ A(z) iff either:

o y®x,q €{zg(X) : 0 <j<n+1and X; #(x,...x)}; or

a for some X'y, yOx1 @',y €{ys(X)), X; children(x,...x;),

and 0 <j<n+1}

Thus [{0,1}\ Hzg)| < (n-1) + (n-s)(s) < n-1 + n?/4 < 2'/2.
This proves (1).




Proof of Lemma 3(2)

Let ze{0,1} be some fixed string. Define the labeling
Z, (X) = zg(X) if X; # x,...x, and z otherwise. LetY,
be the Iabelmg induced by Z

YZ(XJ-) = ys(X)if X e chlldren( .. Xg)

ZOX'jq I X=Xy XX 4.
Let z(zg) be the set of all strings z such that Z, is
collision-free. zg Z(z) iff either:

o z e{zg(X) : 0 <j<n+1and X; #Xx,...x)}; or

o for some X', Z®X'j44 e{yS(X) X; gchildren(x;...x), and 0 <
j<n+1}

Thus {0,1}'\ Azg)| = (n-1) + (n-s)(s) < n-1 + n%/4 < 2//2.
This proves (2).

Lemma 4: Pr[not CF(Z)]

Let n?/4 + n-1 < 2!/2. Let X,...X, be a query sequence and z
be the labeling of depth-m nodes. Then
Pr[not CF(Z,,,) | V,,CF(Z,)] < 3n 2.

Proof: Denote Pr[E|V,,CF(Z,)] by Pr,[E].
Case 1: X, is atdepth 1. Then let X ,,=x;*. Y(X_,1)=X,*
by definition. Now for each 1=t<n,

Pr Y, (X)) = x,*] <2 2.
This is because if X, is at level 1, Pr[Y(X)) = x;*] =
Otherwise X, is at depth at least 2 and is the child of some
(Xq...%;) € {X .X,} and so the equation follows because of
Iemma 3.
Then Pr [not CF(Z,)] < Pr,[x,* € {Y (X;),...,Y,(X)} +
Pro[Znia(Xoer) € {Za(Xq)-- Zo(X )} X" 2 {Yo(Xo), Yo (X
<2n/2'+n/2' = 3n/2\.

Lemma 4: Case 2

Case 2: X1 = Xq... XXiyq, | > 0 is the child of some x,...x;
e{Xy,....X,}. Let S= {Xq,- . XV {xq...x;}. Notice that for any X,
€ X1v"'vxn ]

ProlY et (Xne1) = Yo(X))] < 272",
Since if X,,4 and X are siblings, the probability is 0, and
otherwise any collision free labeling zg determines Y ,(X,); thus
PralYn(Xpe) = Yn(X.)]
=2, ProlYnu(Xoe) = Yo(Xo) | Z,8 = z5]PrZ,8 =z¢]
=3, Pr[Z,(x...x) =Y, (X|)®x‘+1|Z S = zg]Pr{Z,S=zg]
<2/2'%,Pr[Z,S=zg] < 2/2\.
This gives us that
Pralnot CF(Zy.1)] < ProlYnei(Xaeq) € {Ya(Xq),. . Ya(Xo)}] +

ProlZy(Xow) &{Z,(Xy). z DX} Y 1K) 2

{Yn(Xq), o Yn(Xo)H]

<2n/2'+n/2' = 3n/2\.

Pr[CE(2)]

So

Pr[not CF(Z)] < %, Pr[not CF(Z,) | CF(Z,.,)]
< 3/2' (gm)(gm-1)/2
= 3/2 g2m?/2..




