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Motivation

Suppose Alice is an ATM and Bob is a Bank, and 
Alice sends Bob messages about transactions over 
a public channel.
Bob would like to know that when he receives a 
message saying “credit $128 to Carol’s Account –
Alice”, it originates from the ATM.  Bob is concerned 
with the authenticity of the message.
He also wants to know that Carol has not modified 
the message from “credit $16 to Carol’s Account –
Alice.”  This concerns the integrity of the message.

Authentication and Encryption

Should we expect to get good message 
authentication via encryption? i.e., is it 
enough to guarantee authenticity of M by 
transmitting EK(M)?
No!  e.g., if EK is CTR from lecture 6, then it 
is easy for Carol to change EK(16) to EK(128) 
via EK(128) = EK(16) ⊕ 144.
In general, good encryption does not 
necessarily imply integrity.

Message Authentication Codes (MACs)

Formally: A MAC is a trio of algorithms 
(G,T,V) such that:
G(1k) generates a k-bit key K.
TK(M) generates a L(k)-bit tag σ
VK(M, σ) verifies the tag σ for the message 
M.
Require that for all K, M, random choices or 
states of T, VK(M,TK(M)) = 1.

If TK is deterministic and stateless, VK is trivial.

Security of MACs

The adversary’s goal might be to sign some 
specific message m.
We want it to be hard to produce any (M,σ) 
pair such that VK (M,σ)=1.
This should be true even if the adversary has 
seen several M’,TK(M’) pairs
Should be conservative: Allow the adversary 
to choose the M’ messsages.

Existential Unforgeability

Notation: let Q(AO) denote the list of oracle queries 
that A makes with O as its oracle.
Define the chosen-message attack (cma) advantage 
of A against MAC = (G,T,V) by:

Say that MAC is existentially unforgeable under 
chosen message attack if every ppt A has negligible 
advantage.
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MAC Insecurity

For a fixed security parameter k, define the 
Insecurity of MAC=(G,T,V) against time-t 
adversaries which make q queries with total 
message length l by:
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PRFs are good MACs

Let F : K × {0,1}d → {0,1}s be a function 
family.  Then if FK is pseudorandom, FK is a 
good MAC for the message space {0,1}d:

Proof:  Let A be a chosen-message forger for 
F as a MAC.  We show how to construct a 
PRF distinguisher D for F that has almost the 
same advantage as A, and runs in the same 
time.
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PRFs are good MACs

Df(1k):
Run A(1k): respond to q with f(q), add q to Q
Set (M,σ) = output of A.
If f(M) = σ and M ∉Q, return 1, else return 0. 

Notice: Pr[DF(1k) = 1] = AdvA,F
cma(k). And since 

M was never queried, Pr[DF(1k) = 1] ≤ 1/2s.
So AdvA,F

prf(k) ≥ AdvA,F
cma(k) – 2-s

Almost-XOR-Universal2 (AXU2) Hash 
Functions

Let H: K × D → {0,1}L be a family of functions.  
Define the XOR-2-Universality of H by

We say H is ε-almost-XOR-Universal2 (ε-
AXU2) if Advxuh(H) ≤ ε. 
H is XOR-Universal2 if it is 1/2L-AXU2.
Notice that Pairwise-independent hash 
functions are XOR-Universal2.
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ε-AXU2 Hash Families for large domains

Let h: K × {0,1}2L → {0,1}L be ε AXU2.  Define the 
family H : Kn × {0,1}2nL → {0,1}L as follows:
HK1…Kn(a1,…,a2n) = 
HK2…Kn(hK1(a1,a2),hK1(a3,a4),…,hK1(a2n-1,a2n));
HK(a1,a2) = hK(a1,a2)
Claim: H is (nε)-AXU2.
Proof: If the inputs to hKn are not the same, then the 
xor-probability is at most ε.  The probability that the 
inputs to hKn are the same is at most ε given that not 
all inputs to hK(n-1) are the same, and so on.

AXU2 - MAC

Let F: K × {0,1}l → {0,1}L be a PRF.  Let H : 
K × D → {0,1}L be ε-AXU2.  Define the MAC 
C-UHM as follows:
G: Select K ←K, κ←K.  Return (K, κ)
T(K, κ)(M) =

Let x = Hκ(M); τ = FK(ctr)⊕x;σ=(ctr,τ)
Set ctr = ctr+1
Return σ

V(K, κ)(M,(s,τ)) = 1 iff FK(s)⊕τ = Hκ(M). 



3

C-UHM theorem

Theorem: for any q ≤ 2l,
InSecC-UHM

uf-cma(t,q,l) ≤ ε + InSecF
prf(t’,q+1)

Proof:  Let A be any MAC adversary.  
Suppose we choose ƒ← F and run A against 
UHM instantiated with ƒ in place of FK.  
Denote the queries that A makes by Mi, 
1≤i≤q; denote the responses by σi = (i,τi) 
Finally, A returns some message M 
∉{M1,…,Mq}, and a tag (s,τ)

C-UHM Theorem, continued.

Let NEW be the event that s > q-1, that is, the s 
returned by A was not a value input to ƒ in C-
UHM.  Let OLD be the event s < q.
Claim 1: Pr[Vκ

ƒ(M,(s,τ)) = 1 | OLD] ≤ε
Proof: 

Pr[Vκ
ƒ(M,(s,τ)) = 1] = 

Pr[Hκ(M)⊕Hκ(Ms) = τ⊕ τs] ≤ε.
Claim 2: Pr[Vκ

ƒ(M,(s,τ)) = 1 | NEW] ≤ 2-L.
Proof: = Pr[Hκ(M)⊕τ = ƒ(s)] = 2-L.

C-UHM Theorem, continued.

Thus:
Pr[Vκ

ƒ(M,(s,τ)) = 1] =
Pr[Vκ

ƒ(M,(s,τ)) = 1 | OLD] Pr[OLD] + 
Pr[Vκ

ƒ(M,(s,τ)) = 1 | NEW](1-Pr[OLD])
≤ εq + 2-L(1-q)
≤ εq + ε(1-q) = ε.

The theorem follows, since we can distinguish 
FK from ƒ by trying to use A to forge a MAC and 
then checking if A was successful.

R-UHM

Let F: K × {0,1}l → {0,1}L be a PRF.  Let H : 
K × D → {0,1}L be ε-AXU2.  Define the MAC 
R-UHM as follows:
G: Select K ←K, κ←K.  Return (K, κ)
T(K, κ)(M) =

Choose s ←{0,1}l.
Let x = Hκ(M); τ = FK(s)⊕x
Return σ=(s,τ)

V(K, κ)(M,(s,τ)) = 1 iff FK(s)⊕τ = Hκ(M). 

R-UHM theorem

Theorem: for any q ≤ 2l/2,
InSecR-UHM

uf-cma(t,q,l) ≤ ε + InSecF
prf(t’,q+1) + 

q(q-1)/2l+1

Proof: Consider the same experiment as 
before.  Clearly when there are no collisions 
in the values s1,…,sq, the same argument 
upper bounds the success probability of A.  
And when there is a collision, the success 
probability of A is at most 1.  The probability 
of a collision is q(q-1)/2l+1.

CBC-MAC

Let F: {0,1}k × {0,1}l→{0,1}l be a PRF.  Define the 
MAC F(m) on ml-bit messages as follows:
TK(x1,…,xm) =

Let y0 = 0l

For i = 1,…,m
yi = FK(Mi⊕yi-1)

return ym

Theorem:
InsecF(m)prf(t,q) ≤ InsecF

prf(t+O(qml),qm) + 3q2m2/2l+1.
So F(m) is a secure MAC if F is a secure PRF.



4

CBC-MAC Proof

Lemma 1: If ƒ←Fl,l then
Insecƒ(m)prf(q) ≤ 3m2q2/2l+1

Consider the 2l-ary tree of depth m. A sequence of 
strings X = (x1,…,xn)∈{0,1}nl uniquely specifies a 
node in this tree.
Let f: {0,1}l→{0,1}l, denote the labeling of a 
sequence x1…xn by Zf() = 0l, Yf(x1,…,xn) = 
xn⊕Zf(x1,…,xn-1), Zf(X)=f(Yf(X))
Call (X1,…,Xn) a query sequence if every Xi has 
parent either the root or Xj for some j < i.

CBC-MAC proof

Consider an (unbounded) adversary A trying to 
distinguish ƒ(m) from a sample from Fml,l with q 
queries.  We let A make qm queries X1…Xqm in the 
form of a query tree, and whenever Xi is at depth m, 
A learns Zƒ(Xi).
We let Zn be the depth-m labels A has learned after 
the nth query, and Vn = (X1,…,Xn; Zn) denotes the 
View of A after the nth query.
If the labeling Zf is collision-free, then A’s view is 
identical to its view on a random function from ml 
bits to l bits.  So we only need to bound the 
probability of a collision in Zf.

CBC-MAC Proof

Lemma 2: Let Zn
1 and Zn

2 be collision-free 
output labelings consistent with a depth-m 
labeling Zn,  Then:

Pr[Zn = Zn
1 | Vn = (X1,…,Xn; Zn)] = 
Pr[Zn = Zn

2 | Vn = (X1,…,Xn; Zn)].
Proof: By induction.  Obviously true for n=1, 
since the first node in a query tree is not at 
depth m.

Lemma 2 proof, con’t
Two cases for n>1:

Xn at depth < m.  Then the view is independent of 
Z(Xn).  Thus Pr[Zn = Zn

i| Vn] 
= Pr[Zn=Zn

i|Vn-1] 
= Pr[Zn-1=Zn-1

i|Vn-1]Pr[Zn(Xn) = Zn
i(Xn)|Zn-1=Zn-1

i, Vn-1]
= Pr[Zn-1=Zn-1

i|Vn-1]2-l

These are equal for i=1,2 by IH.
X at depth m.  Then Pr[Zn = Zn

i|Vn]
= Pr[Zn-1 = Zn-1

i | Vn-1,Zn(Xn) = z]
= Pr[Zn(Xn) = z|Zn-1=Zn-1

i,Vn-1]Pr[Zn-1=Zn-1
i|Vn-

1]/Pr[Zn(Xn) = z]
= 2-lPr[Zn-1=Zn-1

i|Vn-1]/Pr[Zn(Xn) = z]

Lemma 3
Lemma 3: Let CF(Z) denote the event that Z 
is collision-free. Let Prn[E] denote the quantity 
Pr[E | Vn=(X1,…,Xn;Zn), CF(Zn)].  Let n2/4 + n 
-1 ≤ 2l/2 Let (x1…xi) ∈ {X1,…,Xm} and i<m; let 
zS be a collision-free label of the nodes in S = 
{X1,…,Xn} \ {(x1…xi)} consistent with Zn.  Then
(1) For any (x1…xixi+1)∈S, any y*∈{0,1}l:

Prn[Yn (x1…xixi+1) = y* | Zn
S = zS] ≤ 2 2-l

(2) For any z*∈{0,1}l, Prn[Zn(x1…xi)=z*|Zn
S=zS] ≤2 2-l.

Proof of Lemma 3(1)
Let y∈{0,1}l be some fixed string.  Define the labeling 
Zz,y(Xj) = zS(Xj) if Xj ≠ x1…xi, and y⊕xi+1 otherwise.  Let 
Yz,y be the labeling induced by Zz,y: 

Yz,y(Xj) = yS(Xj) if Xj ∉ children(x1…xi) 
y⊕xi+1⊕x’i+1 if Xj=x1…xix’i+1.

Let Y(zS) be the set of all strings y such that Zz,y is 
collision-free.  y∉Y(zS) iff either:

y⊕xi+1 ∈{zS(Xj) : 0 < j < n+1 and Xj ≠(x1…xi)}; or
for some x’i+1, y⊕xi+1⊕x’i+1 ∈{yS(Xj), Xj ∉children(x1…xi), 
and 0 < j < n+1}

Thus |{0,1}l \ Y(zS)| ≤ (n-1) + (n-s)(s) ≤ n-1 + n2/4 ≤ 2l/2.
This proves (1).
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Proof of Lemma 3(2)
Let z∈{0,1}l be some fixed string.  Define the labeling 
Zz,y(Xj) = zS(Xj) if Xj ≠ x1…xi, and z otherwise.  Let Yz
be the labeling induced by Z,z: 

Yz(Xj) = yS(Xj) if Xj ∉ children(x1…xi) 
z⊕x’i+1 if Xj=x1…xix’i+1.

Let Z(zS) be the set of all strings z such that Zz is 
collision-free.  z∉Z(zS) iff either:

z ∈{zS(Xj) : 0 < j < n+1 and Xj ≠(x1…xi)}; or
for some x’i+1, z⊕x’i+1 ∈{yS(Xj), Xj ∉children(x1…xi), and 0 < 
j < n+1}

Thus |{0,1}l \ Y(zS)| ≤ (n-1) + (n-s)(s) ≤ n-1 + n2/4 ≤ 2l/2.
This proves (2).

Lemma 4: Pr[not CF(Z)]
Let n2/4 + n-1 < 2l/2. Let X1…Xn be a query sequence and Z
be the labeling of depth-m nodes.  Then

Pr[not CF(Zn+1) | Vn,CF(Zn)] ≤ 3n 2-l.
Proof: Denote Pr[E|Vn,CF(Zn)] by Prn[E].
Case 1: Xn+1 is at depth 1.  Then let Xn+1=x1*.  Y(Xn+1)=x1* 
by definition.  Now for each 1≤t≤n, 

Prn[Yn(Xt) = x1*] ≤2 2-1.  
This is because if Xt is at level 1, Pr[Y(Xt) = x1*] = 0.  
Otherwise Xt is at depth at least 2, and is the child of some 
(x1…xi) ∈ {X1…Xn} and so the equation follows because of 
lemma 3.  
Then Prn[not CF(Zn)] ≤ Prn[x1* ∈ {Yn(X1),…,Yn(Xn)}] + 
Prn[Zn+1(Xn+1) ∈ {Zn(X1)…Zn(Xn)} | x1* ∉ {Yn(X1),…,Yn(Xn)}]
≤ 2n/2l + n/2l = 3n/2l.

Lemma 4: Case 2
Case 2: Xn+1 = x1…xixi+1, i > 0, is the child of some x1…xi
∈{X1,…,Xn}.  Let S = {X1,…,Xn} \ {x1…xi}.  Notice that for any Xt
∈{X1,…,Xn}, 

Prn[Yn+1(Xn+1) = Yn(Xt)] ≤ 2/2l.
Since if Xn+1 and Xt are siblings, the probability is 0, and 
otherwise any collision free labeling zS determines Yn(Xt); thus
Prn[Yn+1(Xn+1) = Yn(Xt)] 
= Σz Prn[Yn+1(Xn+1) = Yn(Xt) | Zn

S = zS]Pr[Zn
S =zS]

= Σz Prn[Zn(x1…xi) = Yn(Xt)⊕xi+1|Zn
S = zS]Pr[Zn

S=zS]
≤ 2/2l Σz Pr[Zn

S=zS] ≤ 2/2l.
This gives us that
Prn[not CF(Zn+1)] ≤ Prn[Yn+1(Xn+1) ∈ {Yn(X1),…,Yn(Xn)}] +

Prn[Zn+1(Xn+1) ∈{Zn(X1)…Zn(Xn)} |Yn+1(Xn+1) ∉
{Yn(X1),…,Yn(Xn)}]

≤ 2n/2l + n/2l = 3n/2l.

Pr[CF(Z)]

So 
Pr[not CF(Z)] ≤ Σn Pr[not CF(Zn) | CF(Zn-1)]

≤ 3/2l (qm)(qm-1)/2
= 3/2 q2m2/2l.


