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ABSTRACT
We present the Succinct Range Filter (SuRF), a fast and compact data
structure for approximate membership tests. Unlike traditional
Bloom filters, SuRF supports both single-key lookups and common
range queries: open-range queries, closed-range queries, and range
counts. SuRF is based on a new data structure called the Fast Succinct
Trie (FST) that matches the point and range query performance of
state-of-the-art order-preserving indexes, while consuming only
10 bits per trie node. The false positive rates in SuRF for both point
and range queries are tunable to satisfy different application needs.
We evaluate SuRF in RocksDB as a replacement for its Bloom filters
to reduce I/O by filtering requests before they access on-disk data
structures. Our experiments on a 100 GB dataset show that replacing
RocksDB’s Bloom filters with SuRFs speeds up open-seek (without
upper-bound) and closed-seek (with upper-bound) queries by up
to 1.5× and 5× with a modest cost on the worst-case (all-missing)
point query throughput due to slightly higher false positive rate.
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Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen, Michael
Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. SuRF: Practical Range
Query Filtering with Fast Succinct Tries. In Proceedings of 2018 International
Conference on Management of Data (SIGMOD’18). ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3183713.3196931

1 INTRODUCTION
Write-optimized log-structured merge (LSM) trees [44] are popu-
lar low-level storage engines for general-purpose databases that
provide fast writes [5, 50] and ingest-abundant DBMSs such as time-
series databases [11, 48]. One of their main challenges for fast query
processing is that items could reside in immutable files (SSTables)
from all levels [3, 36]. Item retrieval in an LSM tree-based design
may therefore incur multiple expensive disk I/Os [44, 50]. This
challenge calls for in-memory data structures that can help locate
query items. Bloom filters are a good match for this task [48, 50]
because they are small enough to reside in memory, and they have
only “one-sided” errors—if the key is present, then the Bloom filter
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returns true; if the key is absent, then the filter will likely return
false, but might incur a false positive.

Although Bloom filters are useful for single-key lookups (“Is key
42 in the SSTable?”), they cannot handle range queries (“Are there
keys between 42 and 1000 in the SSTable?”). With only Bloom filters,
an LSM tree-based storage engine must read additional table blocks
from disk for range queries. Alternatively, one could maintain an
auxiliary index, such as a B+Tree, to support such range queries.
The I/O cost of range queries is high enough that LSM tree-based
designs often use prefix Bloom filters to optimize certain fixed-prefix
queries (e.g., “where email starts with com.foo@”) [6, 25, 48], despite
their inflexibility for more general range queries. The designers
of RocksDB [6] have expressed a desire to have a more flexible
data structure for this purpose [24]. A handful of approximate data
structures, including the prefix Bloom filter, exist that accelerate
specific categories of range queries, but none is general purpose.

This paper presents the Succinct Range Filter (SuRF), a fast
and compact filter that provides exact-match filtering, range fil-
tering, and approximate range counts. Like Bloom filters, SuRF
guarantees one-sided errors for point and range membership tests.
SuRF can trade between false positive rate and memory consump-
tion, and this trade-off is tunable for point and range queries semi-
independently. SuRF is built upon a new space-efficient (succinct)
data structure called the Fast Succinct Trie (FST). It performs compa-
rably to or better than state-of-the-art uncompressed index struc-
tures (e.g., B+tree [18], ART [37]) for both integer and string work-
loads. FST consumes only 10 bits per trie node, which is close to
the information-theoretic lower bound.

The key insight in SuRF is to transform the FST into an approxi-
mate (range) membership filter by removing levels of the trie and
replacing them with some number of suffix bits. The number of
such bits (either from the key itself or from a hash of the key—as we
discuss later in the paper) trades space for decreased false positives.

We evaluate SuRF via micro-benchmarks and as a Bloom filter
replacement in RocksDB. Our experiments on a 100 GB time-series
dataset show that replacing the Bloom filters with SuRFs of the same
filter size reduces I/O. This speeds up open-range queries (without
upper-bound) by 1.5× and closed-range queries (with upper-bound)
by up to 5× compared to the original implementation. For point
queries, the worst-case workload is when none of the query keys
exist in the dataset. In this case, RocksDB is up to 40% slower using
SuRFs instead of Bloom filters because they have higher (0.2% vs.
0.1%) false positive rates. One can eliminate this performance gap
by increasing the size of SuRFs by a few bits per key.

This paper makes three primary contributions. First, we describe
in Section 2 our FST data structure whose space consumption is
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Figure 1: An example ordinal tree encoded using LOUDS

close to theminimumnumber of bits required by information theory
yet has performance equivalent to uncompressed order-preserving
indexes. Second, in Section 3 we describe how to use the FST to
build SuRF, an approximate membership test that supports both
single-key and range queries. Finally, we replace the Bloom filters
with size-matching SuRFs in RocksDB and show that it improves
range query performance with a modest cost on the worst-case
point query throughput due to a slightly higher false positive rate.

2 FAST SUCCINCT TRIES
The core data structure in SuRF is the FST. It is a space-efficient,
static trie that answers point and range queries. FST is 4–15× faster
than earlier succinct tries using other tree representations [15, 17,
31, 32, 34, 39, 40, 46, 49], achieving performance comparable to or
better than the state-of-the-art pointer-based indexes.

FST’s design is based on the observation that the upper levels
of a trie comprise few nodes but incur many accesses. The lower
levels comprise the majority of nodes, but are relatively “colder”.
We therefore encode the upper levels using a fast bitmap-based
encoding scheme (LOUDS-Dense) in which a child node search re-
quires only one array lookup, choosing performance over space. We
encode the lower levels using the space-efficient LOUDS-Sparse
scheme, so that the overall size of the encoded trie is bounded.

The contribution of FST is two-fold. Although the algorithmic
designs of LOUDS-Dense and LOUDS-Sparse are not new, the com-
bination (we call the hybrid encoding scheme LOUDS-DS) within
the same data structure is. As shown in Section 4.1, LOUDS-DS
is key to achieving high performance while remaining succinct.
Second, to the best of our knowledge, FST is the first succinct trie
that matches the performance of the state-of-the-art pointer-based
index structures (existing succinct trie implementations are usually
at least an order of magnitude slower). This performance improve-
ment allows succinct tries to meet the requirements of a much
wider range of real-world applications.

For the rest of the section, we assume that the trie maps the keys
to fixed-length values. We also assume that the trie has a fanout of
256 (i.e., one byte per level).

2.1 Background
A tree representation is “succinct” if the space taken by the repre-
sentation is close1 to the information-theoretic lower bound, which
is the minimum number of bits needed to distinguish any object
in a class. A class of size n requires at least log2 n bits to encode

1There are three ways to define “close” [10]. Suppose the information-theoretic lower
bound is L bits. A representation that uses L+O (1), L+o (L), andO (L) bits is called
implicit, succinct, and compact, respectively. All are considered succinct, in general.
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Figure 2: LOUDS-DS Encoded Trie – The $ symbol represents the char-
acter whose ASCII number is 0xFF. It is used to indicate the situation where
a prefix string leading to a node is also a valid key.

each object. A trie of degree k is a rooted tree where each node
can have at most k children with unique labels selected from set
{0, 1, . . . ,k − 1}. Since there are

(kn+1
n

)
/kn + 1 n-node tries of de-

gree k , the information-theoretic lower bound is approximately
n(k log2 k − (k − 1) log2 (k − 1)) bits [17]. An ordinal tree is a rooted
tree where each node can have an arbitrary number of children in
order. Thus, succinctly encoding ordinal trees is a necessary step
towards succinct tries.

Jacobson [34] pioneered research on succinct tree representa-
tions and introduced the Level-Ordered Unary Degree Sequence
(LOUDS) to encode an ordinal tree. As the name suggests, LOUDS
traverses the nodes in a breadth-first order and encodes each node’s
degree using the unary code. For example, node 3 in Figure 1 has
three children and is thus encoded as ‘1110’.

Navigating a tree encoded with LOUDS uses the rank & select
primitives. Given a bit vector, rank1 (i ) counts the number of 1’s
up to position i (rank0 (i ) counts 0’s), while select1 (i ) returns the
position of the i-th 1 (select0 (i ) selects 0’s). Modern rank & select
implementations [30, 43, 53, 58] achieve constant time by using
look-up tables (LUTs) to store a sampling of precomputed results
so that they only need to count between the samples.

With proper rank & select support, LOUDS performs tree nav-
igation operations that are sufficient to implement the point and
range queries required in SuRF in constant time. We assume that
both node/child numbers and bit positions are zero-based:

• Position of the i-th node = select0 (i ) + 1
• Position of the k-th child of the node started at p =
select0 (rank1 (p + k )) + 1
• Position of the parent of the node started at p = select1 (rank0 (p))

2.2 LOUDS-Dense
LOUDS-Dense encodes each trie node using three bitmaps of size
256 (because the node fanout is 256) and a byte-sequence for the
values as shown in the top half of Figure 2. The encoding follows
level-order (i.e., breadth-first order).

The first bitmap (D-Labels) records the branching labels for each
node. Specifically, the i-th bit in the bitmap, where 0 ≤ i ≤ 255,
indicates whether the node has a branch with label i . For example,
the root node in Figure 2 has three outgoing branches labeled f, s,
and t. The D-Labels bitmap sets the 102nd (f), 115th (s) and 116th
(t) bits and clears the rest.
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The second bitmap (D-HasChild) indicates whether a branch
points to a sub-trie or terminates (i.e., points to the value or the
branch does not exist). Taking the root node in Figure 2 as an
example, the f and the t branches continue with sub-tries while
the s branch terminates with a value. In this case, the D-HasChild
bitmap only sets the 102nd (f) and 116th (t) bits for the node.

The third bitmap (D-IsPrefixKey) includes only one bit per node.
The bit indicates whether the prefix that leads to the node is also a
valid key. For example, in Figure 2, the first node at level 1 has f as
its prefix. Meanwhile, ‘f’ is also a key stored in the trie. To denote
this situation, the D-IsPrefixKey bit for this child node must be set.

The final byte-sequence (D-Values) stores the fixed-length values
(e.g., pointers) mapped by the keys. The values are concatenated in
level order: same as the three bitmaps.

Tree navigation uses array lookups and rank & select operations.
We denote rank1/select1 over bit sequence bs on position pos to be
rank1/select1(bs, pos). Let pos be the current bit position in D-Labels.
To traverse down the trie, given pos where D-HasChild[pos] = 1,
D-ChildNodePos(pos) = 256 ×rank1(D-HasChild, pos) computes
the bit position of the first child node. To move up the trie, D-
ParentNodePos(pos) = select1(D-HasChild, ⌊pos/256⌋) computes
the bit position of the parent node. To access values, given pos
where D-HasChild[pos] = 0, D-ValuePos(pos) = rank1(D-Labels,
pos) - rank1(D-HasChild, pos) + rank1(D-IsPrefixKey, ⌊pos/256⌋)-1
gives the lookup position.

2.3 LOUDS-Sparse
As shown in the lower half of Figure 2, LOUDS-Sparse encodes a
trie node using four byte or bit-sequences. The encoded nodes are
then concatenated in level-order.

The first byte-sequence, S-Labels, records all the branching labels
for each trie node. As an example, the first non-value node at level 2
in Figure 2 has three branches. S-Labels includes their labels r, s, and
t in order. We denote the case where the prefix leading to a node is
also a valid key using the special byte 0xFF at the beginning of the
node (this case is handled by D-IsPrefixKey in LOUDS-Dense). For
example, in Figure 2, the first non-value node at level 3 has ‘fas’ as
its incoming prefix. Since ‘fas’ itself is also a stored key, the node
adds 0xFF to S-Labels as the first byte. Because the special byte
always appears at the beginning of a node, it can be distinguished
from the real 0xFF label.

The second bit-sequence (S-HasChild) includes one bit for each
byte in S-Labels to indicate whether a child branch continues (i.e.,
points to a sub-trie) or terminates (i.e., points to a value). Taking
the rightmost node at level 2 in Figure 2 as an example, because
the branch labeled i points to a sub-trie, the corresponding bit in
S-HasChild is set. The branch labeled y, on the other hand, points
to a value. Its S-HasChild bit is cleared.

The third bit-sequence (S-LOUDS) also includes one bit for each
byte in S-Labels. S-LOUDS denotes node boundaries: if a label is the
first in a node, its S-LOUDS bit is set. Otherwise, the bit is cleared.
For example, in Figure 2, the first non-value node at level 2 has
three branches and is encoded as 100 in the S-LOUDS sequence.

The final byte-sequence (S-Values) is organized the same way as
D-Values in LOUDS-Dense.

Tree navigation on LOUDS-Sparse is as follows: to move
down the trie, S-ChildNodePos(pos) = select1(S-LOUDS, rank1(S-
HasChild, pos) + 1); to move up, S-ParentNodePos(pos) = select1(S-
HasChild, rank1(S-LOUDS, pos) - 1); to access a value, S-ValuePos
(pos) = pos - rank1(S-HasChild, pos).

2.4 LOUDS-DS and Operations
LOUDS-DS is a hybrid trie in which the upper levels are encoded
with LOUDS-Dense and the lower levels with LOUDS-Sparse. The
dividing point between the upper and lower levels is tunable to
trade performance and space. FST keeps the number of upper levels
small in favor of the space efficiency provided by LOUDS-Sparse.
We maintain a size ratio R between LOUDS-Sparse and LOUDS-
Dense to determine the dividing point among levels. Suppose the
trie has H levels. Let LOUDS-Dense-Size(l ), 0 ≤ l ≤ H denote the
size of LOUDS-Dense-encoded levels up to l (non-inclusive). Let
LOUDS-Sparse-Size(l ), represent the size of LOUDS-Sparse encoded
levels from l (inclusive) toH . The cutoff level is defined as the largest
l such that LOUDS-Dense-Size(l ) × R ≤ LOUDS-Sparse-Size(l ). Re-
ducing R leads to more levels, favoring performance over space. We
use R=64 as the default.

LOUDS-DS supports three basic operations efficiently:
• ExactKeySearch(key): Return the value of key if key exists (or
NULL otherwise).
• LowerBound(key): Return an iterator pointing to the key-value
pair (k,v ) where k is the smallest in lexicographical order satis-
fying k ≥ key.
• MoveToNext(iter): Move the iterator to the next key-value.

A point query on LOUDS-DS works by first searching the
LOUDS-Dense levels. If the search does not terminate, it continues
into the LOUDS-Sparse levels. The high-level searching steps at
each level are similar regardless of the encoding mechanism: First,
search the current node’s range in the label sequence for the tar-
get key byte. If the key byte does not exist, terminate and return
NULL. Otherwise, check the corresponding bit in the HasChild bit-
sequence. If the bit is 1 (i.e., the branch points to a child node),
compute the child node’s starting position in the label sequence
and continue to the next level. Otherwise, return the corresponding
value in the value sequence. We precompute two aggregate values
based on the LOUDS-Dense levels: the node count and the number
of HasChild bits set. Using these two values, LOUDS-Sparse can
operate as if the entire trie is encoded with LOUDS-Sparse.

Range queries use a high-level algorithm similar to the point
query implementation. When performing LowerBound, instead of
doing an exact search in the label sequence, the algorithm searches
for the smallest label ≥ the target label. When moving to the next
key, the cursor starts at the current leaf label position and moves
forward. If another valid label l is found within the node, the algo-
rithm finds the left-most leaf key in the subtree rooted at l. If the
cursor hits node boundary instead, the algorithm moves the cursor
up to the corresponding position in the parent node.

We include per-level cursors in the iterator to minimize the
relatively expensive “move-to-parent” and “move-to-child” calls,
which require rank & select operations. These cursors record a trace
from root to leaf (i.e., the per-level positions in the label sequence)
for the current key. Because of the level-order layout of LOUDS-DS,
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Figure 3: Rank and select structures in FST

each level-cursor only moves sequentially without skipping items.
With this property, range queries in LOUDS-DS are implemented
efficiently. Each level-cursor is initialized once through a “move-
to-child” call from its upper-level cursor. After that, range query
operations at this level only involve cursor movement, which is
cache-friendly and fast. Section 4 shows that range queries in FST
are even faster than pointer-based tries.

LOUDS-DS can be built using one scan over a key-value list.

2.5 Space and Performance Analysis
Given an n-node trie, LOUDS-Sparse uses 8n bits for S-Labels, n bits
for S-HasChild and n bits for S-LOUDS, a total of 10n bits (plus auxil-
iary bits for rank & select). Referring to Section 2.1, the information-
theoretic lower bound (Z ) is approximately 9.44n bits. Although the
space taken by LOUDS-Sparse is close to the information-theoretic
bound, technically, LOUDS-Sparse can only be categorized as com-
pact rather than succinct in a finer classification scheme because
LOUDS-Sparse takes O (Z ) space (despite the small multiplier) in-
stead of Z + o(Z ). In practice, however, FST is smaller than other
succinct tries (see Section 4.1.2).

LOUDS-Dense’s size is restricted by the ratio R to ensure that it
does not affect the overall space-efficiency of LOUDS-DS. Notably,
LOUDS-Dense does not always consume more space than LOUDS-
Sparse: if a node’s fanout is larger than 51, it takes fewer bits to
represent the node using the former instead of the latter. Since such
nodes are common in a trie’s upper levels, adding LOUDS-Dense
on top of LOUDS-Sparse often improves space-efficiency.

For point queries, searching at each LOUDS-Dense level requires
two array lookups plus a rank operation on bit vector D-HasChild;
searching at each LOUDS-Sparse level involves a label searching
sub-routine plus a rank and a select operation on S-HasChild and S-
LOUDS, respectively. The dominating operations are, therefore, rank
and select on all bit vectors and label searching at LOUDS-Sparse
levels. We next describe optimizations for these critical operations.

2.6 Optimizations
We focus on the three most critical operations: rank, select, and
label search. Because all the bit-sequences in LOUDS-DS require
either rank or select support, but not both, we gain the flexibility
to optimize rank and select structures separately. We present a
performance breakdown to show their effects in Section 4.1.3.

Rank. Figure 3 (left half) shows our lightweight rank structure.
Instead of three levels of LUTs (look-up tables), as in Poppy [58],
we include only a single level. The bit-vector is divided into fixed-
length basic blocks of size B (bits). Each basic block owns a 32-bit
entry in the rank LUT that stores the precomputed rank of the start
position of the block. For example, in Figure 3, the third entry in

the rank LUT is 7, which is the total number of 1’s in the first two
blocks. Given a bit position i , rank1 (i ) = LUT[⌊i/B⌋] + (popcount
from bit (⌊i/B⌋ × B) to bit i), where popcount is a built-in CPU
instruction. For example, to compute rank1 (12) in Figure 3, we first
look up slot ⌊12/5⌋ = 2 in the rank LUT and get 7. We count the 1’s
in the remaining 3 bits (bit ⌊12/5⌋ × 5 = 10 to bit i = 12) using the
popcount instruction and obtain 2. The final result is, thus, 7+2 = 9.

We use different block sizes for LOUDS-Dense and LOUDS-
Sparse. In LOUDS-Dense, we optimize for performance by setting
B=64 so that at most one popcount is invoked in each rank query.
Although such dense sampling incurs a 50% overhead for the bit-
vector, it has little effect on overall space because the majority of the
trie is encoded using LOUDS-Sparse, where we set B=512 so that
a block fits in one cacheline. A 512-bit block requires only 6.25%
additional space for the LUT while retaining high performance [58].

Select. The right half of Figure 3 shows our lightweight select
structure. The select structure is a simple LUT (32 bits per item)
that stores the precomputed answers for the sampled queries. For
example, in Figure 3, because the sampling rate S = 3, the third
entry in the LUT stores the position of the 3 × 2 = 6th (zero-based)
set bit, which is 8. Given a bit position i , select1 (i ) = LUT[i/S] +
(selecting the (i − i/S × S )th set bit starting from position LUT[i/S]
+ 1) + 1. For example, to compute select1 (8), we first look up slot
8/3 = 2 in the LUT and get 8. We then select the (8− 8/3× 3) = 2nd
set bit starting from position LUT [8/3]+1 = 9) by binary searching
in the third basic block using popcount. This select equals 1. The
final result for select1 (8) is 8 + 1 + 1 = 10.

Sampling works well in our case because the only bit vector in
LOUDS-DS that requires select support is S-LOUDS, which is quite
dense (usually 17-34% of the bits are set) and has a relatively even
distribution of the set bits (at least one set bit in every 256 bits).
This means that the complexity of selecting the remaining bits after
consulting the sampling answers is constant (needs to examine at
most 256S bits) and is fast. The default sampling rate S is set to
64, which provides good query performance yet incurs only 9-17%
space overhead locally (1-2% overall).

Label Search. Most succinct trie implementations search linearly
for a label in a sequence. This is suboptimal, especially when the
node fanout is large. Although a binary search improves perfor-
mance, the fastest way is to use vector instructions. We use 128-bit
SIMD instructions to perform the label search in LOUDS-Sparse.
We first determine the node size by counting the consecutive 0’s af-
ter the node’s start position in the S-LOUDS bit-sequence. We then
divide the labels within the node boundaries into 128-bit chunks,
each containing 16 labels, and perform group equality checks. This
search requires at most 16 SIMD equality checks using the 128 bit
SIMD instructions. Our experiments in Section 4 show that more
than 90% of the trie nodes have sizes less than eight, which means
that the label search requires only a single SIMD equality check.

Prefetching. In our FST implementation, prefetching is most
beneficial when invoked before switching to different bit/byte-
sequences in LOUDS-DS. Because the sequences in LOUDS-DS
have position correspondence, when the search position in one
sequence is determined, relevant addresses in other sequences can
be computed and prefetched for later use.
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3 SUCCINCT RANGE FILTERS
In building SuRF using FST, our goal was to balance a low false
positive rate with the memory required by the filter. The key idea is
to use a truncated trie; that is, to remove lower levels of the trie and
replace them with suffix bits extracted from the key (either the key
itself or a hash of the key). We introduce four variations of SuRF.
We describe their properties and how they guarantee one-sided
errors. The current SuRF design is static, requiring a full rebuild to
insert new keys. We discuss ways to handle updates in Appendix A.

3.1 Basic SuRF
FST is a trie-based index structure that stores complete keys. As a
filter, FST is 100% accurate; the downside, however, is that the full
structure can be big. In many applications, filters must fit inmemory
to protect access to a data structure stored on slower storage. These
applications cannot afford the space for complete keys, and thus
must trade accuracy for space.

The basic version of SuRF (SuRF-Base) stores the minimum-
length key prefixes such that it can uniquely identify each key.
Specifically, SuRF-Base only stores an additional byte for each key
beyond the shared prefixes. Figure 4 shows an example. Instead
of storing the full keys (‘SIGAI’, ‘SIGMOD’, ‘SIGOPS’), SuRF-Base
truncates the full trie by including only the shared prefix (‘SIG’)
and one more byte for each key (‘C’, ‘M’, ‘O’).

Pruning the trie in this way affects both filter space and accuracy.
Unlike Bloom filters where the keys are hashed, the trie shape of
SuRF-Base depends on the distribution of the stored keys. Hence,
there is no theoretical upper-bound of the size of SuRF-Base. Empir-
ically, however, SuRF-Base uses only 10 bits per key (BPK) for 64-bit
random integers and 14 BPK for emails, as shown in Section 4.2.
The intuition is that the trie built by SuRF-Base usually has an
average fanout F > 2. When F = 2 (e.g., a full binary trie), there are
twice as many nodes than keys. Because FST (LOUDS-Sparse to be
precise) uses 10 bits to encode a trie node, the size of SuRF-Base is
less than 20 BPK for F > 2.

Filter accuracy is measured by the false positive rate (FPR), de-
fined as FP

FP+TN , where FP is the number of false positives and
TN is the number of true negatives. A false positive in SuRF-Base
occurs when the prefix of the non-existent query key coincides
with a stored key prefix. For example, in Figure 4, querying key
‘SIGMETRICS’ will cause a false positive in SuRF-Base. FPR in SuRF-
Base depends on the distributions of the stored and queried keys.
Ideally, if the two distributions are independent, SuRF-Base’s FPR

is bounded by N · 256−Hmin , where N is the number of stored keys
and Hmin is the minimum leaf height. In practice, however, query
keys are almost always correlated to the stored keys. For example,
if a SuRF-Base stores email addresses, query keys are likely of the
same type. Our results in Section 4.2 show that SuRF-Base incurs a
4% FPR for integer keys and a 25% FPR for email keys. To improve
FPR, we include three forms of key suffixes described below to
allow SuRF to better distinguish between the stored key prefixes.

3.2 SuRF with Hashed Key Suffixes
As shown in Figure 4, SuRF with hashed key suffixes (SuRF-Hash)
adds a few hash bits per key to SuRF-Base to reduce its FPR. Let H
be the hash function. For each key K , SuRF-Hash stores the n (n
is fixed) least-significant bits of H (K ) in FST’s value array (which
is empty in SuRF-Base). When a key (K ′) lookup reaches a leaf
node, SuRF-Hash extracts the n least-significant bits of H (K ′) and
performs an equality check against the stored hash bits associated
with the leaf node. Using n hash bits per key guarantees that the
point query FPR of SuRF-Hash is less than 2−n (the partial hash
collision probability). Even if the point query FPR of SuRF-Base
is 100%, just 7 hash bits per key in SuRF-Hash provide a 1

27 ≃ 1%
point query FPR. Experiments in Section 4.2.1 show that SuRF-Hash
requires only 2–4 hash bits to reach 1% FPR.

The extra bits in SuRF-Hash do not help range queries because
they do not provide ordering information on keys.

3.3 SuRF with Real Key Suffixes
Instead of hash bits, SuRF with real key suffixes (SuRF-Real) stores
the n key bits immediately following the stored prefix of a key. Fig-
ure 4 shows an example when n = 8. SuRF-Real includes the next
character for each key (‘I’, ‘O’, ‘P’) to improve the distinguisha-
bility of the keys: for example, querying ‘SIGMETRICS’ no longer
causes a false positive. Unlike in SuRF-Hash, both point and range
queries benefit from the real suffix bits to reduce false positives.
For point queries, the real suffix bits are used the same way as the
hashed suffix bits. For range queries (e.g., move to the next key
> K), when reaching a leaf node, SuRF-Real compares the stored
suffix bits s to key bits ks of the query key at the corresponding
position. If ks ≤ s , the iterator points to the current key; otherwise,
it advances to the next key in the trie.

Although SuRF-Real improves FPR for both point and range
queries, the trade-off is that using real keys for suffix bits cannot
provide as good FPR as using hashed bits because the distribution
correlation between the stored keys and the query keys weakens
the distinguishability of the real suffix bits.

3.4 SuRF with Mixed Key Suffixes
SuRF with mixed key suffixes (SuRF-Mixed) includes a combination
of hashed and real key suffix bits. The suffix bits for the same key
are stored consecutively so that both suffixes can be fetched by
a single memory reference. The lengths for both suffix types are
configurable. SuRF-Mixed provides the full tuning spectrum (SuRF-
Hash and SuRF-Real are the two extremes) for mixed point and
range query workloads.
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3.5 Operations
We summarize how SuRF’s basic operations are implemented using
FST. The key is to guarantee one-sided error (no false negatives).

build(keyList): Construct the filter given a list of keys.

result = lookup(k): Perform a point query on k. Returns true if k
may exist (could be false positive); false guarantees non-existence.
This operation first searches for k in the FST. If the search termi-
nates without reaching a leaf, return false. If the search reaches
a leaf, return true in SuRF-Base. In other SuRF variants, fetch the
stored key suffix ks of the leaf node and perform an equality check
against the suffix bits extracted from k according to the suffix type
as described in Sections 3.2 to 3.4.

iter, fp_flag = moveToNext(k): Return an iterator pointing to the
smallest key that is ≥ k . The iterator supports retrieving the next
and previous keys in the filter. This operation performs a Lower-
Bound search on the FST to reach a leaf node. If an approximation
occurs in the search (i.e., a key-byte at certain level does not ex-
ist in the trie and it has to move to the next valid label), then the
function sets the fp_flag to false and returns the current iterator.
Otherwise, the prefix of k matches that of a stored key (k ′) in the
trie. SuRF-Base and SuRF-Hash do not have auxiliary suffix bits
that can determine the order between k and k ′; they have to set the
fp_flag to true and return the iterator pointing to k ′. SuRF-Real and
SuRF-Mixed include the real suffix bits k ′r for k ′ to further compare
to the corresponding real suffix bits kr for k . If k ′r >kr , fp_flag =
false and return the current iterator; If k ′r =kr , fp_flag = true and
return the current iterator; If k ′r <kr , fp_flag = false and return the
advanced iterator (iter++).

count, low_fp_flag, high_fp_flag = count(lowKey, highKey): Return
the number of keys contained in [lowKey, highKey]. The low_fp_flag
and the high_fp_flag indicate the possibility of over-counting each
of the boundary keys (when the prefix of a boundary key matches
a stored key, SuRF cannot decide whether the boundary key should
be included in the count). This operation performs a moveToNext
on lowKey, setting low_fp_flag if necessary. It then advances the
iterator and increments the count until the key k ′ pointed to by
the iterator is greater than or equal to highKey. If k ′ is a prefix of
highKey, set the high_fp_flag. Finally, return the count.

4 FST & SURF MICROBENCHMARKS
In this section, we first evaluate SuRF and its underlying FST data
structure using in-memory microbenchmarks to provide a com-
prehensive understanding of the filter’s strengths and weaknesses.
Section 6 creates an example application scenario and evaluates
SuRF in RocksDB with end-to-end system measurements.

The Yahoo! Cloud Serving Benchmark (YCSB) [21] is a workload
generation tool that models large-scale cloud services. We use its de-
fault workloads C and E to generate point and range queries.We test
two representative key types: 64-bit random integers generated by
YCSB and email addresses (host reversed, e.g., “com.domain@foo”)
drawn from a real-world dataset (average length = 22 bytes, max
length = 129 bytes). The machine on which we run the experiments
has two Intel Xeon E5-2680v2 CPUs @ 2.80 GHz, 4×32 GB RAM.
The experiments run on a single thread. We run each experiment

three times and report the average result. We omit error bars be-
cause the variance is small.

4.1 FST Evaluation
We evaluate FST in three steps. First, we compare FST to three
state-of-the-art pointer-based index structures. We use equi-cost
curves to demonstrate FST’s relative advantage in the performance-
space trade-off. Second, we compare FST to two alternative succinct
trie implementations. We show that FST is 4–15× faster while also
using less memory. Finally, we present a performance breakdown
of our optimization techniques described in Section 2.6.

We begin each experiment by bulk-loading a sorted key list into
the index. The list contains 50M entries for the integer keys and
25M entries for the email keys. We report the average throughput
of 10M point or range queries on the index. The YCSB default range
queries are short: most queries scan 50–100 items, and the access
patterns follow a Zipf distribution. The average query latency here
refers to the reciprocal of throughput because our microbenchmark
executes queries serially in a single thread. For all index types, the
reported memory number excludes the space taken by the value
pointers.

4.1.1 FST vs. Pointer-based Indexes. We examine the following
index data structures in our testing framework:

• B+tree: This is the most common index structures used in data-
base systems. We use the fast STX B+tree [18] to compare against
FST. The node size is set to 512 bytes for best in-memory perfor-
mance. We tested only with fixed-length keys (i.e., 64-bit inte-
gers).
• ART: The Adaptive Radix Tree (ART) is a state-of-the-art index
structure designed for in-memory databases [37]. ART adaptively
chooses from four different node layouts based on branching
density to achieve better cache performance and space-efficiency.
• C-ART: We obtain a compact version of ART by constructing a
plain ART instance and converting it to a static version [57].

ART, C-ART, and FST store only unique key prefixes in this
experiment as described in Section 3.1. Figure 5 shows the compari-
son results. Each subfigure plots the locations of the four (three for
email keys) indexes in the performance-space (latency vs. memory)
map. We observe that FST is among the fastest choices in all cases
while consuming less space. To better understand this trade-off, we
define a cost function C = PrS , where P represents performance
(latency), and S represents space (memory). The exponent r indi-
cates the relative importance between P and S . r > 1 means that
the application is performance critical, and 0 < r < 1 suggests
otherwise. We define an “indifference curve” as a set of points in
the performance-space map that have the same cost. We draw the
equi-cost curves in Figure 5 using cost function C = PS (r = 1),
assuming a balanced performance-space trade-off. We observe that
FST has the lowest cost (i.e., is most efficient) in all cases. In order
for the second place (C-ART) to have the same cost as FST in the
first subfigure, for example, r needs to be 6.7 in the cost function,
indicating an extreme preference for performance.

4.1.2 FST vs. Other Succinct Tries. We compare FST against the
following alternatives:
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Figure 7: FST Performance Breakdown

• tx-trie: This is an open-source succinct trie implementation
based on LOUDS [1]. Its design is similar to LOUDS-Sparse but
without any optimizations from Section 2.6.
• PDT: The path-decomposed trie [32] is a state-of-the-art suc-
cinct trie implementation based on DFUDS (see Section 7). PDT
re-balances the trie using path-decomposition techniques and
achieves good latency and space reduction.
We evaluate the point query performance and memory for both

integer and email key workloads. All three tries store the complete
keys (i.e., including the unique suffixes). Figure 6 shows that FST is
6–15× faster than tx-trie, 4–8× faster than PDT, and is also smaller
than both. Although tx-trie shares the LOUDS-Sparse design with
FST, it is slower without the performance boost from LOUDS-Dense
and other optimizations. We also notice that the performance gap
between PDT and FST shrinks in the email workload because the
keys have a larger variance in length and PDT’s path decomposition
helps rebalance the trie.

4.1.3 Performance Breakdown. We next analyze these perfor-
mance measurements to better understand what makes FST fast.
Figure 7 shows a performance breakdown of point queries in both
integer and email key workloads. Our baseline trie is encoded using
only LOUDS-Sparse with Poppy [58] as the rank and select support.
“+LOUDS-Dense” means that the upper-levels are encoded using
LOUDS-Dense instead, and thus completes the LOUDS-DS design.
“+rank-opt”, “+select-opt”, “+SIMD-search”, and “+prefetching” cor-
respond to each of the optimizations described in Section 2.6. We
observe that FST is fast because of the LOUDS-DS design. The in-
troduction of LOUDS-Dense to the upper-levels of the trie provides
a significant performance boost at a negligible space cost. The rest
of the optimizations reduce the overall query latency by 3–12%.

4.2 SuRF Evaluation
The three most important metrics with which to evaluate SuRF
are false positive rate (FPR), performance, and space. The datasets
are 100M 64-bit random integer keys and 25M email keys. In the
experiments, we first construct the filter under test using half of the

dataset selected at random. We then execute 10M point, range or
mixed (50% point and 50% range, interleaved) queries on the filter.
The querying keys (K ) are drawn from the entire dataset according
to YCSB workload C so that roughly 50% of the queries return false.
We tested two query access patterns: uniform and Zipf distribution.
We show only the Zipf distribution results because the observations
from both patterns are similar. For 64-bit random integer keys,
the range query is [K + 237, K + 238] where 46% of the queries
return true. For email keys, the range query is [K , K (with last byte
++)] (e.g., [org.acm@sigmod, org.acm@sigmoe]) where 52% of the
queries return true. We use the Bloom filter implementation from
RocksDB2.

4.2.1 False Positive Rate. We first study SuRF’s false positive
rate (FPR). FPR is the ratio of false positives to the sum of false
positives and true negatives. Figure 8 shows the FPR comparison
between SuRF variants and the Bloom filter by varying the size of
the filters. The Bloom filter only appears in point queries. Note that
SuRF-Base consumes 14 (instead of 10) bits per key for the email
key workloads. This is because email keys share longer prefixes,
which increases the number of internal nodes in SuRF (Recall that
a SuRF node is encoded using 10 bits). SuRF-Mixed is configured to
have an equal number of hashed and real suffix bits.

For point queries, the Bloom filter has lower FPR than the same-
sized SuRF variants in most cases, although SuRF-Hash catches
up quickly as the number of bits per key increases because every
hash bit added cuts the FPR by half. Real suffix bits in SuRF-Real
are generally less effective than hash bits for point queries. For
range queries, only SuRF-Real benefits from increasing filter size
because the hash suffixes in SuRF-Hash do not provide ordering
information. The shape of the SuRF-Real curves in the email key
workloads (i.e., the latter 4 suffix bits are more effective in recogniz-
ing false positives than the earlier 4) is because of ASCII encoding
of characters. For mixed queries, increasing the number of suffix

2Because RocksDB’s Bloom filter is not designed to hold millions of items, we replaced
its 32-bit Murmur hash algorithm with a 64-bit Murmur hash; without this change,
the false positive rate is worse than the theoretical expectation.
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Figure 8: False positive rate comparison between SuRF variants and the Bloom filter (lower is better)
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Figure 9: Performance comparison between SuRF variants and the Bloom filter (higher is better)

bits in SuRF-Hash yields diminishing returns in FPR because they
do not help the range queries. SuRF-Mixed (with equal number of
hashed and real suffix bits) can improve FPR over SuRF-Real for
some suffix length configurations. In fact, SuRF-Real is one extreme
in SuRF-Mixed’s tuning spectrum. This shows that tuning the ratio
between the length of the hash suffix and that of the real suffix can
improve SuRF’s FPR in mixed point and range query workloads.

We also observe that SuRF variants have higher FPRs for the
email key workloads. This is because the email keys in the data set
are very similar (i.e., the key distribution is dense). Two email keys
often differ by the last byte, or one may be a prefix of the other. If
one of the keys is represented in the filter and the other key is not,
querying the missing key on SuRF-Base is likely to produce false
positives. The high FPR for SuRF-Base is significantly lowered by
adding suffix bits, as shown in the figures.

4.2.2 Performance. Figure 9 shows the throughput comparison.
The SuRF variants operate at a speed comparable to the Bloom filter
for the 64-bit integer key workloads, thanks to the LOUDS-DS de-
sign and other performance optimizations mentioned in Section 2.6.
For email keys, the SuRF variants are slower than the Bloom filter
because of the overhead of searching/traversing the long prefixes
in the trie. The Bloom filter’s throughput decreases as the num-
ber of bits per key gets larger because larger Bloom filters require
more hash probes. The throughput of the SuRF variants does not
suffer from increasing the number of suffix bits because as long as
the suffix length is less than 64 bits, checking with the suffix bits
only involves one memory access and one integer comparison. The
(slight) performance drop in the figures when adding the first suffix
bit (i.e., from 10 to 11 for integer keys, and from 14 to 15 for email
keys) demonstrates the overhead of the extra memory access to
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Figure 10: An overview of RocksDB architecture.

fetch the suffix bits. Range queries in SuRF are slower than point
queries because every query needs to walk down to the bottom
of the trie (no early exit). In addition, the construction speed of
SuRF is comparable to that of the Bloom filter (not shown in figure)
because they can be built in a single scan of the sorted input keys.

Some high-level takeaways from the experiments: (1) SuRF can
perform range filtering while the Bloom filter cannot; (2) If the tar-
get application only needs point query filtering with moderate FPR
requirements, the Bloom filter is usually a better choice than SuRF;
(3) For point queries, SuRF-Hash can provide similar theoretical
guarantees on FPR as the Bloom filter, while the FPR for SuRF-Real
depends on the key distribution; (4) To tune SuRF-Mixed for mixed
point and range queries, one should start from SuRF-Real because
real suffix bits benefit both query types and then gradually replace
them with hash suffixes until the FPR is optimal.

Section 6 shows the evaluation of SuRF in the context of an
end-to-end application (i.e., RocksDB), where SuRF speeds up both
point and range queries by saving I/Os. The next section describes
the way we use SuRF in RocksDB.

5 EXAMPLE APPLICATION: ROCKSDB
We integrated SuRF with RocksDB as a replacement for its Bloom
filter. Figure 10 illustrates RocksDB’s log-structured merge tree
architecture. Incoming writes go into the MemTable and are ap-
pended to a log file (omitted) for persistence. When the MemTable
is full (e.g., exceeds 4 MB), the engine sorts it and then converts it to
an SSTable that becomes part of level 0. An SSTable contains sorted
key-value pairs and is divided into fixed-length blocks matching
the smallest disk access units. To locate blocks, RocksDB stores the
“restarting point” (a string that is ≥ the last key in the current block
and < the first key in the next block) for each block as an index.

When the size of a level hits a threshold, RocksDB selects an
SSTable at this level and merges it into the next-level SSTables that
have overlapping key ranges. This process is called compaction.
Except for level 0, all SSTables at the same level have disjoint key
ranges. In other words, the keys are globally sorted for each level
≥ 1. Combined with a global table cache, this property ensures that
an entry lookup reads at most one SSTable per level for levels ≥ 1.

To facilitate searching and to reduce I/Os, RocksDB includes
two types of buffer caches: the table cache and the block cache.
The table cache contains meta-data about open SSTables while the
block cache contains recently accessed SSTable blocks. Blocks are
also cached implicitly by the OS page cache. When compression is

turned on, the OS page cache contains compressed blocks, while
the block cache always stores uncompressed blocks.

We modified RocksDB’s point (Get) and range (Seek, Next) query
implementations to use SuRF. We also implemented a new approxi-
mate Count query that returns the number of entries in a key range.
The approximate count may over-count the deletion and modifi-
cation entries, because it cannot distinguish update/delete records
from insert records. If the dataset is static, the count is accurate.
This shows that SuRF supports functionality beyond filtering.

Figure 11 shows the execution paths for Get, Seek, and Count
queries in RocksDB. Next’s core algorithm is similar to Seek. We
use colors to highlight the potential I/O reduction by using filters.
Operations in blue boxes can trigger I/O if the requesting block(s)
are not cached. Filter operations are in red boxes. If the box is
dashed, checks (by fetching the actual keys from SSTables) for
boundary keys might be necessary due to false positives.

For Get(key), SuRF is used exactly like the Bloom filter. Specif-
ically, RocksDB searches level by level. At each level, RocksDB
locates the candidate SSTable(s) and block(s) (level 0 may have mul-
tiple candidates) via the block indexes in the table cache. For each
candidate SSTable, if a filter is available, RocksDB queries the filter
first and fetches the SSTable block only if the filter result is positive.
If the filter result is negative, the candidate SSTable is skipped and
the unnecessary I/O is saved.

For Seek(lk, hk), if hk (high key) is not specified, we call it an
Open Seek. Otherwise, we call it a Closed Seek. To implement Seek(lk,
hk), RocksDB first collects the candidate SSTables from all levels
by searching for lk (low key) in the block indexes.

Absent SuRFs, RocksDB examines each candidate SSTable and
fetches the block containing the smallest key that is ≥ lk. RocksDB
then compares the candidate keys and finds the global smallest
key K ≥ lk. For an Open Seek, the query succeeds and returns
the iterators (at least one per level). For a Closed Seek, however,
RocksDB performs an extra check against the hk: if K ≤ hk , the
query succeeds; otherwise the query returns an invalid iterator.

With SuRFs, however, instead of fetching the actual blocks,
RocksDB can obtain the candidate key for each SSTable by per-
forming a moveToNext(lk) query on its SuRF to avoid the one I/O
per SSTable. If the query succeeds (i.e., Open Seek or K ≤ hk),
RocksDB fetches exactly one block from the selected SSTable that
contains the global minimum K . If the query fails (i.e., K > hk), no
I/O is involved. Because SuRF’s moveToNext query returns only a
key prefix Kp , three additional checks are required to guarantee
correctness. First, if the moveToNext query sets the false positive
flag, RocksDB must fetch the complete key K from the SSTable
block to determine whether K ≥ lk . If not set, RocksDB fetches the
next key after K . Second, if Kp is a prefix of hk, the complete key
K is also needed to verify K ≤ hk . If not, the current SSTable is
skipped. Third, multiple key prefixes could tie for the smallest. In
this case, RocksDB must fetch their corresponding complete keys
from the SSTable blocks to find the globally smallest. Despite the
three potential additional checks, using SuRF in RocksDB reduces
the average I/Os per Seek(lk, hk) query, as shown in Section 6.

To illustrate how SuRFs benefit range queries, suppose a
RocksDB instance has three levels (LN , LN−1, LN−2) of SSTables
on disk. LN has an SSTable block containing keys 2000, 2011, 2020
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Figure 11: Execution paths for Get, Seek, and Count in RocksDB

with 2000 as the block index; LN−1 has an SSTable block contain-
ing keys 2012, 2014, 2029 with 2012 as the block index; and LN−2
has an SSTable block containing keys 2008, 2021, 2023 with 2008
as the block index. Consider the range query [2013, 2019]. Using
only block indexes, RocksDB has to read all three blocks from disk
to verify whether there are keys between 2013 and 2019. Using
SuRFs eliminates the blocks in LN and LN−2 because the filters for
those SSTables will return false to query [2013, 2019] with high
probability. The number of I/Os is likely to drop from three to one.

Next(hk) is similar to Seek(lk, hk), but the iterator at each level
is already initialized. RocksDB must only increment the iterator
pointing to the current key, and then repeat the “find the global
smallest” algorithm as in Seek.

For Count(lk, hk), RocksDB first performs a Seek on lk to initialize
the iterators and then counts the number of items between lk and
hk at each level. Without SuRF, the DBMS computes the count by
scanning the blocks in SSTable(s) until the key exceeds the upper
bound. If SuRFs are available, the counting is carried out by iterating
in the filter(s). As in Seek, similar boundary key checks are required
to avoid the off-by-one error. Instead of scanning disk blocks, Count
using SuRFs requires at most two disk I/Os (one possible I/O for
each boundary) per level. The cumulative count is then returned.

6 SYSTEM EVALUATION
Time-series databases often use RocksDB or similar LSM-tree
designs for the storage engine. Examples are InfluxDB [12],
QuasarDB[8], LittleTable [48] and Cassandra-based systems [7, 36].
We thus create a synthetic RocksDB benchmark to model a time-
series dataset generated from distributed sensors and use this for
end-to-end performance measurements. We simulated 2K sensors
to record events. The key for each event is a 128-bit value com-
prised of a 64-bit timestamp followed by a 64-bit sensor ID. The
associated value in the record is 1 KB long. The occurrence of each
event detected by each sensor follows a Poisson distribution with an
expected frequency of one every 0.2 seconds. Each sensor operates
for 10K seconds and records ∼50K events. The starting timestamp

for each sensor is randomly generated within the first 0.2 seconds.
The total size of the raw records is approximately 100 GB.

Our testing framework supports the following database queries:
• Point Query: Given a timestamp and a sensor ID, return the
record if there is an event.
• Open-Seek Query: Given a starting timestamp, return an itera-
tor pointing to the earliest event after that time.
• Closed-Seek Query: Given a time range, determine whether
any events happened during that time period. If yes, return an
iterator pointing to the earliest event in the range.
Our test machine has an Intel Core i7-6770HQ CPU, 32 GB RAM,

and an Intel 540s 480 GB SSD. We use Snappy (RocksDB’s default)
for data compression. The resulting RocksDB instance has four lev-
els (including Level 0) and uses 52 GB of disk space. We configured3
RocksDB according Facebook’s recommendations [25, 26].

We create four instances of RocksDB with different filter options:
(1) no filter, (2) Bloom filter, (3) SuRF-Hash, and (4) SuRF-Real. We
configure each filter to use an equal amount of memory. Bloom
filters use 14 bits per key. The equivalent-sized SuRF-Hash and SuRF-
Real include a 4-bit suffix per key. We first warm the cache with 1M
uniformly-distributed point queries to existing keys so that every
SSTable is touched ∼ 1000 times and the block indexes and filters
are cached. After the warm-up, both RocksDB’s block cache and
the OS page cache are full. We then execute 50K application queries,
recording the end-to-end throughput and I/O counts. We compute
the DBMS’s throughput by dividing query counts by execution time,
while I/O counts are read from system statistics before and after
the execution. The query keys (for range queries, the starting keys)
are randomly generated. The reported numbers are the average of
three runs. Even though RocksDB supports prefix Bloom filters, we
exclude them in our evaluation because they do not offer benefits
over Bloom filters in this scenario: (1) range queries using arbitrary
integers do not have pre-determined key prefixes, which makes it

3Block cache size = 1 GB; OS page cache ≤ 3 GB. Enabled pin_l0_filter_and_
index_blocks_in_cache and cache_index_and_filter_blocks.
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Figure 12: RocksDB point query and Open-Seek query evaluation under different filter configurations
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Figure 13: RocksDB Closed-Seek query evaluation under different filter configurations and range sizes

hard to generate such prefixes, and (2) even if key prefixes could
be determined, prefix Bloom filters always return false positives
for point lookups on absent keys sharing the same prefix with any
present key, incurring high false positive rates.

Figure 12 (left two figures) shows the result for point queries.
Because the query keys are randomly generated, almost all queries
return false. The query performance is dominated by the I/O count:
they are inversely proportional. Excluding Level 0, each point query
is expected to access three SSTables, one from each level (Level 1,
2, 3). Without filters, point queries incur approximately 1.5 I/Os
per operation according to Figure 12, which means that the entire
Level 1 and approximately half of Level 2 are likely cached. This
agrees with the typical RocksDB application setting where the last
two levels are not cached in memory [24].

Using filters in point queries reduces I/O because they prevent un-
necessary block retrieval. Using SuRF-Hash or SuRF-Real is slower
than using the Bloom filter because the 4-bit suffix does not reduce
false positives as low as the Bloom filter configuration (refer to
Section 4.2.1). SuRF-Real provides similar benefit to SuRF-Hash
because the key distribution is sparse.

The main benefit of using SuRF is speeding range queries. Fig-
ure 12 (right two figures) shows that using SuRF-Real can speed
up Open-Seek queries by 50%. SuRF-Real cannot improve further
because an Open-Seek query requires reading at least one SSTable
block as described in Section 5, and that SSTable block read is likely
to occur at the last level where the data blocks are not available in
cache. In fact, the I/O figure (rightmost) shows that using SuRF-Real
reduces the number of I/Os per operation to 1.023, which is close
to the maximum I/O reduction for Open-Seeks.

Figure 13 shows the throughput and I/O count for Closed-Seek
queries. On the x-axis, we control the percent of queries with empty

results by varying the range size. The Poisson distribution of events
from all sensors has an expected frequency of one per λ = 105 ns.
For an interval with lengthR, the probability that the range contains
no event is given by e−R/λ . Therefore, for a target percentage (P )
of Closed-Seek queries with empty results, we set range size to
λ ln( 1P ). For example, for 50%, the range size is 69310 ns.

Similar to the Open-Seek query results, the Bloom filter does not
help range queries and is equivalent to having no filter. Using SuRF-
Real, however, speeds up the query by 5× when 99% of the queries
return empty. Again, I/O count dominates performance. Without
a range filter, every query must fetch candidate SSTable blocks
from each level to determine whether there are keys in the range.
Using the SuRF variants, however, avoids many of the unnecessary
I/Os; RocksDB performs a read to the SSTable block containing that
minimum key only when the minimum key returned by the filters
at each level falls into the querying range. Using SuRF-Real is more
effective than SuRF-Hash in this case because the real suffix bits
help reduce false positives at the range boundaries.

To continue scanning after Seek, the DBMS calls Next and ad-
vances the iterator. We do not observe performance improvements
for Next when using SuRF because the relevant SSTable blocks are
already loaded in memory. Hence, SuRF mostly helps short range
queries. As the range gets larger, the filtering benefit is amortized.

The RocksDB API does not support approximate queries. We
measured the performance of approximate count queries using a
simple prototype in LevelDB, finding that the speedup from using
SuRF is similar to the speedup for Closed-Seek queries. (This result
is expected based upon the execution paths in Figure 11). We believe
it an interesting element of future work to integrate approximate
counts (which are exact for static datasets) into RocksDB or another
system more explicitly designed for approximate queries.
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As a final remark, we evaluated RocksDB in a setting where the
memory vs. storage budget is generous. The DBMS will benefit
more from SuRF under tighter constraints and/or a larger dataset.

7 RELATEDWORK
Alternatives to the FST for range filtering. The Bloom filter [19]

and its major variants [20, 27, 45] are compact data structures de-
signed for fast approximate membership tests. They are widely
used in storage systems, especially LSM trees as described in the
introduction, to reduce expensive disk I/O. Similar applications can
be found in distributed systems to reduce network I/O [2, 51, 56].
The downside for Bloom filters, however, is that they cannot handle
range queries because their hashing does not preserve key order.
In practice, people use prefix Bloom filters to help answer range-
emptiness queries. For example, RocksDB [6], LevelDB [3], and
LittleTable [48] store pre-defined key prefixes in Bloom filters so
that they can identify an empty-result query if they do not find a
matching prefix in the filters. Compared to SuRFs, this approach,
however, has worse filtering ability and less flexibility. It also re-
quires additional space to support both point and range queries.

Adaptive Range Filter (ARF) [14] was introduced as part of
Project Siberia in Hekaton [23] to guard cold data. An ARF is a
simple binary tree that covers the entire key space (e.g., for 64-bit
integer keys, the root node represents range [0, 264-1] and its chil-
dren represent [0, 263-1] and [263, 264-1]). Each leaf node indicates
whether there may be any key or absolutely no key in its range.
Using an ARF involves three steps: building a perfect trie, train-
ing with sample queries to determine which nodes to include in
an ARF, and then encoding the trained ARF into a bit sequence
in breadth-first order that is static. ARF differs from SuRF in that
it targets different applications and scalability goals. First, ARF
behaves more like a cache than a general-purpose filter. Training
an ARF requires knowledge about prior queries. An ARF instance
performs well on the particular query pattern for which it was
trained. If the query pattern changes, ARF requires a rebuild (i.e.,
decode, re-train, and encode) to remain effective. ARF works well
in the setting of Project Siberia, but its workload assumptions limit
its effectiveness as general range filter. SuRF, on the other hand,
assumes nothing about workloads. It can be used as a Bloom filter
replacement but with range filtering ability, as shown in Section 6.
In addition, ARF’s binary tree design makes it difficult to accom-
modate variable-length string keys because a split key that evenly
divides a parent node’ key space into its children nodes’ key space is
not well defined in the variable-length string key space. In contrast,
SuRF natively supports variable-length string keys with its trie de-
sign. Finally, ARF performs a linear scan over the entire level when
traversing down the tree. Linear lookup complexity prevents ARF
from scaling; the authors suggest embedding many small ARFs into
the existing B-tree index in the hot store in Hekaton, but lookups
within individual ARFs still require linear scans. SuRF avoids linear
scans by navigating its internal tree structure with rank & select
operations. We compare ARF and SuRF in Appendix B.

LSM-trees. Many modern key-value stores adopt the log-
structured merge tree (LSM-tree) design [44] for its high write
throughput and low space amplification. Such systems in-
clude LevelDB [3], RocksDB [6], Cassandra [36, 52], HBase [4],

WiredTiger [54] and cLSM [29] from Yahoo Labs. Monkey [22]
explores the LSM-tree design space and provides a tuning model
for LSM-trees to achieve the Pareto optimum between update and
lookup speeds given a certain main memory budget. The RocksDB
team published a series of optimizations (including the prefix Bloom
filter) to reduce the space amplification while retaining acceptable
performance [25]. These optimizations fall under the RUM Con-
jecture [16]: for read, update, and memory, one can only optimize
two at the cost of the third. The design of FST also falls under the
RUM Conjecture because it trades update efficiency for fast read
and small space. LSM-trie [55] improves read and write throughput
over LevelDB for small key-value pairs, but it does not support
range queries.

Why we chose LOUDS vs. alternatives. Succinct tree representa-
tions typically use LOUDS, as FST does, or “balanced parentheses”
(BP) sequences [40]. The BP representations support more tree op-
erations in constant time [28, 38, 41, 42, 49], but are slower for the
simple “parent-child” navigations that are needed for FST [15].

Many state-of-the-art succinct tries [17, 32, 47] are based on a
third type of succinct tree representation that combines LOUDS
and BP, called the depth-first unary degree sequence (DFUDS) [17].
It uses the same unary encoding as in LOUDS, but traverses the
tree in depth-first order as in BP. DFUDS offers a middle ground
between fast operations and additional functions, and is popular for
building general succinct tries. Grossi and Ottaviano [32] provided
a state-of-the-art succinct trie implementation based on DFUDS,
which we compare against in Section 4.1.2.

Other systems applications of succinct data structures. Suc-
cinct [13] and follow-up work BlowFish [35] are among the few
attempts in systems research to use succinct data structures ex-
tensively in a general distributed data store. They store data sets
using compressed suffix arrays [33] and achieve significant space
savings. Compared to other non-compressed systems, Succinct and
BlowFish achieve better query performance mainly through keep-
ing more data resident in DRAM. FST can provide similar benefits
when used in larger-than-DRAM workloads. In addition, FST does
not slow down the system even when the entire data set fits in
DRAM.

8 CONCLUSION
This paper introduces the SuRF filter structure, which supports ap-
proximate membership tests for single keys and ranges, and count-
ing queries. SuRF is built upon a new succinct data structure, called
the Fast Succinct Trie (FST), that requires only 10 bits per node
to encode the trie. FST is engineered to have performance equiv-
alent to state-of-the-art pointer-based indexes. SuRF is memory
efficient, and its space/false positive rates can be tuned by choosing
different amounts of suffix bits to include. We have shown through
extensive microbenchmarks both FST’s advantages over the state
of the art succinct tries, and where SuRF fits in the space/time
tradeoff space. Replacing the Bloom filters with SuRFs of the same
size in RocksDB, substantially reduced I/O and improved through-
put for range queries with a modest cost on the worst-case point
query throughput. We believe, therefore, that SuRF is a promising
technique for optimizing future storage systems, and more.
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Figure 14: Point query performance of SuRF as the number of threads
increases.

ARF SuRF Improvement

Bits per Key (held constant) 14 14 -
Range Query Throughput (Mops/s) 0.16 3.3 20×
False Positive Rate (%) 25.7 2.2 12×
Build Time (s) 118 1.2 98×
Build Mem (GB) 26 0.02 1300×
Training Time (s) 117 N/A N/A
Training Throughput (Mops/s) 0.02 N/A N/A

Table 1: Experimental comparison between ARF and SuRF.

APPENDIX
A EXTENDING SURF TO SUPPORT UPDATES
The current version of SuRF, as described in this paper, targets
static use cases such as in a log-structured merge tree, as described
in Section 5. For applications that require dynamic use of range
filters, one can extend SuRF to support updates. To support insert,
SuRF can leverage the hybrid index technique [57] to include a
small dynamic trie in front of it to absorb all the writes and perform
batch merges periodically so that the cost of individual inserts to
SuRF is amortized. To support delete, SuRF can add a “tombstone”
bit-array with one bit per key to indicate whether the key has been
deleted or not. With the tombstone bit-array, the cost of a delete
in SuRF is almost the same as that of a lookup. Periodical garbage
collection is needed to keep SuRF small. Supporting updates in
SuRF is beyond the scope of this paper, and we defer the problem
to future work.

B COMPARING ARF AND SURF
This section extends our discussion on the Adaptive Range Filter
(ARF) in Section 7 by providing an experimental evaluation. We in-
tegrate the ARF implementation published by the paper authors [9]
into our test framework. We set the space limit to 7 MB for ARF

and use a 4-bit real suffix for SuRF so that both filters consume
14 bits per key. We use the YCSB workload C setting from Sec-
tion 4.2. However, we scale down the dataset by 10× because ARF
requires a large amount of memory for training. Specifically, the
dataset contains 10M 64-bit integer keys (ARF can only support
fixed-length keys up to 64 bit). We randomly select 5M keys from
the dataset and insert them into the filter. The workload includes
10M Zipf-distributed range queries whose range size is 240, which
makes roughly 50% of the queries return false. For ARF, we use 20%
(i.e., 2M) of the queries for training and the rest for evaluation.

Table 1 compares the performance and resource use of ARF
and SuRF. For query processing, SuRF is 20× faster and 12× more
accurate than ARF, even though their final filter size is the same.
Moreover, ARF demands a large amount of resources for building
and training: its peak memory use is 26 GB and the building +
training time is around 4 minutes, even though the final filter size
is 7 MB. In contrast, building SuRF only uses 0.02 GB of memory
and finishes in 1.2 seconds.

C MULTI-THREADED SURF EXPERIMENTS
This section verifies that SuRFs are scalable on multi-core systems.
We use the same YCSB-C-based workloads as in Section 4.2. The
dataset includes 100M 64-bit integer keys. We construct SuRF using
half of the keys (i.e., 50M) picked at random. We then execute 100M
point queries generated by YCSB on the entire dataset, varying
the number of threads. The queries are partitioned evenly across
threads; for example, if there are 10 concurrent threads, each thread
will execute 10M queries. The experiment runs on Intel Xeon E5-
2680 v2 @ 2.80 GHz with 256 KB L2-cache, 25 MB L3-cache and
4×32 GB RAM. It has 10 physical cores and 20 hardware threads
(with hyper-threading enabled).

Figure 14 shows the aggregate throughput as the number of
threads increases. SuRF scales perfectly when using no hyper-
threading (only a bit off due to cache contention). SuRF’s through-
put keeps increasing without any performance collapse, even with
hyper-threading. This result is expected because SuRF is a read-
only data structure and is completely lock-free, experiencing little
contention with many concurrent threads. We omit a scalability
graph for range queries that shows similar results.
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