Transactional Query Identification in
Web Search

In-Ho Kang

Computing LAB,
Samsung Advanced Institute of Technology
inho97 .kang@samsung. com

Abstract. User queries on the Web can be classified into three types ac-
cording to user’s intention: informational query, navigational query and
transactional query. In this paper, a query type classification method and
Service Link information for transactional queries are proposed. Web me-
diated activity is usually implemented by hyperlinks. Hyperlinks can be
good indicators in classifying queries and retrieving good answer pages
for transactional queries. A hyperlink related to an anchor text has an
anticipated action with a linked object. Possible actions are reading, vis-
iting and downloading a linked object. We can assign a possible action
to each anchor text. These tagged anchor texts can be used as training
data for query type classification. We can collect a large-scale and dy-
namic train query set automatically. To see the accuracy of the proposing
classification method, various experiments were conducted. From exper-
iments, I could achieve 91% of possible improvement for transactional
queries with our classification method.

1 Introduction

The Web is rich with various sources of information. Therefore, the need behind
a user’s query is often not informational. Classic IR that focuses on content
information cannot satisfy various needs [3]. Fusion IR studies have repeatedly
shown that combining multiple types of evidence such as link information and
url information can improve retrieval performance [10]. However, it is not easy
to make a general purpose method that shows good performance for all kinds of
need. There are studies that try classifying users’ needs and solving each category
with a different method [5]. [2] showed that users’ queries can be classified into
three categories according to the intention of a user.

— Informational Query
— Navigational Query
— Transactional Query

Users are interested in finding as much information as possible with infor-
mational queries. For example, “What is a prime factor?’ or ‘prime factor’ is
an informational query. Its goal is finding the meaning of ‘prime factor’. Con-
trary to Informational queries, users are interested in navigating a certain site

with navigational queries. For example, “Where is the site of Johns Hopkins
Medical Institutions?’ or ‘Johns Hopkins Medical Institutions’ is a navigational
query. The goal of this query is finding the entry page of ‘Johns Hopkins Medical
Institutions’. Users are interested in finding a document that offers the service
described in a transactional query. For example, “Where can I find Beatles’
lyrics?’ or ‘beatles lyrics’ is a transactional query. Users do not desire to learn
about lyrics of Beatles’ songs, but simply a desire to view the lyrics themselves
[9].

Previous studies for query analysis employed handcrafted rules and used a
natural language query to infer the expected type of an answer [6]. These rules
were built by considering the first word of a query as well as large patterns of
words identified in a query. For example, query “Where was Babe Ruth born?’
might be characterized as requiring a reply of type LOCATION. While previous
studies focused on informational queries, nowadays we should consider not only
informational queries but also navigational queries and transactional queries for
Web search. Previous methods need large-scale training data to extract rules
and patterns for analyzing query [6]. However, there is a case in Web search
when we cannot analyze a query with extracted rules and patterns. For exam-
ple, two queries, “Where is Papua New Guinea?’ and “Where is Google?’ have
the same sentence patterns. However, ‘Google’ has special meaning on the Web.
User wants to visit ‘Google’ site on the Web. The intention of the latter query
is not informational but navigational. To make matters worse, the properties of
words are changed. For example, Korean query ‘EOLJJANG’' cannot be an-
alyzed without the usage information on the Web. ‘EOLJJANG’ was formerly
an informational query. As an informational query, a possible answer document
may contain a definition such as “FOLJJANG means a good looking person.”
Nowadays, ‘FOLJJANG’ is a transactional query. What a user wants is finding
and downloading pictures of ‘EOLJJANG’s. We may use a dictionary to find the
property of ‘EFOLJJANG’, like previous query analysis methods. However it is
not feasible to contain all new words and maintain their changes of properties.

[5] automatically classified queries into informational queries and naviga-
tional queries. They also proposed dynamic combination of content information,
link information and URL information according to a query type. In this pa-
per, I extend their classification and combining method to include transactional
queries. Each hyperlink related to an anchor text has an anticipated action with
a linked object. Possible actions include reading, visiting and downloading a
linked object. These tagged anchor texts can be used training data for a query
classification module. We can collect a large-scale and dynamic training data
automatically.

The structure of this paper is as follows. In section 2, previous classifica-
tion methods are briefly explained. In section 3, a query type classification
method for classifying queries into informational, navigational and transactional

! the Romanization of Korean word

is presented. In section 4, Service Link information is presented for transac-
tional queries. Various experiments are conducted to show the performance of
the proposing classification and combining method, in section 5. Conclusion is
followed in section 6.

2 Related Work

2.1 Query Taxonomy

[2] and [9] randomly selected queries from a commercial search engine’s query
logs. They manually classified queries and showed the percentages of each query
type. Although their hierarchies are not the same, top-level hierarchies are the
same. From their results, over 40% of queries were non-informational. They
all insisted the importance of processing transactional queries. [9] showed that
navigational queries appear to be much less prevalent than generally believed.
This implies that search engines should consider transactional queries to cover
more queries.

Table 1. Percentage of Query Type

Query Type Informational|{ Navigational| Transactional
Broder (user survey) 39% 24.5% 36%
Broder (log analysis) 48% 20% 30%
Rose (test setl) 60.9% 14.7% 24.3%
Rose (test set2) 61.3% 11.7% 27%
Rose (test set3) 61.5% 13.5% 25%

2.2 Automatic Query Type Classification

An entry page of a site usually does not have many words. It is not an explana-
tory document for some topic or concept, but a brief explanation of a site. We
can assume that site entry pages have the different usage of words. If we find
distinctive features for site entry pages, then we can classify a query type using
keywords of a query. [5] proposed a method for classifying queries into informa-
tional queries and navigational queries. They divided a document collection into
two sets whether the URL type of a document is ‘root’ type or not. The URL of
a ‘root’ type document ends with a domain name like ‘http://trec.nist.gov’. A
document collection that includes only ‘root’ type documents represents navi-
gational queries and other documents represent informational queries. If a given
query’s some measures in two collections show large difference, then we can as-
sume the type of a query. Four classifiers were used to determine the type of a
query. Four classifiers were as follows.

— Distribution of terms in a query

— Mutual Information of each term in a query
— Usage rate of query term as anchor texts
— POS information

[5] also showed the effects of each information and retrieval algorithm in Web
search according to a type of a user’s query. For navigational queries, combining
link information like PageRank and URL information like the depth of directory
improved the retrieval performance of a search engine [7]. However, for infor-
mational queries, it degraded the retrieval performance. In addition, retrieval
algorithms such as TFIDF and OKAPI also show different effect in Web search.
In this paper, I extend this classification in order to include transactional queries.
In addition, I propose useful information for transactional queries.

3 Classifying Query Types

3.1 Preparation for Classification Model

Some expression can be used to tell the type of a query. For example, ‘winamp
download’ is a transactional query and ‘the site of SONY” is a navigational query.
We can assume the types of two queries with cue expressions (e.g. ‘download’
and ‘the site of).

Query @ is defined as the sequence of words. Punctuation symbols are re-
moved from the query. For example, “What is a two electrode vacuum tube?’ is
expressed as follows.

Q = (what, is, a, two, electorde, vacuum, tube) (1)

[5] used only keywords of input queries by removing stop words. However, I
use all words with the position in a query. I assume that the sequence and the
position of word are important in classifying transactional queries. We can say
[5] is a keyword-based classifier and my method is an expression-based classifier.

3.2 Extracting Cue Expressions

To extract cue expressions, anchor text and the title of a document are used.
The definition or the explanation of a linked object can be extracted from a title
and an anchor text. For example, a ticket reservation page has a title related
to ticket reservation and a download button has an anchor text that explains
a linked object. We can classify linked objects according to possible user’s ac-
tivities with them. Possible activities include reading, visiting and downloading.
If a linked object is a binary file that is not readable, then its possible activity
is downloading. However, in some cases, there is a linked object whose activity
is ambiguous. For example, if a linked object is an html file, then assuming the
action of the hyperlink is not easy. So, we clustered hyperlinks according to the

Table 2. Hyperlink Type

Type Description Example
. URL ends with a domain name, a) . .
Site directory name, and ‘index.html’ http://cs.kaist.ac.kr/index.html
. URL ends with a directory name,) .
Subsite with an arbitrary depth http://trec.nist.gov/pubs/
Musi URL ends with a music file (mp3,| http://real.demandstremas.com/
usee wav, midi, etc.) ragmen,/mp3/corinth14.mp3
. URL ends with a picture file (jpg,) .
Picture bmp, gif, etc.) http://lylpan.com.ne.kr/pds/9.jpg
URL ends with a text file (doc,| http://www.loc.gov /legislation/
Text
ps, pdf, etc.) dmca.pdf
Avplicati URL ends with an executable file| http://download.nullsoft.com/
pprcation (exe, zip, gz, etc.) winamp/client /winamp3_0-full.exe
. URL ends with a cgi program) o
Service (asp, pl, php, cgi, etc.) http://www.google.com/search?q=IR|
Html URL ends with an html file http://www kaist.ac kr/naat/
interdept.html
File other hyperlinked documents olllltttﬁ)(:)é /ods.fnal.gov/ods/root-eval/

extension of a linked object instead of using three categories: informational, nav-
igational and transactional. If an expression occurs more frequently in a specific
link type, then we can assume that it is a cue expression for a certain link type.
For example, ‘download file’ and ‘reserve ticket’ can be key evidence that the
type of a given query is a transactional query.

To cluster titles and anchor texts, I classified hyperlinks according to a linked
object (Table 2). In the Table 2 Site and Subsite are usually for navigational
queries. For example, anchor texts ‘Fan Club’ and ‘Homepage' can be extracted
as Site and Subsite types.

Both titles and anchor texts are used to extract cue expressions for each
tagged hyperlink. The first two words and the last two words are used to ex-
tract cue expressions. There are 5 templates for extracting candidates of cue
expression.

Table 3. Template for Extracting Cue Expression

Type|Extracted Expression
ALL| Q
F1 w1

FQ w1 W2
L1 wi
Loy | wi—1 w

In the Table 3, [implies the number of words in query . For example, anchor
text ‘winamp full version download has 5 cue expression candidates (Table 4).

Table 4. Example Cue Expression

Type|Expression

ALL|\winamp full version download

Fi |winamp

Fa |winamp full

F3 |download

Fy |version downoad

The WT10g collection is used to collect the frequency of each candidate
expression [1]. The frequency of each candidate is normalized with the total
number of expression in each link type.

freq(link type) = E freq(exp; Nlink type) (2)

) freq(exp; Nlink type)
i Nlink ¢ = 3
score(exp; Nlink type) Freq(ink type) (3)

To use cue expressions, we use all input queries without removing stop words.
With a given query, we can calculate a link score for each link type by adding
score of each candidate expression. For example, the link score of a site type is
calculated as follows.

LinkScoregite = score(ALL N site) + score(Fy N site) + 4)
score(Fy N site) 4+ score(Ly N site) + score(Lg N site)

To use LinkScore, we need flags that indicate the type of a linked object
and whether an index term is from an anchor text or not.

3.3 Combining Classifiers

To detect a transactional query, I extend the method of [5]. I used TiMBL [4],
a Memory-Based Learning software package, to combine multiple classifiers. A
Memroy-Based Learning is a classification-based supervised learning approach.
It constructs a classifier for a task by storing a set of examples. Each example
associates a feature vector (the problem description) with one of a finite number
of classes (the solution). Given a new feature vector, the classifier extrapolates
its class from those of the most similar feature vectors in memory. The metric
defining similarity can be automatically adapted to the task at hand.

A vector for classification consists of following types of information.

— IN(Q): whether a given query is an informational query or a navigational
query?

— isFileName?: whether a given query is a file name or not? (e.g. ‘stand by
me.mp3’)

— wy: the first word of a query
— wy: the last word of a query

— LinkScoreVec: LinkScorege, LinkScoregsypsite, LinkScore,ysic,
LinkScorepicture, LinkScoreiegt, LinkScoreqppiication
LinkScoregervice, LinkScorenimi, LinkScore e

where ‘IN(Q)’ is the result of the Kang’s method. The result of ‘IN(Q)’ is
Informational or Navigational. wy, and w; provide a special action verb such as
‘download’ and an interrogative such as ‘where’. A query can be the name of the
file that a user wants to achieve. ‘isFileName? indicates whether a given query
is a file name or not. Simple regular expression is used to decide the value of
isFileName. LinkScoreVec is a vector that consists of all kinds of link score.

For example, with query “Do beavers live in salt water?’, ‘beavers live salt
water’ are extracted as keywords by excluding stop words. We assigned a Part-
of-Speech Tag to each word. With tagged keywords, ‘TN (Q)’ is calculated. Then
calculate LinkScores for each link type. The result vector looks like as follows.

Table 5. Example Vectors with “Do beavers live in salt water?’

Type Value

IN(Q) Informational
w1 do

wy water
isFileName No
LinkScoresite 0.00001888148

LinkScoresupsite 0.00007382660
LinkScoremusic 0.00000028322
LinkScorepicture 0.00000066085
LinkScoretest 0.00000000000
LinkScoreapplication|0.00000018881
LinkScoreservice 0.00000037763
LinkScorentmi 0.00006051515
LinkScoreyi.e 0.00003068241

Since LinkScoresypsite and LinkScorep,; are high among LinkScores, we can
assume that this query does not have special cue expressions for transactional
queries.

4 Service Link Information for Transactional Queries

In this section, useful information for a transactional query is proposed. A good
result document for a transactional query should provide good service. To pro-
vide service, the further action of a user is needed. A user wants to buy some
products, do some game, download a music file and a picture file, and so on.
For example, query ‘winamp download has the intention that a user wants to
download a ‘winamp’ program file by clicking or saving a linked file. Retrieved
Web documents should have a download button or a linked file. For a trans-
actional query, designated service is implemented by some mechanisms. These
mechanisms contain a CGI program, a linked file (except an html file), and so on.
These mechanisms usually implemented by a hyperlink. If a Web document has
useful hyperlinks, then we can assume it is a kind of a document that provides
some types of transaction. I propose a formula that accounts for the existence
of hyperlinks. We call this ‘Service Link information’.

#service links 5
link count(d) \)
avg. link count

Service Link Information(d) =
#service links + 1 + 2 X

where, ‘service links' means the union of music, picture, text, application,
service, and file links. #service links is normalized with the number of links.
link count means the number of all hyperlinks in a document and avg. link count
means the average number of all hyperlinks. In this paper, I set the value of v,
to 0.5 and v to 1.5.

link count(d) = #site links + #subsite links + #music links + (6)
#picture links + #text links + #application links +
#service links + #html links + # file links

Service Link information is normalized by the number of link count(d). Service
Link information is added to content information as follows to reorder result
documents [5].

relpew(d) = a X relya(d) + B x Service Link Information(d) (7)

5 Experiments

In this section, we conduct various experiments to see the usefulness of our
classification method. In addition, experiments to see the usefulness of Service
Link information for transactional queries are also conducted.

5.1 Test Set

Six query sets are used for experiments. For informational queries, queries of the
TREC-2000 topic relevance task (topics 451-500) and queries of the TREC-2001
topic relevance task (topics 501-550) are used. We call them QUERY;_TrarN
and QUERY;_rgpsr. For navigational queries, queries for randomly selected
100 homepages? and 145 queries of the TREC-2001 homepage finding task are
used. We call them QUERYN_71rain and QUERYN_rTEsT, respectively. For
transactional queries, 100 service queries extracted from a Lycos log file are
used for training and testing. I divided 100 queries into QU ERYr_rrarn and
QUERYr_r1gst. Table 6 shows selected examples of transactional queries. The
WT10g collection is used for making a classification model. Training queries are
used to calculate the value of constants such as o and g in the Eq. 7.

Table 6. Example of Transactional Queries

airline tickets

acdsee.zip

free native American clip art
superbowl tickets

Trident blade 3d driver
download video card driver

5.2 Distinguishing Query Types

To measure the performance of our classification model, precision and recall are
calculated with the following equations.

#correct classification
#total trials
#correct classification

(8)
(9)

Precision =

Recall =

#queries

For the value of ‘IN(Q)’, I used navigational queries as a default result [5].
Every query has at least one query type. Therefore the precision and the recall of
classification are the same. Table 7 shows the results of classifying query types.

ALL in the table means that all classifiers are combined for classification.
The last column QUERY-TEST means queries from all test sets were used.
By combining each classifier, we could increase precision and recall. From the
table, ‘IN(Q)’ is good for distinguishing informational queries and navigational
queries. ‘LinkScore’ shows good performance in detecting transactional queries.

2 available at http://www.ted.cmis.csiro.au/ TRECWeb/Qrels/

Table 7. Performance of Query Type Classification

QUERY:_1557|QUERY N 1557/ QUERYr_1ps7| QUERY-TEST
Precision|Recall |Precision| Recall |Precision| Recall |Precision|Recall

IN(Q) 58.0% |[58.0%| 97.9% |97.9% 0% 0% 69.8% [69.8%
w1 34.0% |34.0%| 97.9% |97.9% | 14.0% |14.0% | 67.8% |67.8%
w; 2.0% |2.0% | 99.3% [99.3% | 34.0% |34.0%| 66.1% |66.1%

isFileName?| 0% 0% 100% | 100% | 2.0% | 2.0% | 59.6% [59.6%
LinkScore 62.0% [62.0%| 73.8% |73.8% | 74.0% |74.0% | 71.4% |71.4%
ALL 74.0% |74.0%| 79.3% |79.3% | 78.0% |78.0% | 78.0% |78.0%

5.3 Service Link Information for Transactional Queries

For the evaluation, binary judgment was used to measure the retrieval perfor-
mance of transactional queries. The version of a program and the media type
should be matched with a description in a query. The result document that needs
further navigation to listen or download an object is not correct. Since we do
not know all relevant results, precision at 1, 5, and 10 documents are used.

Table 8 shows a retrieval performance of Google search engine® with trans-
actional queries. Top 100 documents were retrieved with Google, and then I
combined Service Link information to get new top 10 documents. Since we did
not know the similarity score of each result document, estimated score according
to a rank was used. 0.9 was calculated from a training phase with training data.

1
rel(d) = @ + 0.9 x Service Link Info(d) (10)

where, r(d) is the rank of document d. I used an estimated score instead of
a real similarity score. Thus, the improvement of retrieval performance was low.
However, we can conclude that Service Link Information is good for transactional

queries.

Table 8. Retrieval Performance of Google over Transactional Queries

Model QUERYr _7RAIN|QUERYT _TEST

P1 P5 | P10 | P1 P5 |P10
Google 0.28 1 0.250.34 | 0.38 | 0.31 |0.35
Google+Serv.| 0.38 | 0.33 | 0.39 | 0.48 | 0.34 |0.38

5.4 Retrieval Performance with Classification

Three ranking algorithms were used according to a query type. OKAPI algorithm
was used for informational queries. For navigational queries, PageRank and URL

3 http://www.google.com

information were combined with OKAPI score. For transactional queries, Ser-
vice Link Information was combined with OKAPI score [5]. Table 9 shows the
retrieval performance with the best and worst possible performance that we
could achieve. Average Precision was used for measuring the retrieval perfor-
mance of informational queries, MRR for navigational queries and precision at
10 documents for transactional queries. ‘BEST is obtained when we have all
correct answers and ‘WORST is obtained when we have all wrong answers in
classifying query types.

Table 9. Retrieval Performance with Classification

QUERY; _1EsT|QUERYN _1EsT|QUERYr_TEST
BEST 0.182 0.691 0.14
WORST] 0.154 0.278 0.04
OURS 0.170 0.648 0.13

With our proposed query type classifier, 57% of possible improvement in in-
formational queries, 90% in navigational queries and 91% in transactional queries
could be achieved.

I also tested dynamic weighting of each type of information. Based on the
probability of a query type, the proper weight of each type of information is
decided, and then combined. The following equation was used to weight each
type of information.

rel(d) = OK APIscore + A\ x URLInfo.+ Ay x PageRank + (11)
A3 X Servicelnfo.

where, the values of A1, A2, and A3 are determined based on the probability
of query type. Table 10 shows the retrieval performance of dynamic weighting.

Table 10. Retrieval Performance with Dynamic Weighting

QUERY; 157\ QUERYN_1EsT|QUERYr _TEST
BEST 0.182 0.691 0.14
WORST] 0.154 0.278 0.04
OURS 0.171 0.664 0.16

Dynamic weighting method showed a slightly better performance than the
method that uses special engines for transactional queries. When a query type
is ambiguous, proper weighting of both types showed a better performance.

6 Conclusion

We have various forms of resources in the Web and consequently purposes of
users’ queries are diverse. Classic IR that focuses on content information can-
not satisfy the various needs of a user. Search engines need different strategies to
meet the purpose of a query. In this paper, we presented a method for classifying
queries into informational, navigational and transactional queries. To classify a
query type, link type that exploits anchor texts is used. I tagged each anchor
text according to a possible action with a linked object. 9 link types were used to
tag an anchor text. These tagged anchor texts can be used as large-scale training
data. Cue expressions of each type are automatically extracted from tagged an-
chor texts. After we classified the type of a query, different types of information
for a search engine are used. To retrieve better results for a transactional query,
we add Service Link information. In addition, I proposed dynamic weighting
method that combines each type of information according to the probability of
each query category. Dynamic weighting showed a slightly better performance
than the method that uses special engines for transactional queries. When a
query type is ambiguous, proper weighting of both types showed a better per-
formance.

For a future work, the fine-grained categories have to be considered. In this
paper, we use 9 link types for three categories: informational, navigational and
transactional. However, we can pinpoint target categories with 9 clusters. Cate-
gories for explaining the need of user should be extended. In addition, research
on indexing model for our classification method is needed.

References

1. Bailey, P., Craswell, N., Hawking, D. : Engineering a Multi-Purpose test Collection
for Web Retrieval Experiments. Information Processing and Management 39(6),
pages 853-871, (2003)

2. Broder, A. : A Taxonomy of Web Search. SIGIR Forum, pages 3-10, 36(2), (2002).

3. Croft, W. B. : Combining Approaches to Information Retrieval. In: W. B. Croft
(Ed.) Advances in Information Retrieval: Recent Research from the center for intel-
ligent information retrieval, pages 1-36, Kluwer Academic Publishers, (2000)

4. Daelemans, W., Zavrel, J., Sloot, K. van der, Bosch, A. van den. : TiMBL: Tilburg
Memory Based Learner, version 3.0, reference guide (Tech. Rep.). ILK Technical
Report 00-01, Available from http://ilk.kub.nl/"ilk /papers/ ilk0001.ps.gz, (2000)

5. Kang, [.-H., Kim, G.: Query Type Classification for Web Document Retrieval. In
Proceedings of the 26th Annual International ACM SIGIR conference on Research
and Development in Information Retrieval. pages 64-71, Toronto, Canada, (2003)

6. Moldovan, D., Harabagiu, S., Pasca, M., Mihalcea, R., Girju, R., Goodrum, R., Rus,
V.: The Structure and Performance of an open-domain Question Answering System.
In: Proceedings of the Conference of the Association for Computational Linguistics.
pages 563-570, Hong Kong, (2000)

7. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Brin-
ing order to the Web. (Tech. Rep.), Stanford Digital Library Technologies Project,
(1998)

8. Ratnaparkhi, A.: A Maximum Entropy Part-of-Speech Tagger. In: E. Brill & K.
Church (Eds.), Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing, pages 133-142, Somerset, New Jersey: Association for Computa-

tional Linguistics, Available from http://www.cis.upenn.edu/ adwait/statnlp.html,
(1996)

9. Rose, Daniel E. & Levinson, Danny: Understanding User Goals in Web Search. In:
Proceedings of the 13th international conference on World Wide Web, pages 13-19,
New York, New York, (2004)

10. Westerveld, T., Kraaij, W., and Hiemstra, D. : Retrieving Web Pages using Con-

tent, Links, Urls and Anchors, In Proceedings of Text REtrieval Conference (TREC-
10), pages 663-672, (2001)

