
Using Keyword Spotting to Help Humans Correct Captioning Faster

Yashesh Gaur1, Florian Metze 1, Yajie Miao 1, and Jeffrey P. Bigham 1,2

1 Language Technologies Institute, Carnegie Mellon University
2Human Computer Interaction Institute, Carnegie Mellon University

yashesh,fmetze,ymiao,jbigham@cs.cmu.edu

Abstract
Automatic real-time captioning provides immediate and on de-
mand access to spoken content in lectures or talks, and is a cru-
cial accommodation for deaf and hard of hearing (DHH) people.
However, in the presence of specialized content, like in techni-
cal talks, automatic speech recognition (ASR) still makes mis-
takes which may render the output incomprehensible. In this
paper, we introduce a new approach, which allows audience or
crowd workers, to quickly correct errors that they spot in ASR
output. Prior approaches required the crowd worker to manu-
ally “edit” the ASR hypothesis by selecting and replacing the
text, which is not suitable for real-time scenarios. Our approach
is faster and allows the worker to simply type corrections for
misrecognized words as soon as he or she spots them. The sys-
tem then finds the most likely position for the correction in the
ASR output using keyword search (KWS) and stitches the word
into the ASR output. Our work demonstrates the potential of
computation to incorporate human input quickly enough to be
usable in real-time scenarios, and may be a better method for
providing this vital accommodation to DHH people.
Index Terms: speech recognition, human-computer interac-
tion, spoken term detection, real-time crowd sourcing.

1. Introduction
Automatic speech recognition (ASR) technology has made
great advances and it has evolved from desktop recognition in
ideal recording conditions to mobile based recognition in real
world settings. Most recently, the use of deep learning has led
to impressive improvements [1]. However, even today’s state-
of-the-art ASR can easily produce errors that alter the meaning
or obfuscate the contents of speech. In this paper, we consider
a particular use case, which is still challenging today: real-time
captioning of (technical) talks.

Real time captioning aims to generate visual text from au-
ral speech with very low latency. It is very useful for the DHH
population, as it provides access to “real-time subtitles”, when
taking a class at school or university, when attending confer-
ences, or in any educational or social function. Current options
for real time captioning are extremely limited and can be clas-
sified into 3 main varieties: (1) Communications Access Real-
Time Translation (CART), (2) non-verbatim systems and (3) au-
tomatic speech recognition.

CART is the most reliable real-time captioning service. Ex-
tensively trained stenographers type on specialized keyboards
that map key presses to phonemes, that are then expanded to
verbatim text with accuracy generally over 95%. Stenography
requires 2-3 years of training and enables the stenographer to
type at natural speaking rates that average 141 words per minute
(WPM) and can reach up to 231 WPM [2]. However, stenog-
raphers are expensive and require advanced booking, often in

blocks of at-least an hour. Consequently, they cannot be used to
caption any lecture or event at the last minute, or provide access
to unpredictable learning opportunities such as discussions after
the class. Moreover, stenographers do not have expertise based
on the technical area covered in the lecture. This can result in
distortions being introduced in the transcripts. Non-Verbatim
Systems include computer-based macro expansion services like
C-Print. C-Print captionists need less training and generally
charge much less than stenographers. However, they cannot
type fast enough to produce verbatim transcripts. Difficulty in
paraphrasing technical talks and advanced booking makes non-
verbatim systems a non-ideal choice for real-time captioning.

Automatic speech captioning has attracted significant atten-
tion from the research community [3, 4]. While services like
CART and C-Print are expensive and required prior booking,
ASR is relatively inexpensive and available on demand. How-
ever, although ASR works well in ideal conditions with suit-
ably adapted models, its performance degrades when exposed
to real-world settings. Reasons for this degradation are man-
ifold: lectures and talks are usually held in rooms/ halls with
echo, noise from the audience, music, and reverberation. Often
the recording microphone is not optimal quality and is kept far
away from the mouth. Use of a generic language model for a
talk in a specialized domain further deteriorates the condition as
it is difficult to create adapted language models for every class/
discipline [5, 6]. Technical jargon in the lectures is often miss-
ing from the ASR vocabulary and it is therefore mis-recognized
every time it appears. Not only do these words contribute to
recognition errors, they are words that carry important meaning
and occur frequently throughout the lecture.

This suggests that real-time captioning solutions are either
expensive, not available on demand, or produce unacceptable
errors. People, unlike machines, are very good at speech recog-
nition and taking help from them to aid the ASR looks promis-
ing. Crowd-sourcing was found to be a cost-effective means of
transcribing pod-casts [7], data from speech dialog systems [8],
or conversational speech [9, 10]. It is also possible to identify
likely error regions in automatic transcripts, and have the crowd
review these [11]. The resulting transcripts enhance the use-
fulness and accessibility of otherwise automatically transcribed
material [12]. Kolkhorst et al. have also specifically targeted
editing transcriptions of classroom lectures [13].

However, all of these approaches take help from people in
an offline setup, and therefore, they cannot be used in an ap-
plication like real-time captioning. People who can hear can
perform speech transcription, but most cannot type fast enough
to keep up with natural speaking rates. Lasecki et al. [14] tried
to circumvent this bottleneck by using input from a group of
non-experts, like students in a classroom, to collectively cap-
tion speech with delays of less than 5 seconds. Their systems
encourages each person to caption a certain portion of the au-

Figure 1: Speech and ASR captions are streamed to the overseer
in real-time. Corrections are entered by the overseer if mistakes
are observed. KWS quickly finds the time at which correction
word must have been spoken and then passes it to the stitcher,
which stitches the correction into the ASR captions.

dio and these segmented captions are stitched together using
multiple sequence alignment to give continuous transcripts in
real-time. However, this approach requires the combined effort
of several people to work.

In this paper, we present a new approach for combining hu-
man intelligence with machine intelligence for the purpose of
providing real-time captioning. Our approach can work with
a single human overseer, who does not directly produce work,
but rather oversees real-time ASR to quickly identify and cor-
rect its mistakes. The novelty of our approach is in the way in
which the overseer interacts with the ASR: previous work has
had humans “edit” the hypothesis of the ASR to generate cor-
rect output [15, 13]. These approaches are less suitable for a
real-time ASR as editing hypothesis may take long and variable
amounts of time. Our approach only requires the overseer to
observe the ASR output for any mis-recognitions and enter the
corresponding correct word1 as soon the mistake is observed i.e.
he or she simply types in corrections as the audio and the corre-
sponding captions play along, without “placing” or “anchoring”
them. The system, using keyword search (KWS) techniques
[16], calculates where the entered word or phrase must have
been spoken in the recent audio, and then stitches the correct
word into the ASR hypothesis, yielding the corrected captions.

2. Combining ASR and KWS

Figure 1 shows the architecture of our approach. Audio from
a speech source, say a classroom lecture, is fed to a real-time
ASR. The ASR captions and the audio are streamed to the over-
seer. The overseer observes the captions for any mistakes in
real-time and enters the corresponding correction if one is re-
quired. The correction is fed to the keyword search module,
which locates the word in the ASR lattices corresponding to re-
cently decoded speech. After the word is detected, the word
along with its time-stamp is sent to the stitcher module, which
intelligently stitches the correction into the ASR captions, to
yield the corrected caption. This caption can then be streamed
to the general audience. This section covers the 2 modules of
our system, i.e, Keyword Spotting and Stitcher in detail.

1For clarity of presentation, we will simply use the term “word” in
this work, however a correction can be, and often will be a “phrase”, i.e.
a sequence of words.

2.1. Keyword Search

Different from ASR’s speech to text approach, keyword search
(KWS), also known as keyword spotting or spoken term de-
tection (STD, [17]), determines when a given word (or search
term) was spoken, rather than providing a dense transcription.
Popular approaches implement a search through word, syllable,
or phone lattice produced by an ASR system [18]. Searching
through lattices allows us to go beyond the 1st-best hypothesis,
and consider during KWS possible alternatives that were also
being considered by the ASR, but ultimately discarded. Impor-
tantly, KWS is not constrained by the ASR’s vocabulary, and
can locate arbitrary words [19, 20].

Keyword search can be used for searching spoken terms
over huge collection of audio data [21]. In our approach, we
take help of this technique to know where the correction word
(or phrase) provided by the overseer has been spoken in the re-
cent audio. The hope is that even though the correction was not
present in the 1-best hypothesis, the information from the lattice
will allow us to determine which part of the transcription should
be modified to accomodate the correction, and how.

Performing keyword search for the correction word in the
lattices corresponding to recent audio will result in a list of
timestamps where the word could have been spoken. Each
timestamp is also associated with a confidence score. This list
is passed to the stitcher module, which decides how to stitch the
correction word into the hypothesis to correct the caption.

2.2. Stitcher

Once the KWS module gives a list of possible detections for
the correction word, the stitcher module selects one detection
out of them and replaces one or more words in the ASR hy-
pothesis with the correction word. The stitcher module looks
for a detection within a time window stretching back into his-
tory from when the correction was fired. The width of this
search window is crucial and should be modelled based on how
long it takes the overseer to enter the correction once the mis-
recognized word was displayed. If this window is too small,
we risk not detecting the correction word. If the window is too
large, the stitcher is presented with many detections (both false
alarms and genuine detections from the correction word being
recognized correctly in another part of the sentence) and might
choose the wrong one. From the search window, the stitcher
picks the detection with the highest confidence score, provided
that the correction word is not already present in the hypoth-
esis at detection’s timestamp. This can happen often because,
the correction word can be present more than once in the search
space but it is incorrectly recognized only once. To stitch the
word into the ASR hypothesis at the determined timestamp, the
stitcher considers factors like the duration of the detection and
phonetic similarity between the correction word and the word(s)
present in the hypothesis, at the timestamp of the detection.

3. Experimental setup
To see if our approach could result in better captions, we pre-
pared an interface that would allow the overseer to monitor the
captions and enter the corrections (Figure 2). The experiment
was conducted with workers on Amazon’s Mechanical Turk.
We used the TEDLIUM corpus [22], and trained an ASR system
with Kaldi’s [23] TEDLIUM recipe, using PDNN [24]. Kaldi
keyword search system [16] was used for keyword spotting.
TEDLIUM is a collection of TED talks and resembles class-
room lectures to some degree. Each talk in the test set is about

Figure 2: Interface enabling the overseer to enter corrections
as the audio and the ASR captions play. The transcription ap-
pears in the top part of the window as the audio plays along.
The overseer enters corrections in the central “ENTER” field
by entering a word (or phrase) and then pressing ”return”. A
history of entered corrections is shown on bottom.

15 minutes long on average. There are 11 talks and we assigned
one talk per Mechanical Turk worker. The resulting captions
had a word error rate of 19.2%. The experiment involved the
overseer to supervise the streaming captions while listening to
the audio, and enter corrections if mistakes were spotted. The
participants were asked to complete the supervision of a talk in
one sitting, without any breaks. They were paid according to a
standard hourly wage of $6/hour.

4. Results and Discussion
To see the efficacy of our approach, we started with a simulation
experiment. Figure 3 depicts the system’s performance by sim-
ulating corrections instead of getting them from the crowd. We
simulate “correction” words whenever the original ASR output
contains a substitution or deletion error. Insertions are thus ig-
nored. Two system parameters were varied: the percentage of
total corrections entered, and the time difference (lag) between
when the misrecognized word appeared in the transcript, and
when the correction was “entered”, so that the KWS system
could process it. A search window a little greater than this time
difference was then given to the stitcher, in order to be able to
process this correction.

It can be observed that WER does not go to zero, even
if 100% of the corrections are provided within just 1 sec-
ond of when the mis-recognized word was made available
(“lower bound”). This is because (i) insertion errors cannot be
corrected, (ii) time alignments for words (in particular, short
words) are often imprecise within a few 100s of milli-seconds,
and (iii) because KWS sometimes does not return detections for
the globally optimized parameters which we used in this work.
Longer window sizes obviously result in worse output, although
window sizes of up to two seconds seem to give good results.

Our current stitching scheme works by replacing entire
words in the ASR hypothesis, and is inherently a substitution
based solution. As a result, although our approach is very good
at reducing substitutions, it is not as effective with insertion
and deletion errors. However, insertions are not a significant
source of errors here, and are often less harmful than deletions
or substitutions. Figure 3 also shows the dependence of WER

Figure 3: System performance in terms of WER w.r.t. percentage
of corrections entered and search window size.

on search window size: larger search window sizes invite more
detections, which consequently increase the chance of an in-
correct stitching. Window sizes up to two seconds however do
not result in significant degradation, while the amount of cor-
rections entered has a linear influence on the final word error
rate; there is no saturation effect or so when many corrections
are being provided in rapid succession.

Table 1 shows the WER results for the ASR captions, the
best possible performance (i.e., assuming the user was able to
enter all the corrections) and a single human overseer from Me-
chanical Turk supervising the ASR captions.

Table 1: WER results for ASR captions, simulated lower bound
performance, and a single MTurk observer correcting the ASR
captions.

Error ASR Lower MTurk
Captions bound observer

WER 19.2 % 9.6 % 16.6 %
Substitution 12.8 % 3.1 % 10.3 %

Insertion 2.3 % 1.7 % 2.1 %
Deletion 4.1 % 4.8 % 4.2 %

The lower bound performance shows that, even when us-
ing our current primitive stitching algorithm, human correction
has the potential to cut the WER of the ASR captions to half.
Our trials with workers on Amazon’s Mechanical Turk however
showed that it is difficult for a single worker to get close to this
lower bound (see Table 1). In a typical Mechanical Turk worker
input, 3.9 % of the entered words were misspelled and 21.4%
words were not misrecognized words but words that had been
recognized correctly. The remaining 74.8% crowd input (valid
corrections) constituted about 29.5% of the overall “possible”
corrections.

We solicitated feedback from all workers, and most of them
mentioned that still they found it difficult to read, listen and type
simultaneously. On average, a crowd worker was able to enter
one word (possible correction) every 6.7 seconds. Assuming an
average speaking rate of 141 WPM, and ASR captions with a

Figure 4: Cumulative percentage of captured crowd corrections
as a function of the search window based on a average Mechan-
ical Turk worker response

WER of 19.2%, to cover all the errors, a worker would need to
enter one correction every 2.2 seconds. The workers also men-
tioned difficulty in catching up with the audio and captions once
they finished entering the correction. We are currently using this
feedback to improve the interface and the task.

Figure 4 shows a cumulative histogram for number of valid
corrections captured as a function of search window. We see
that nearly all the corrections (93.0%) can be captured by a
search window of 10 seconds. Our experiments have shown
that 10 seconds is the optimal search window for actual crowd
input. A window shorter than 10 seconds results in suboptimal
performance due to loss of correction words, while with a win-
dow greater than 10 seconds, the disadvantage of inviting more
detections by using a larger window overpowers the benefit we
get from capturing the few correction words that were entered
with a latency greater than 10 seconds.

The Kaldi TEDLIUM setup does not contain Out-Of-
Vocabulary (OOV) words, while real-world classroom lectures
almost certainly would. Still, getting technical jargon correct is
often quite important to understanding a lecture properly. KWS
techniques have been successfully used for spotting OOV words
[19, 20]. To look for an OOV word, one can either do a pho-
netic (syllabic) search, i.e., look for the phonetic sequence of
the OOV word in the lattice or, search the lattice for words that
are phonetically similar to the OOV word, also called proxy
words. These techniques have proven to be pretty effective[25]
and our approach can therefore leverage keyword spotting to
handle OOVs as well.

To establish the importance of OOV words in technical
talks, we analyzed a set of 23 lectures from a public corpus
of Stanford computer science courses [26]. Across these lec-
tures, 43% of the 10 words with the highest tf-idf score (com-
puted with lectures as documents) were OOV with respect to a
standard switchboard lexicon (which led to a reasonable overall
OOV rate of 3.4%), yet they were typically important content
words, e.g., semaphore, RSS, etc. Importantly, 60% of these
words repeat, and many repeat often (Figure 5). This makes
intuitive sense because a lecture will often introduce a concept
with a new technical jargon and then repeat that multiple times
over the course of the lecture. Our approach would be particu-
larly fruitful in this scenario because once the overseer has en-

0

1 hour

1 hour
XML
parser

HTML

URL
RSS

Figure 5: Pattern of out-of-vocabulary (OOV) word occurrences
and repetitions in a typical lecture from [26]: about 60% of
OOV tokens repeat, showing up as horizontal lines in this plot.
The 5 most repeated OOV words are labeled, and correspond to
the primary content of the lecture

tered an OOV word as a required correction, we can ask the
system to keep searching for the OOV word and automatically
correct it if it is being spotted again, potentially even before the
overseer sees it. More importantly, this can be done transpar-
ently, without re-estimating the language model and regenerat-
ing a decoder’s static search graph, which would take too long
to be useful over a single lecture. Over time this would lead to
less dependence on the overseer.

Another benefit of the proposed technique is that it can
transparently handle text normalization conventions in cases
such as “F. ZERO” (a typical recognizer output), which in a
speech lecture note should probably be written as “F0”.

5. Conclusion and Future Work
This paper presents a novel approach to captioning real-world
lectures, that combines speech-to-text and keyword search tech-
niques. We show how real-time corrections from a single hu-
man overseer can be used to reduce the word error rate of a
transcript, without the overseer having to deal with a complex
interface, or having to “edit” a transcript.

In future work, we will explore lattice-based “stitching” al-
gorithms, in order to further optimize the replacement process,
and better handle cases in which the crowd only provides part
of the correction. Parsing techniques from natural language pro-
cessing could also be integrated, in order to ensure corrections
get stitched in in the best possible way. We will check the effi-
cacy of our approach for detecting technical jargon/ OOV words
on a dataset which models classroom technical lectures more
closely. We will also work on incorporating input from multi-
ple crowd workers into the ASR. Our initial experiments with
multiple crowd workers’ input have not shown significant ben-
efits, and we believe that changes in the stitching algorithm and
task design will have to be made to effectively combine input
from multiple crowd workers. Will it for example be possi-
ble to encourage users to provide corrections for areas in which
other users have not yet provide corrections, to ensure they will
be complementary? In addition, it may be interesting to explore
presentation slides or similar materials as sources of “candidate
corrections”, and compare our stitching approach to vocabulary
expansion and langauge model adaptation.

6. Acknowledgements
This work was supported by National Science Foundation
Award #IIS-1218209.

7. References
[1] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kings-
bury, “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” Signal
Processing Magazine, IEEE, vol. 29, no. 6, pp. 82–97, Nov 2012.

[2] C. Jensema, R. McCann, and S. Ramsey, “Closed-captioned tele-
vision presentation speed and vocabulary,” American Annals of
the deaf, vol. 141, no. 4, pp. 284–292, 1996.

[3] M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, and M. Fed-
erico, “Report on the 10th iwslt evaluation campaign,” in
Proc. IWSLT, Heidelberg; Germany, 2013, http://www.eu-
bridge.eu/87 282.php.

[4] J. Glass, T. J. Hazen, S. Cyphers, I. Malioutov, D. Huynh, and
R. Barzilay, “Recent Progress in the MIT Spoken Lecture Pro-
cessing Project,” in Proc. Interspeech, 2007. [Online]. Available:
http://groups.csail.mit.edu/sls/publications/2007/Interspeech07-
glass-lecture.pdf

[5] H. Yamazaki, K. Iwano, K. Shinoda, S. Furui, and H. Yokota,
“Dynamic language model adaptation using presentation slides
for lecture speech recognition,” in In Proc. INTERSPEECH, 2007,
pp. 2349–2352.

[6] C. Munteanu, G. Penn, and R. Baecker, “Web-based language
modelling for automatic lecture transcription,” in Proc. INTER-
SPEECH, 2007.

[7] J. Ogata, M. Goto, and K. Eto, “Automatic transcription for a
web 2.0 service to search podcasts,” in INTERSPEECH 2007, 8th
Annual Conference of the International Speech Communication
Association, Antwerp, Belgium, August 27-31, 2007, 2007, pp.
2617–2620.

[8] G. Parent and M. Eskenazi, “Toward better crowdsourced tran-
scription: Transcription of a year of the let’s go bus information
system data,” in Spoken Language Technology Workshop (SLT),
2010 IEEE. IEEE, 2010, pp. 312–317.

[9] M. Marge, S. Banerjee, and A. I. Rudnicky, “Using the amazon
mechanical turk for transcription of spoken language,” in Acous-
tics Speech and Signal Processing (ICASSP), 2010 IEEE Interna-
tional Conference on. IEEE, 2010, pp. 5270–5273.

[10] S. Novotney and C. Callison-Burch, “Cheap, fast and good
enough: Automatic speech recognition with non-expert tran-
scription,” in Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association
for Computational Linguistics. Los Angeles, California: Asso-
ciation for Computational Linguistics, June 2010, pp. 207–215.
[Online]. Available: http://www.aclweb.org/anthology/N10-1024

[11] C.-Y. Lee and J. R. Glass, “A transcription task for crowdsourcing
with automatic quality control,” in INTERSPEECH’11, 2011, pp.
3041–3044.

[12] C. Munteanu, R. Baecker, and G. Penn, “Collaborative editing
for improved usefulness and usability of transcript-enhanced
webcasts,” in Proceedings of the 2008 Conference on Human
Factors in Computing Systems, CHI 2008, 2008, Florence,
Italy, April 5-10, 2008, 2008, pp. 373–382. [Online]. Available:
http://doi.acm.org/10.1145/1357054.1357117

[13] H. Kolkhorst, K. Kilgour, S. Stüker, and A. Waibel, “Evaluation
of interactive user corrections for lecture transcription,” in 2012
International Workshop on Spoken Language Translation, IWSLT
2012, Hong Kong, December 6-7, 2012, 2012, pp. 217–221.

[14] W. Lasecki, C. Miller, A. Sadilek, A. Abumoussa, D. Borrello,
R. S. Kushalnagar, and J. Bigham, “Real-time captioning by
groups of non-experts,” in Proceedings of the 25th annual ACM
symposium on User interface software and technology - UIST ’12.
ACM Press, 2012, pp. 23–34.

[15] M. Wald, “Crowdsourcing correction of speech recognition cap-
tioning errors,” 2011.

[16] J. Trmal, G. Chen, D. Povey, S. Khudanpur, P. Ghahre-
mani, X. Zhang, V. Manohar, C. Liu, A. Jansen, D. Klakow,
D. Yarowsky, and F. Metze, “A keyword search system using open
source software,” in Proc. IEEE Workshop on Spoken Language
Technology. South Lake Tahoe, NV; USA: IEEE, Dec. 2014, to
appear.

[17] J. G. Fiscus, J. Ajot, J. S. Garofolo, and G. Doddingtion, “Results
of the 2006 spoken term detection evaluation,” in Proc. SIGIR,
vol. 7, 2007, pp. 51–57.

[18] D. Can and M. Saraclar, “Lattice indexing for spoken term detec-
tion,” Audio, Speech, and Language Processing, IEEE Transac-
tions on, vol. 19, no. 8, pp. 2338–2347, Nov 2011.

[19] F. Seide, P. Yu, C. Ma, and E. Chang, “Vocabulary-independent
search in spontaneous speech,” in Acoustics, Speech, and Signal
Processing, 2004. Proceedings.(ICASSP’04). IEEE International
Conference on, vol. 1. IEEE, 2004, pp. I–253.

[20] J. Mamou, B. Ramabhadran, and O. Siohan, “Vocabulary inde-
pendent spoken term detection,” in Proceedings of the 30th an-
nual international ACM SIGIR conference on Research and de-
velopment in information retrieval. ACM, 2007, pp. 615–622.

[21] D. R. Miller, M. Kleber, C.-L. Kao, O. Kimball, T. Colthurst, S. A.
Lowe, R. M. Schwartz, and H. Gish, “Rapid and accurate spoken
term detection,” in Eighth Annual Conference of the International
Speech Communication Association, 2007.

[22] A. Rousseau, P. Deléglise, and Y. Estève, “Ted-lium: an automatic
speech recognition dedicated corpus.” in LREC, 2012, pp. 125–
129.

[23] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The kaldi speech recog-
nition toolkit,” in IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Processing So-
ciety, Dec. 2011.

[24] Y. Miao, “Kaldi+pdnn: Building dnn-based ASR systems with
kaldi and PDNN,” CoRR, vol. abs/1401.6984, 2014. [Online].
Available: http://arxiv.org/abs/1401.6984

[25] National Institute of Standards and Technology, “NIST
open keyword search 2014 evaluation (OpenKWS14),”
http://www.nist.gov/itl/iad/mig/openkws14.cfm.

[26] J. Cain, “introduction to computer
science – programming paradigms,”
http://see.stanford.edu/see/lecturelist.aspx?coll=2d712634-
2bf1-4b55-9a3a-ca9d470755ee.

