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Abstract

We presehanew appr@achto boundingthetrueerrorrateof acontiruous
valuedclassifierbasedupa PAC-Bayesbourds. The methd first con
structsa distribution over classifiersby deternining how sensitve each
paraneterin the modé is to noise. Thetrue errorrate of the stochastic
classifierfound with the sensitvity analysiscanthenbetightly bourded
usinga PAC-Bayesbouwnd. In this paperwe demamstratethe methal on
artificial neurd networks with resultsof a2 — 3 order of magritudeim-
provemen vs. the bestdeterminstic neual netbounds.

1 Introduction

In machire learnirg it is importantto know the true erra ratea classifierwill achiere on
future testcases.Estimatingthis error rate canbe suprisinglydifficult. For examge, all
known bourdsonthetrueerrorrateof artificial neual networkstendto beextremelyloose
andoftenresultin themeanimglessbourd of “alwayserr” (errorrate= 1.0).

In this paperwe donot bourd thetrueerrorrateof aneuralnetwork. Insteadwe bourd
thetrueerrorrateof a distribution over neura networks which we createby analysingone
neurd network. (Hence,thetitle.) This appoachprovesto be muchmorefruitful than
trying to bourd the true error rate of anindividual network. The bestcurren apgoaches
[1][2] oftenrequire1000, 10000, or moreexamgesbefae producinganontrivial bourd on
thetrueerrorrate.We producenortrivial bourdsonthetrueerrorrateof astochastimeual
network with lessthan 100 exanples. A stochasticneual network is a neual network
whereeachweightw; is perturtedby a gaussiamith variances? every timeit is evaluated

Our apprach usesthe PAC-Bayesbound [5]. The apprach canbe thought of asa
redvision of thework betweerthe experinenterandthetheordician: we make the expei-
menterwork hardersothatthetheoeticians true errorbourd beconesmuchtighter. This
“extrawork” onthe partof the experimenteliis significant,but tractable andtheresulting
bourdsaremuch tighter.

An alternatve viewpaint is thatthe classificatiorprablemis finding a hypothesiswith
alow upperboundon the future errorrate. We preseha post-pr@essingohasefor neual
networks which resultsin a classifierwith a muchlower upperbourd on the future erra
rate. The post-ppcessingcanbe usedwith ary artificial neual nettrainedwith ary opti-
mizationmethod it doesnot requite the learnirg procedurebe modified re-run, or even
thatthethresholdfunction bedifferentiable. In fact, this post-pocessingtepcaneasilybe
adaptedo otherlearnirg algorithns.

David MacKay[4] hasdore significantwork to make appioximateBayesianearnirg
tractablewith a neurd network. Ourwork hereis conmplimentaryratherthancompetitive.
We exhibit atechnigiewhichwill likely give nontriial trueerrorratebourdsfor Bayesian



neurad networks regardless of apprximationor prior modelingerras. Verificationof this
statemenis work in progess.

Thepost-preessingstepfindsa “large’ distribution over classifiersywhich hasasmall
average empiricalerra rate. Giventhe averag empiricd errorrate, it is straightfoward
to applythe PAC-Bayesbourd in orderto find a bound on the average true erra rate. We
find this large distribution over classifiersby performinga simplenoisesensitvy analysis
on the learnedmodel. The noisemodelallows us to generatea distribution of classifiers
with aknown, small,average empiricalerra rate. In this papemwe referto the distribution
of neual netsthatresultsfrom this noiseanalysisasa stochasticeuralnetmocel.

Why dowe expect the PAC-Bayeshowndto beasignificantimprovemer over standad
covering number and VC bound appoaches? There exist learningprodems for which
the differerce betweenthe lower bound andthe PAC-Bayesupperbourd aretight up to
(0] (ln—m) wherem is the numbe of trainingexamges. This is superiorto the guarantees
which canbe madefor typical covering numker boundswherethe gapis, at best,knowvn
upto an(asympotic) constah TheguaanteethatPAC-Bayeshowundsaresometims quite
tight encouagesusto applythemhere.

Thenext sectionswill:

1. Describetheboundswe will compare.
2. Describeour algorithm for constructiig a distribution over neual networks.
3. Presentxpeimentalresults.

2 Theoretical setup

We will work in the standadl supenisedbatchlearningsetting. This settingstartswith the
assumptiorthatall examges aredravn from somefixed (unknown) distribution, D, over
(input, output) pairs, (z,y). Theoutput y is drawn from the space{—1,1} andtheinput
spacds arbitray. The goalof machindearningis to usea samplesetS of m pairsto find
a classifier h, which mapsthe input spaceto the outpu spaceandhasa smalltrue error,
e(h) = Prp(h(z) # y). Sincethedistribution D is unknown, the true erra rateis not
obserable. However, we canobsere theempiical erra rate,é(h) = Prs(h(z) # y) =
% Zzn:1 h(z;) # yi.

Now thatthebasicquariities of interestaredefinedwe will first presebamoden neu-
ral network bound, thenspecializéhe PAC-Bayeshourd to a stochastimeuralnetwork. A
stochastimeual network is simply a neual network whereeachweightin the neura net-
work is drawvn from somedistribution whenever it is used.We will descrile ourtechnige
for corstructingthedistribution of the stochastimeuralnetwork.

2.1 Neural Network bound

We will comparea specializatiorof the bestcurren neual network true erra ratebourd
[2] with our apprach. The neual network bound is describedn termsof the following
paraneters:

1. Amagin, 0 <y < 1.

2. An arhitrary function (unrelatedto the neual network sigmoidfunction) ¢ de-
finedby ¢(z) = 1if z < 0, ¢(x) = 0if 2 > 1, andlinearin between.

3. A;, anupper boundon the sumof the magnitue of theweightsin theith layerof
theneuréd network

4. L;, a Lipschitz constantwhich holds for the ith layer of the neual network. A
Lipschitzconstanhis a bound on the magnitwe of the derivative.

5. d, thesizeof theinput space.
With theseparanetersdefined we getthe following bourd.
Theorem 2.1 (2 layer feed-forward Neural Network true error bound)
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Proof: Givenin[2]. O
The theoem is actually only given up to a universal corstant. “32” might be the right
choice,but this is just an educatedjuess. The neurd network true error bound above is
(pertaps)the tightestknown bouwnd for geneal feed-faward neuralnetworks andsoit is
thenaturalbound to compae with.

This2 layerfeed-fawardbouwndis noteasilyappliedin atight mannebecauseve cant
calculatea priori whatour weightbourd A; shoud be. This canbe patchedup usingthe
principle of structurakisk minimization. In particular we canstatetheboundfor A; = o’
wherej is somenonnegative integer anda > 1 is aconstantlf the jth bourd holds with

prohability %]% thenall boundswill hold simultaneosly with probaility 1 — 4, since
Sl

=6

Applying this apprachto thevalues of both A, and A,, we getthefollowing theorem
Theorem 2.2 (2 layer feed-forward Neural Network true error bound)

Pr (Hh € H: e(h) > inf b(y,J, k)) <4
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Proof: Apply theunionboundto all possiblevaluesof j andk asdiscussedboe. O
In practicewe will usea = 8 = 1.1 andrepat the valueof thetightestapplicablebourd
for all 5, k.

2.2 Stochastic Neural Network bound

Ourappoachwill startwith asimplerefinemen[3] of the original PAC-Bayesbourd [5].
We will first specializethis bourd to stochastimeuralnetworks andthenshow thattheuse
of thisboundin conjurction with a post-pocessinglgorithm resultsin amuchtightertrue
errorrateupperbourd.

First,we will needto definesomeparametesof thetheorem

1. @ is adistribution over the hypaheseswvhich canbefoundin anexamge depen
dentmanrer.

2. P is adistribution over the hypothesesvhich is chosera priori—without depen
denceon theexampes.

3. eq(h) = En~ge(h) is thetrue errorrateof the stochastichypothesiswhich, in
ary evaluatian, draws a hypothesish from @, andoutpus h(z).

4. éq(h) = Ep~gé(h) is the averag empirical error rate of the samestochastic
hypothesis.

Now, we arereadyto statethetheoem.
Theorem 2.3 (PAC-Bayes Relative Entropy Bound) For all priors, P,

KL P)+In22
N (Q||)+né>§(S
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Pr (3@ : KL(éq(h)lleq(h))

where KL(Q||P) = [, q(h)In %dh is the Kullback-Leibler divergence between the dis-

tributions @ and P and KL(ég(h)||eq(h)) is the KL divergence between a coin of bias
éq(h) and acoin of biaseg(h).



Proof: Givenin[3]. O
We needto specializethis theoem for apgication to a stochastimeual network with a
choiceof the “prior”. Our “prior” will be zeroon all neual netstructuesotherthanthe
onewe train anda multidimensionalsotropicgatssianon the values of the weightsin our
neurd network. The multidimensionalgaissianwill have a meanof 0 anda variancein
eachdimersionof 2. This choiceis madefor corveniene andhapgensto work.

The optimal value of b is unknown anddepedenton the learningproblem sowe will
wish to parameteee it in anexanple depedentmanrer. We cando this usingthe same
trick asfor the original neurd netbourd. Usea sequene of boundswhereb = ca? for ¢
anda someconstats andj a nonregative numter. For the jth bourd set§y — ﬂg‘} . Now,

the union bowund will imply thatall bounds hold simultaneosly with probability at least
1-4.

Now, assuminghatour “posteria” @ is alsodefinedby a multidimensionalgaussian
with the meanandvariane in eachdimensim definedby w; ands?, we canspecializeto
thefollowing cordlary:

Corollary 2.4 (Stochastic Neural Network bound) Let & be the number of weights in a
neural net, w; bethe ith weight and s; be the variance of the ith weight. Then, we have
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Proof: Analytic calculationof theKL divergencebetweertwo multidimersionalGaus-
siansandthe union bound appliedfor eachvalueof j. O
Wewill choosex = 1.1 andc = 0.2 asreasoabledefaultvalues.

Onemore stepis necessaryn orderto apply this bound. The essentiadifficulty is
evaluting ég(h). This quantityis obsevable althowh calculating it to high precisionis
difficult. We will avoid the needfor a dired evaluation by a montecarlo evaluationand
aboundon thetail of the montecarloevaludion. Leté 5(h) = Pry g(h(z) # y) bethe
obseredrateof failure of an randan hypothesesiravn accordimg to ) andappliedto a
randan trainingexample Then,thefollowing simplebourd holds:

Theorem 2.5 (Sample Convergence Bound) For all distributions, @, for all sasmple sets S,

Pr (KLle() > 72 ) <

where n isthe number of evaluations of the stochastic hypothesis.

Proof: Thisis simply anapplication of the Chernof bound for the tail of a Binomial
wherea“head” occurswhenanerra is obseredandthebiasis ég(h). O
In orderto calculateabowund ontheexpededtrueerra rate, wewill firstbourd theexpectel
empiricd errorrateég (h) with confidenceg thenbourd theexpectel trueerrorratee g (h)
with confidance%, usingourbowndon ég(h). Sincethetotal protability of failureis only

% + % = ¢ ourbownd will holdwith prokability 1 — §. In practice we will usen = 1000
evaluations of theempiricd errorrateof the stochastimeual network.

2.3 Distribution Construction algorithm

Onecritical stepis missingin the descripion: How do we calculatethe multidimensional
gaussian,(Q? Thevariarce of the posteriorgaussiameeddo be depemnienton eachweight

in orderto achieze atight bourd sincewe wantary “meanirgless”weightsto notcontritute

significantlyto the overall samplecompleity. We usea simplegreeq algaithm to find

theappr@riatevariarcein eachdimension

1. Trainaneuralnetonthe exanples

2. For every weight, w;, searchfor the variance, s?, which redwcesthe empirical
accuray of the stochastimeuralnetwork by 5% (for exampge) while holding all
otherweightsfixed.
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Figurel: Plotof errois andtrueerra bourdsfor theneuralnetwork (NN) andthe stochas-
tic neuralnetwork (SNN). The graphexhibits oveffitting afterappraimately 6000pattern
presentatins. Notethata trueerrorbownd of “100” impliesthatat least100 2 moreexam

plesarerequiredin orderto make anonvacuow bourd. Thegraphontheright expardsthe

verticalscaleby excludng the poortrueerrorbourd.

3. Thestochastimeual network definedby {w;, s?} will generallyhave atoo-large
empiricad error. Therdore, we calculatea global multiplier A < 1 suchthatthe
stochastimeuralnetwork defined by {w;, As?} decr@segheemgrical accuray
by only 5% (absoluteerra rate).

4. Then we evaluate the empirical error rate of the resultingstochastimeual net
with 1000 sampledgrom the stochasticmeual network.

3 Experimental Results

How well canwe bound the true erra rate of a stochastimeuralnetwork? The answeris
much betterthanwe canbourd thetrueerra rateof aneual network.

Our expelimentalresultstake placeon a syntheticdatasewhich has25 input dimen
sionsand oneoutpu dimension Most of thesedimersionsare useless—simplyandan
numtersdrawvn from a N (0, 1) GaussianOneof the 25inputdimensiors is depenénton
thelabel. First, thelabely is dravn uniformly from {—1, 1}, thenthe specialdimersionis
dravnfromaN(y, 1) GaussianNotethatthislearningprodem cannotbesolvedperfectly
becaussomeexanpleswill bedravn from thetail of the gatssian.

The*“ideal” neuralnetto usein solvingthis prodem is a singlenocke percepron. We
will insteadusea 2 layerneual netwith 2 hiddennodes. This overly large neual netwill
resultin the poterial for significantoverfitting which makesthebound predction prodem
interesting It is alsosomavhatmore‘realistic” if theneura netstructue doesnotexactly
fit thelearningproddem.

All of our datasetsvill usejust 100 exanples. Constructinga norvacuos bourd for
a continwbushypothesisspaceat 100 examgesis quite challendgng asindicatedby figure
1. Corventionalbourds arehopelesslyoosewnhile the stochastimeurd network bourd is
still notastight asmightbedesired Thereareseveralnotable thingsabou this figure.

1. TheSNNupperourd is 2-3 ordersof magntudelowerthantheNN upperbound.

2. The SNN perfamsbetterthanexpected In particdar, the SNN true erra rateis
atmost3% worsethanthetrueerrorrateof the NN. Thisis suprisingconsidering
thatwe fixedthedifferercein empiricd errorratesat 5%.

3. The SNN boundhasa minimum at 120® patternpresetationswhich weakly
predcts the overfitting point of 6000for boththe SNN andthe NN.

The comparisonbetweerthe neuralnetwork bound andthe stochastimeura network
bourd is not quite “f air” dueto the form of thebourd. In particulay the stochastimeual
network bound cannever returnavaluegreaterthan“alwayserr”. Thisimpliesthatwhen
thebound is nearthevalueof “1”, it is difficult to judge how rapidy extra examgeswill
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Figure2: We plotthe“complexity” of thestochastimetwork model(numeatorof equatio
1) vs. training epah. Notethatthe compexity increasesvith more training asexpectel
andstaysbelow 100, implying nonvacuais boundson a training setof size100.

improve the stochasticneuralnetwork bound. We canjudge the samplecompleity of
the stochastidourd by plotting the valueof the numeatorin equatim 1. Figure2 plots
the compexity versts the numker of patternpresentatiosin training In this figure, we
obsenre the expected result: the “complexity” (numeratorof equationl) increaseswith
moretrainingandis significantlylessthanthe nurmberof examgdes(100).

Thestochastibourd is aradicalimprovement ontheneual network bourd but it is not
yetaperfectly tight bound. Giventhatwe do not have a perfectly tight bound oneimpor-
tantconsideation arises:doesthe minimum of the stochastidoundpredct the minimum
of thetrue errorrate (as predcted by a large holdout dataset).In particdar, canwe use
the stochastidoourd to deternine whenwe shouldceaseraining? The stochastidourd
depemls upon (1) the compleity which increaseswith training time and(2) the training
errorwhich decreasewith trainingtime. This depenlenceresultsin a minimawhich for
our prablem occursat appoximately 120® patternpresentatios. The point of minimal
true error (for the stochasticand deterninistic neuralnetworks) occus at appraximately
6000patternpresetationsindicatirg thatthe stochastidourd weaklypredcts the point of
minimum erra. Theneual network bourd hasno suchminimum

Is thechoiceof 5% increaedempiical erra optimal?In geneal, the“optimal” choice
of the extra error rate depemuls uponthe learnirg prodem. Sincethe stochasticneural
network bound(cordlary 2.4) holds for all multidimensionalgaussiandistributions, we
arefree to optimizethe choiceof distribution in anyway we desire. Figure 3 shows the
resultingbourd for different chdces of posteriorQ). The bowund hasa minimum at 0.03
extra errorindicatirg thatour initial chdce of 0.05 is somavhatlarge. Also notethatthe
comgexity alwaysdecreasewith increasingentrogy in the distribution of our stochastic
neura net. Theexistenceof a minimum in Figure3 is the“right” behaiour: theincreased
empiricd errorrateis significantin the calculationof thetrue errorbourd.
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Figure3: Plotof thestochastimeurdnet(SNN)bourd for “posteriot’ distributions chosen
accordng to the extraempiricalerrorthey introduce.

4 Conclusion

We have applieda PAC-Bayesbourd for thetrue erra rateof a stochastimeura network.
The stochastimeuralnetwork bound resultsin a radically tighter (2 — 3 ordes of mag-
nitude)bound on thetrue erra rate of a classifierwhile increasinghe emgrical andtrue
errorratesonly a smallamour.

Although, the stochasticneurl net bownd is not completelytight, it is not vacuas
with just 100 exanples and the minima of the bound weakly predcts the point where
overtrainingoccus.

The resultswith a syntheticdatasetare extremelypromising—thebowundsareorders
of magnitude better Our next stepwill beto testthemethodon afew “real world” datasets
to insurethatthe boundsremaintight. In addition thereremainmary opportunitiesfor
improving theapplicationof thebound. For examge, it is possiblethatshiftingtheweights
whenfinding a maximum acceptablearancewill resultin atighterbound. Also, We have
not taken into accountsymmaeries within the network which allow for a tighter bourd
calculation
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