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Abstract

Wepresent anew approachtoboundingthetrueerrorrateof acontinuous
valuedclassifierbasedupon PAC-Bayesbounds. Themethod first con-
structsa distribution over classifiersby determining how sensitive each
parameterin themodel is to noise. Thetrueerror rateof thestochastic
classifierfound with thesensitivity analysiscanthenbetightly bounded
usinga PAC-Bayesbound. In this paperwe demonstratethemethod on
artificial neural networks with resultsof a

�����
order of magnitudeim-

provement vs. thebestdeterministic neural netbounds.

1 Introduction

In machine learning it is important to know thetrueerror ratea classifierwill achieve on
future testcases.Estimatingthis error ratecanbe suprisinglydifficult. For example, all
known boundsonthetrueerrorrateof artificial neural networkstendto beextremely loose
andoftenresultin themeaninglessbound of “alwayserr” (errorrate= 1.0).

In thispaper, wedonot bound thetrueerrorrateof aneuralnetwork. Instead,webound
thetrueerrorrateof a distributionover neural networks whichwe createby analysingone
neural network. (Hence,the title.) This approachprovesto be muchmorefruitful than
trying to bound the trueerror rateof an individual network. Thebestcurrent approaches
[1][2] oftenrequire �����	� , �����	�	� , or moreexamplesbeforeproducinganontrivial bound on
thetrueerrorrate.Weproducenontrivial boundsonthetrueerrorrateof astochasticneural
network with lessthan �
�	� examples. A stochasticneural network is a neural network
whereeachweight �
� is perturbedby agaussianwith variance���� every timeit is evaluated.

Our approachusesthe PAC-Bayesbound [5]. The approachcanbe thought of asa
redivision of thework betweentheexperimenterandthetheoretician: wemake theexperi-
menterwork hardersothatthetheoretician’s trueerrorbound becomesmuchtighter. This
“extra work” on thepartof theexperimenteris significant,but tractable,andtheresulting
boundsaremuch tighter.

An alternative viewpoint is that theclassificationproblem is finding a hypothesiswith
a low upperboundon thefuture errorrate.We present a post-processingphasefor neural
networks which resultsin a classifierwith a muchlower upperbound on the future error
rate. Thepost-processingcanbeusedwith any artificial neural net trainedwith any opti-
mizationmethod; it doesnot require the learning procedurebe modified, re-run, or even
thatthethresholdfunctionbedifferentiable.In fact,thispost-processingstepcaneasilybe
adaptedto otherlearning algorithms.

David MacKay[4] hasdone significantwork to make approximateBayesianlearning
tractablewith a neural network. Our work hereis complimentaryratherthancompetitive.
Weexhibit a techniquewhichwill likely givenontrivial trueerrorrateboundsfor Bayesian



neural networks regardless of approximationor prior modelingerrors. Verificationof this
statementis work in progress.

Thepost-processingstepfindsa “large” distributionoverclassifiers,whichhasa small
average empiricalerror rate. Given theaverage empirical error rate,it is straightforward
to applythePAC-Bayesbound in orderto find a bound on theaverage trueerror rate.We
find this largedistribution over classifiersby performinga simplenoisesensitivy analysis
on the learnedmodel. Thenoisemodelallows us to generatea distribution of classifiers
with aknown, small,average empiricalerror rate.In this paperwe referto thedistribution
of neural netsthatresultsfrom thisnoiseanalysisasa stochasticneuralnetmodel.

Why doweexpect thePAC-Bayesboundto beasignificantimprovement overstandard
covering number and VC bound approaches?There exist learningproblems for which
the difference betweenthe lower bound andthe PAC-Bayesupperbound aretight up to����� ������ where � is thenumber of trainingexamples. This is superiorto theguarantees
which canbemadefor typical coveringnumber boundswherethegapis, at best,known
upto an(asymptotic) constant. TheguaranteethatPAC-Bayesboundsaresometimesquite
tight encouragesusto applythemhere.

Thenext sectionswill:

1. Describetheboundswewill compare.

2. Describeouralgorithm for constructing adistributionoverneural networks.

3. Presentexperimentalresults.

2 Theoretical setup
We will work in thestandard supervisedbatchlearningsetting.This settingstartswith the
assumptionthatall examplesaredrawn from somefixed(unknown) distribution, � , over
(input, output) pairs, ���! #"%$ . Theoutput " is drawn from thespace& � �� ��(' andthe input
spaceis arbitrary. Thegoalof machinelearningis to usea sampleset ) of � pairsto find
a classifier, * , which mapsthe input spaceto theoutput spaceandhasa small trueerror,+ �,*-$/.1032546�,*!����$879 "%$ . Sincethe distribution � is unknown, the true error rateis not
observable. However, we canobserve theempirical error rate, :+ �;*<$=.>032%?!�,*!���-$@79 "%$ 9A�CB ��ED A *!��� � $F79 " � .

Now thatthebasicquantitiesof interestaredefined,wewill first present amodern neu-
ral network bound,thenspecializethePAC-Bayesbound to astochasticneuralnetwork. A
stochasticneural network is simply a neural network whereeachweightin theneural net-
work is drawn from somedistributionwhenever it is used.We will describe our technique
for constructingthedistributionof thestochasticneuralnetwork.

2.1 Neural Network bound
We will comparea specializationof thebestcurrent neural network trueerror ratebound
[2] with our approach. The neural network bound is describedin termsof the following
parameters:

1. A margin, �/GIHJGK� .
2. An arbitrary function (unrelatedto the neural network sigmoidfunction) L de-

finedby LM�N�-$ 9 � if �JGO� , LM�N�-$ 9 � if �QP�� , andlinearin between.

3. RF� , anupperboundon thesumof themagnitudeof theweightsin the S th layerof
theneural network

4. T � , a Lipschitz constantwhich holds for the S th layer of the neural network. A
Lipschitzconstant is a boundon themagnitudeof thederivative.

5. U , thesizeof theinput space.
With theseparametersdefined, wegetthefollowing bound.

Theorem 2.1 (2 layer feed-forward Neural Network true error bound)0V24 WYX *8Z\[�] + �,*-$^PI_E`�abdc �eHf$hgjilk



where c ��Hm$ 9 A�lBjnpo	q rts Lvu r�w	npo
sbyx@z �|{ �~}b ���%� ��� A� T A T � R A R � z�� �� � � � � � �{ �
Proof: Givenin [2]. �

The theorem is actuallyonly given up to a universal constant. “
���

” might be the right
choice,but this is just an educatedguess. The neural network true error bound above is
(perhaps)the tightestknown bound for general feed-forwardneuralnetworks andso it is
thenaturalbound to compare with.

This2 layerfeed-forwardboundis noteasilyappliedin atightmannerbecausewecan’t
calculatea priori whatour weightbound R�� should be. This canbepatchedup usingthe
principle of structuralrisk minimization. In particular, wecanstatetheboundfor R A 9��f�
where� is somenon-negative integer and � Pj� is a constant.If the � th bound holds with
probability �} ���� � , thenall boundswill holdsimultaneously with probability � � k , since��� D A �� � 9�� ��
Applying this approachto thevalues of both R A and R � , wegetthefollowing theorem:

Theorem 2.2 (2 layer feed-forward Neural Network true error bound)0324 W X *vZ\[�] + �,*-$^PC_p`%ab �5� c �eH� ;�� ��%$ g iIk
where c ��HM ��	 ��%$ 9 A� B Lvu r�w	npo
sb x@z � { �~}b ��� � ��� A� T A T � � ���M� z�� �� � ���t ~¡ ��¢£�¤;¥ � � �{ �

Proof: Apply theunionboundto all possiblevaluesof � and � asdiscussedabove. �
In practice,we will use �¦9 � 9 �	§E� andreport thevalueof thetightestapplicablebound
for all �� 5� .
2.2 Stochastic Neural Network bound

Our approachwill startwith a simplerefinement [3] of theoriginal PAC-Bayesbound [5].
We will first specializethisbound to stochasticneuralnetworksandthenshow thattheuse
of thisboundin conjunctionwith apost-processingalgorithm resultsin amuchtightertrue
errorrateupperbound.

First,we will needto definesomeparameters of thetheorem.

1. ¨ is a distribution over thehypotheseswhich canbefoundin anexample depen-
dentmanner.

2. © is a distribution over thehypotheseswhich is chosena priori—without depen-
denceon theexamples.

3. +«ª �,*-$ 9�¬ w
­ ªV+ �,*-$ is the trueerror rateof thestochastichypothesiswhich, in
any evaluation, drawsa hypothesis* from ¨ , andoutputs *!����$ .

4. :+«ª �,*-$ 9®¬ w¯­ ª :+ �;*<$ is the average empiricalerror rateof the samestochastic
hypothesis.

Now, we arereadyto statethetheorem.

Theorem 2.3 (PAC-Bayes Relative Entropy Bound) For all priors, © ,

0324 W X ¨°] KL �t:+
ª �;*<$�±p± +¯ª �,*-$#$³² KL �,¨´±E± ©µ$ z·¶ ` � ��� � � g iOk
where KL �;¨´±E± ©µ$ 9¹¸ wVº �,*-$ ¶ `¼» nEw
s½ n¾w�s U�* is the Kullback-Leibler divergence between the dis-
tributions ¨ and © and KL �t:+�ª �,*-$�±E± +
ª �,*-$#$ is the KL divergence between a coin of bias:+¯ª �,*-$ and a coin of bias +�ª �,*-$ .



Proof: Givenin [3]. �
We needto specializethis theorem for application to a stochasticneural network with a
choiceof the “prior”. Our “prior” will bezeroon all neural net structuresotherthanthe
onewe train anda multidimensionalisotropicgaussianon thevalues of theweightsin our
neural network. The multidimensionalgaussianwill have a meanof � anda variancein
eachdimensionof c � . Thischoiceis madefor convenience andhappensto work.

Theoptimalvalue of c is unknown anddependenton thelearningproblemsowe will
wish to parameterize it in anexample dependentmanner. We cando this usingthesame
trick asfor theoriginal neural netbound. Usea sequence of boundswhere c 9À¿�� � for ¿
and � someconstants and� a nonnegative number. For the � th bound set kµÁ � �} � � � . Now,
the union bound will imply that all boundshold simultaneously with probability at least� � k .

Now, assumingthatour “posterior” ¨ is alsodefinedby a multidimensionalgaussian
with themeanandvariance in eachdimension definedby �´� and � �� , we canspecializeto
thefollowing corollary:

Corollary 2.4 (Stochastic Neural Network bound) Let � be the number of weights in a
neural net, � � be the S th weight and � � be the variance of the S th weight. Then, we have

0324ÃÂÄ X ¨°] KL �t:+
ª �;*<$�±p± +¯ª �,*-$#$Å²I_E`�a� B ��pD A	Æ ¶ `ÈÇhÉ ¡ÊhË z Ê �Ë �fÌ �Ë� Ç � É � ¡ � A�	Í z�¶ ` } � � � �Î �� � � ÏÐ iOk (1)

Proof: Analytic calculationof theKL divergencebetweentwo multidimensionalGaus-
siansandtheunion boundappliedfor eachvalueof � . �
We will choose�Ñ9 �	§E� and ¿=9 �Y§ � asreasonabledefault values.

Onemorestepis necessaryin order to apply this bound. The essentialdifficulty is
evaluting :+ ª �,*-$ . This quantity is observablealthough calculating it to high precisionis
difficult. We will avoid the needfor a direct evaluation by a montecarloevaluationand
a boundon the tail of themontecarloevaluation. Let :+�Òª �;*<$�.�032 Òª q ? �,*!���-$´79 "%$ bethe
observedrateof failureof a Ó random hypothesesdrawn according to ¨ andappliedto a
random trainingexample. Then,thefollowing simplebound holds:

Theorem 2.5 (Sample Convergence Bound) For all distributions, ¨ , for all sample sets ) ,032ª W
KL �t:+^Òª �,*-$�±E±�:+¯ª �;*<$~$^² ¶ ` ��Ó g�ilk

where Ó is the number of evaluations of the stochastic hypothesis.

Proof: This is simply anapplication of theChernoff bound for the tail of a Binomial
wherea“head”occurswhenanerror is observedandthebiasis :+ ª �;*<$ . �
In ordertocalculateaboundontheexpectedtrueerror rate,wewill first bound theexpected
empirical errorrate :+�ª �;*<$ with confidence �� thenbound theexpected trueerrorrate +-ª �,*-$
with confidence �� , usingourboundon :+�ª �;*<$ . Sincethetotal probability of failureis only�� z �� 9 k our bound will hold with probability � � k . In practice, we will use Ó 9 �����	�
evaluationsof theempirical errorrateof thestochasticneural network.

2.3 Distribution Construction algorithm
Onecritical stepis missingin thedescription: How do we calculatethemultidimensional
gaussian,̈ ? Thevarianceof theposteriorgaussianneedsto bedependentoneachweight
in ordertoachieveatightbound sincewewantany “meaningless”weightsto notcontribute
significantlyto theoverall samplecomplexity. We usea simplegreedy algorithm to find
theappropriatevariancein eachdimension.

1. Trainaneuralnetontheexamples

2. For every weight, ��� , searchfor the variance, � �� , which reducesthe empirical
accuracy of thestochasticneuralnetwork by Ô�Õ (for example) while holding all
otherweightsfixed.
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Figure1: Plotof errors andtrueerror boundsfor theneuralnetwork (NN) andthestochas-
tic neuralnetwork (SNN).Thegraphexhibits overfitting afterapproximately6000pattern
presentations. Notethata trueerrorbound of “100” impliesthatat least Ø
Ù	Ù�Ú moreexam-
plesarerequiredin orderto makeanonvacuousbound. Thegraphontheright expandsthe
verticalscaleby excluding thepoortrueerrorbound.

3. Thestochasticneural network definedby Û
Ü/Ý~Þ=ß
ÚÝ«à will generallyhaveatoo-large
empirical error. Therefore, we calculatea globalmultiplier áCâ�Ø suchthat the
stochasticneuralnetwork defined by Û�Ü Ý Þ=á-ß
ÚÝ à decreasestheempirical accuracy
by only ãåä (absoluteerror rate).

4. Then, we evaluate the empiricalerror rateof the resultingstochasticneural net
with Ø�Ù�Ù	Ù samplesfrom thestochasticneural network.

3 Experimental Results
How well canwe bound the trueerror rateof a stochasticneuralnetwork? Theansweris
much betterthanwecanbound thetrueerror rateof a neural network.

Our experimentalresultstake placeon a syntheticdatasetwhich has25 input dimen-
sionsandoneoutput dimension. Most of thesedimensionsareuseless—simplyrandom
numbersdrawn from a æ�çNÙYÞ�Ø
è Gaussian.Oneof the25 inputdimensions is dependenton
thelabel.First, thelabel é is drawn uniformly from Û�ê6Ø	Þ�Ø à , thenthespecialdimensionis
drawnfroma æ�çNé-Þ�Ø
è Gaussian.Notethatthislearningproblemcannotbesolvedperfectly
becausesomeexampleswill bedrawn from thetail of thegaussian.

The“ideal” neuralnet to usein solvingthis problem is a singlenode perceptron. We
will insteadusea 2 layerneural netwith 2 hiddennodes.This overly largeneural netwill
resultin thepotential for significantoverfitting whichmakestheboundprediction problem
interesting.It is alsosomewhatmore“realistic” if theneural netstructure doesnotexactly
fit thelearningproblem.

All of our datasetswill usejust Ø�Ù�Ù examples. Constructinga nonvacuous bound for
a continuoushypothesisspaceat Ø�Ù�Ù examples is quitechallenging asindicatedby figure
1. Conventionalboundsarehopelesslyloosewhile thestochasticneural network bound is
still notastight asmightbedesired. Thereareseveralnotable thingsabout this figure.

1. TheSNNupperbound is 2-3 ordersof magnitudelowerthantheNN upperbound.

2. TheSNN performsbetterthanexpected. In particular, theSNN trueerror rateis
atmost ëåä worsethanthetrueerrorrateof theNN. This is suprisingconsidering
thatwe fixedthedifferencein empirical errorratesat ã�ä .

3. The SNN boundhasa minimum at 12000 patternpresentationswhich weakly
predicts theoverfittingpointof 6000for boththeSNN andtheNN.

Thecomparisonbetweentheneuralnetwork bound andthestochasticneural network
bound is not quite“f air” dueto theform of thebound. In particular, thestochasticneural
network bound cannever returna valuegreaterthan“alwayserr”. This impliesthatwhen
thebound is nearthevalueof “ Ø ”, it is difficult to judge how rapidly extra exampleswill
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Figure2: Weplot the“complexity” of thestochasticnetwork model(numeratorof equation
1) vs. trainingepoch. Note that thecomplexity increaseswith more trainingasexpected
andstaysbelow �
�	� , implying nonvacuousboundsona training setof size ����� .
improve the stochasticneuralnetwork bound. We can judge the samplecomplexity of
thestochasticbound by plotting thevalueof thenumerator in equation 1. Figure2 plots
the complexity versus the number of patternpresentations in training. In this figure, we
observe the expected result: the “complexity” (numeratorof equation1) increaseswith
moretrainingandis significantlylessthanthenumberof examples(100).

Thestochasticbound is aradicalimprovement ontheneural networkbound but it is not
yet a perfectly tight bound. Giventhatwe do not have a perfectly tight bound, oneimpor-
tantconsiderationarises:doestheminimum of thestochasticboundpredict theminimum
of the true error rate(aspredicted by a large holdout dataset).In particular, canwe use
the stochasticbound to determine whenwe shouldceasetraining? Thestochasticbound
depends upon(1) the complexity which increaseswith training time and(2) the training
errorwhich decreaseswith trainingtime. This dependenceresultsin a minimawhich for
our problem occursat approximately12000 patternpresentations. The point of minimal
true error (for the stochasticanddeterministic neuralnetworks) occurs at approximately
6000patternpresentationsindicating thatthestochasticbound weaklypredicts thepointof
minimum error. Theneural network bound hasnosuchminimum.

Is thechoiceof 5%increasedempirical error optimal?In general, the“optimal” choice
of the extra error rate depends upon the learning problem. Sincethe stochasticneural
network bound(corollary 2.4) holds for all multidimensionalgaussiandistributions,we
arefree to optimizethe choiceof distribution in anyway we desire. Figure3 shows the
resultingbound for different choicesof posterior ¨ . The bound hasa minimum at �%§ � �
extra error indicating thatour initial choice of �%§ ��Ô is somewhat large. Also notethat the
complexity alwaysdecreaseswith increasingentropy in thedistribution of our stochastic
neural net.Theexistenceof a minimum in Figure3 is the“right” behaviour: theincreased
empirical errorrateis significantin thecalculationof thetrueerrorbound.
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Figure3: Plotof thestochasticneural net(SNN)bound for “posterior” distributionschosen
according to theextraempiricalerrorthey introduce.

4 Conclusion

We haveapplieda PAC-Bayesbound for thetrueerror rateof a stochasticneural network.
The stochasticneuralnetwork bound resultsin a radically tighter (

�î�C�
orders of mag-

nitude)bound on the trueerror rateof a classifierwhile increasingtheempirical andtrue
errorratesonly a smallamount.

Although, the stochasticneural net bound is not completelytight, it is not vacuous
with just �
�	� examples and the minima of the bound weakly predicts the point where
overtrainingoccurs.

Theresultswith a syntheticdatasetareextremelypromising—theboundsareorders
of magnitude better. Ournext stepwill beto testthemethodonafew “real world” datasets
to insurethat the boundsremaintight. In addition, thereremainmany opportunitiesfor
improving theapplicationof thebound. For example, it is possiblethatshiftingtheweights
whenfinding amaximum acceptablevariancewill resultin a tighterbound. Also, Wehave
not taken into accountsymmetries within the network which allow for a tighter bound
calculation.
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