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Abstract | socket <— () | ”a new empty object”
socket AddSlots: (|bind = ({code)...
socket AddSlots: (| port <— Nil |)
”adding a new data slot”
socket AddSlots: (|listen = ({code)...
socket AddSlots: (|accept = ({code)...
socket AddSlots: (|read = ({code)...
socket_DeleteSlots:(accept))|)
socket AddSlots: (|lwrite = (| : data...|{code)...
socket_DeleteSlots:(accept))|)
socket AddSlots: (|close = ({(code)...
socket_DeleteSlots:(accept)
socket_DeleteSlots:(read)
socket_DeleteSlots:(write))|)

The SELF programming language provides powerful dynamic fea-
tures, allowing programmers to add and remove methods from ob-
jects and to change the inheritance hierarchy at run time. These
facilities are useful for modeling objects that behave in different
ways at different points in the object’s lifecycle. Unstructured use
of these techniques, however, can result in arbitrary changes to the
interface of the object, and thus is incompatible with static type
checking.

This paper proposes a structural type system for tracking changes
to the interface of an object as methods are added and removed,
and inheritance is changed at run time. The type system tracks
the linearity of object and method references in order to ensure :
that objects whose interfaces change are not aliased. We show socket_DeleteSlots:(listen)
how our type system can express and enforce interesting protocol. . S0cket-DeleteS lots:(bind)
specifications. We then define a formal model of the language and)|))‘))|)

type system, and prove that the type system is sound. Thus, our.
system is a foundation for languages that combine much of the Figure 1. TCP socket example illustrating the expressiveness of
power of dynamic languages likeeSF with the benefits of static SELF for ensuring that method protocols are respected
typechecking.

Keywords Prototype-based languages, dynamic inheritance, Self,
Type safety guage, B0, that has the power of &F to change the behavior

of objects but controls this power with a static type system. The
. following two subsections explain in more detail what changes to
1. Introduction objects are allowed inE&8.F and how Es0 guarantees the validity
Objects, by their nature, often have different behavior in different of those changes.

stages of their lifecycle. 8 F [26] is a prototype-based object-

oriented language that allows programmers to dynamically change1.1  Expressing Method Protocols in SLF

the inheritance hierarchy and the set of methods that each objectSELF, dvnamism can b d to exor nstraints on the order
understands. ThusesF objects can have different behavior at S dynamism can be used (o express constraints on the order-

: S - : : : i f calls to an object’s methods. For example, Figure 1 demon-
different points in program execution. This model is appealing for Ing o X . ;
implementing a large variety of software systems. strates how a Berkeley TCP socket might be implemente@irFS

: . - - theAddSlotsmessage is used to add new methods anB#leteS-
SELF is dynamically typed, allowing arbitrary changes to ob- . ) .
jects. Unfortunately, this leads to runtime errors when objects re- lots: message is used to delete methods to the socket object. A con-

ceive messages they don't understand. Static typing can eliminateStraint on the design of sockets is that methods must be called in
these errors at compile-time. However, this traditionally comes at a a partlcylar order: f'rSD'n.d’ thenlisten, t_henaccept and finally
cost: I existing statically typed object-oriented languages the class2"Y Series ofread and write before callingclose In SeLF, we

of an object and the messages it understands are fixed at objec an ensure thdistenis not called befordind by not even adding

L the listen method to the socket object until thénd method has
creation time and cannot be changed later. We propose a new lan been called. Similarly, when tHistenmethod is called, thaccept

method is added to the object, and when that is calledrahd

write, andclosemethods are added. We can use the same technique

for fields: theport field is not meaningful untibind is called, and
Permission to make digital or hard copies of all or part of this work for persmnal so in SELF we can simply avoid adding it to the object until the
classroom use is granted without fee provided that copies are not made outbstrib bind method executes. The protocol has been respected not only by
for profit or commercial advantage and that copies bear this notice and the fubicitati ddi hod h ’ . . b Iso deleti h h
on the first page. To copy otherwise, to republish, to post on servers or ttritedis aading r_net 0 S a_tt € appropriate time Ut_ also deleting them &_\tt €
to lists, requires prior specific permission and/or a fee. appropriate time, i.e we do not allow the client of the socket object
FOOL/WOOD ‘06 14 January 2006, Charleston, SC to invokereador write afterclosehas been invoked by deleting this
Copyright(© 2006 ACM [to be supplied]...$5.00. slots wherclosehas been invoked.



If a client of the socket object tries to invokead before any of method removal), or determining an object’s inheritance at run time
the earlier methods, the system will raise a message not understoodbut not allowing it to be changed), or supporting only functional
error, since this method has not yet been defined for the socket ob-changes to an object’s interface (where a new object is created and
ject. Thus, adding and removing methods to an object dynamically the original object is left unchanged, as opposed to our imperative
is an elegant way to ensure that methods are not called inappropri-object updates). Our system is also the first (of which we know)
ately, because the method simply does not exist. to integrate first-class linear functions into an object-oriented lan-

In contrast, in a more conventional object-oriented language guage.
such as Java, clients could call methods in an arbitrary order. The  Our system can be considered a foundation for research into
developer of a Java socket library must either manually implement more flexible typestate systems for objects [10, 11]. As a founda-
run-time checks that throw an exception if the methods are called tional system, it may not be as succinct or easy to use as a source-
in the wrong order, or risk corruption of the socket’s internal data level language, but instead is designed to further understanding into

structures if clients invoke operations in the wrong order. the core mechanisms of typestate and to explore more flexible im-
Thus, compared to languages like Javal. Bs dynamic mech- plementation strategies for typestate, such as dynamic changes to

anisms can be used to express and enforce constraints on the ordethe methods and superclass of an object. Incorporating this addi-

ing of method calls in an elegant way. However, becauserSis tional flexibility into easy-to-use source-level languages is an im-

dynamically typed, a violation of these constraints will not be de- portant area of future work.
tected until the message not understood exception is raised at ru

time. Section 2 gives an intuitive presentation aé&illustrated with a

It is easier to identify the cause of this error than it would be if number of examples. Section 3 introduces the core language, its
the method call succeeded but corrupted the socket’s data structureaynamiC semantics, static semantics, and a brief presentation of the

(as might happen without the use of dynamic method addition), but f roof ion 4 summarizes rel work. and the |
nevertheless it would be nice to detect the possibility of the error tsyep;isg g(t))r/w[:)luodoe.sSecto summarizes related work, and the last

statically. Static detection of errors is challenging, however, due to

the changes in an object’s interface when the set of methods in an .

object is modified, and due to the possibility that there might be 2- Overview of EGO

aliases to the object being modified. Because of the lack of static This section gives an informal introduction to our language. Af-
checking, the potential benefits of dynamic inheritance and method ter giving a brief intuition of its constructs, we show how to en-

"Organization. The remainder of this paper is organized as follows.

change at run time are underutilized in practice. code some common object-oriented programming idioms. We then
o discuss how Eo tackles the important problem of aliasing. That
1.2 Contributions forms the basis for a detailed description of how methods are de-

The contribution of this paper is a type system that statically en- fined. Finally we demonstrated®’s expressive power with a num-
sures that all accesses to object slots will succeed at runtime,Per of examples. Throughout the section we highlight the chal-
even in the presence of method changes and dynamic inheritancel€nges that static typechecking must confront.

We formally define an imperative, object-oriented languageo,E 21 L Intuiti
which is a core language modelled after a well-known calculus de- = anguage Intution

veloped by Fisher et al. [18]with additional %LF-style primitives A program in Es0 is a pair of an expression and a mutable store.
and typing restrictions sufficient to ensure type safety. In particu- An expression can be anything from a simple value to a complex
lar we control dynamic changes to aliased objects. We designedobject manipulation. Some kinds of expressions can contain other
Ecoin such a way that a static type checker can guarantee that anested expressions. The store keeps track of the current objects in
well typed program will lack “message not understood” errors at the system, and allows us to model imperative updates to objects.
run time. The type safety proof ford® directly implies this prop- We use lambda abstractions to define a function and bind a variable
erty. A consequence of type safety is that the technique of adding in its body expression. Moreover, we use the notation of Fisher et
and removing methods to an object dynamically can be used to al.’s calculus [16] and introduce also a number of primitives for
statically enforce message protocols iad& object manipulation that are inspired by the work @L5[26].

The type system of &0 blends the features of several previous
type systems in order to achieve soundness. For each object it
keeps track of all methods a client can invoke. The type system e delegateémperatively changes the super field of an object, thus
distinguishes between linear (non-aliased) and non-linear (aliased) determining from whom the object inherits.
objects [18]. It statically ensures that linear variables are used at
most once, and that linear functions are called at most once, while
allowing aliasing of non-linear variables and multiple calls to non-
linear functions. ¢ changelinearity is a technical primitive used for dealing with

The use of linearity in typing objects solves crucial aliasingand ~ aliasing, as we shall see later.
typing issues. Dynamic changes to the type of the object (e.g. by e Finally ¢ <= m invokes a method on an object.
adding a method) are only permitted on linear objects. A new object
has a linear type when it is created and the type system guarantees The first four primitives yield the object created or manipulated
its linearity during the program unless the client explicitly makes it to be used in the surrounding expression. The last one is used for
an aliased object (on which fewer changes are allowed). method calls and thus yields the body of that method.

To our knowledge, our system is the first sound, static, user-level  In the following sections we will develop a number of examples
type system that supports imperative method addition, removal, andthat show these primitives in action.
dynamic changes of an object’s inheritance. Previous systems have ) )
been limited to adding methods to an object (without supporting 2-2 Elementary Programming Idioms
EGo is designed as a core language for expressing dynamic in-
1 An untyped lambda calculus, extended with object primitives teflect heritance and method addition. We can define a number of derived
the capabilities of delegation-based object-orienteduages. forms for well-known and convenient idioms that will help us write

¢ cloneduplicates an object.

e — imperatively adds a method to an object (or changes the
implementation of an existing method).




more concise programs. That will also help us in presenting more
advanced examples in the remainder of the section.

This section focuses on the notions ofea construct and in-
stance fields for objects. We will also discuss how to create new
objects and how to use them like traits itEl$ (or equivalently,
like classes in languages like Java).

Thelet variable binding construct can be simulated in the stan-
dard way, using a simple lambda expression as reflected in the fol-
lowing definition. It also allows us to define sequences of opera-
tions.

I trait for s
let b = clone(Object)
«—+ service = Aself :m,.x: Natx+1 in

/I now define s itself
let s = clone(Object).delegate(b) in
/I and finally the clients

let c1 = clone(Object) <+ r = Aself : 1.5 in

let c2 = clone(Object) «— r = Aself : 1..s in

} def Figure 2. Anincorrect version of the server objecteferenced by
letz:T=erines = (Az:T.e2) €1 multiple clients

def .
€1,€e2 — let - = €1 1n ez

We model instance fields as methods which take a self parame-
ter but no others. Defining a field would look like the following:

[/ trait for s
let b = change_linearity( clone(Object)

— service = Aself : 1. x: Natxz+1)in
/I now define s itself

er.f = es def ;o o — exin (e1 —+ f = Aself : 7.z) let s :_change_lin_earity(clone(Object).delegate(b)) mn
. . ) ) /I and finally the clients
This will also work for reassigning a field value. In this case, let c1 = clone(Object) «+r = s in

«+ will just redefine the method body. Note that has to be an let ¢2 = clone(Object) «~+r =s in
object and we use a let binding to evaluatgo a value before the .
method body is created. Access of a field then becomes invoking a
parameterless method (with< f, wheree is an object and’ the /l'invalid: let_ = s.delegate(a) in
name of a field). c2 < r < service(b)
In fact we can use the above derived form to add or change an
arbitrary method on an object: #, is itself a lambda expression  Figure 3. A correct version of the server objestreferenced by
then it simply defines a method body that relies on additional myltiple clients
arguments as well aglf. (We will discuss method definitions in
detail below.)
How do we get an object in the first place@&is a prototype- 2.3 The Challenge of Aliasing
based language that allows usctoneexisting objects. We assume
that a well-known variabl@®bjectis bound to the first object in
the system. Thus creating a new object, adding two methods, and
invoking the first one can be realized as follows.

So far we have ignored a major complication of our system: alias-
ing. An aliased object is (possibly) referred to by multiple names
(references) in a program as opposedittear objects that have
only one name. Aliased objects are also called “non-linear”, and
linear ones are sometimes called “non-aliased”.
clone(Object) <+ m1 = e1 «+ m2 = e2 <= my In an object-oriented setting, aliasing is almost inevitable be-

Expressions for a method body have to evaluate to a lambda cause of the state held in instance fields. A very common notion is
abstraction with argumentelf. When a method is executed, the thata server objeatis used by multiple clients; that all hold a ref-
receiver object will be applied to this outermost lambda. Methods erence tos in their fieldsc;.r. The objects is then heavily aliased
can refer to their receiver and its (other) methods by accessing the(see figure 2). If we now change the configurationsoé.g. by
bound variableselyf . changing its delegate fromto a with s.delegate(a), obviously

We often want to use an object in a class-like manner, meaning all clients are affected. In particular, it is hard to tell whetheill
that the object contains instance methods to be used by other ob-still work the way its current clients expect it to.

jects. Such an object is calledrait in the SELF literature [26]. We For this reason, we forbid a change of delegation for aliased
can use théet construct in combination with delegation to realize  objects as well as adding or changing methods for such objects if it
traits as shown below. changes the method’s signature. We allow methods to be modified

for aliased objects as long as the new method has the same signature
as the old method. This allows us to model field updates, for
example.

Moreover, we forbid delegation to a linear object (because that
would be just like a second explicit reference to that object). In-
stead, we introduce thehangelinearity primitive mentioned ear-
lier to explicitly convert a linear into an aliased object that can then
be a delegatee. Note that there is no way of turning an aliased object
back into a linear one. Figure 3 shows holhangelinearity must

The result of this expression would BeObviously, an arbitrary be added to the code from Figure 2 to typecheck properlyan.E
number of objects can be defined that inherit their behavior from Intuitively, these restrictions have to do with the typing of ob-
the Trait object above by delegation and define their ofvfield. jects. Changing a method signature or the delegation changes the
Another option is to simply clone the trait object, which would type of the object. That means that the aliases to that expression
result in simply duplicating all of the methods ®fait rather than somehow would have to invisibly change their types as well, which
sharing them through delegation. We will present an example of would be difficult or impossible for a static type system to track
this more prototype-oriented approach in a later section. in the general case. Conversely, changing a linear object affects

typedefr = ¢.i(f : t —o nat;
super : t' (succ : t — nat; super t".j()))

let Trait = change_linearity(clone(Object)
—+ succ = Aself .7 . self<f+1) in
(clone(Object).delegate(Trait)
— f = Xself:7.5) < succ



let lin = clone (Object)
let o = clone (Object) «+ I = jAself:1.(self,lin) in
/lin is no longer available
let (02,lin2) = o< 1lin
/l instead we can now use lin2
// 02 replaces o, but does not contain | any more

Figure 4. A linear method consuming a variable on the stack and
its linear receiver

only the type of the expression at hand, which is what a static type
checker tracks anyway.

On the typing level we introduce &nearity flag for ob-
jects and lambdas, which we write as “j” following Wadler [27].
changelinearity explicitly removes this flag for an object, thus al-
lowing it to be aliased. Bodies of linear lambda abstractions have
access to the linear variables defined in the current scope abstrac-
tion. The type system guarantees that such linear variables are
used only once. (We say they are “consumed” on usage.) Fig-
ure 4 gives an example, with pairs written @s y). Non-linear
lambda-abstractions, on the other hand, can only access the non-
linear variables in the context. Non-linear variables can be used
multiple times.

We call a method linear if it is written with a linear lambda ab-

typedef entry = t.(name : t—string,
number : t—string; super : ())

typedef default = t.ij(prepareNew : t—action,
makeFEditable : t—entry—action,
confirmDelete : t—entry—action; super :

typedef action = t.j(prepareNew : default—t,
makeEditable : default—entry—t,
confirmDelete : default—entry—t,
ok : de fault—ode fault; super : ())

0)

let Entry = clone(Object)
— name = Aself :entry.
«+ phone = Aself :entry.

[132] /L‘n
let WebPhonebook = clone(Object)
—+ prepareNew = Aself : default.

let cur Entry = clone(Entry) in

self «+ ok = jAself : default. I* save new entry */
«—+ makeFEditable = Aself : default.

Acur Entry : entry.

self < ok = jAself : default. I* save edited entry */
—+ confirmDelete = Asel f : default.

Acur Entry : entry.

self < ok = jAself : default. I* delete selected entry */

straction. Linear methods are consumed upon invocation, i.e. they
are effectively removed from the receiver object. This guarantees
the linearity of the context variables: If we could call the linear
method! from figure 4 twice, then we would gain two aliases to
lin “through the back door”. As recursive calls to the same linear

Figure 5. Web phonebook business logic

We use—o for typing linear lambda abstractions and for

method would have the same harmful effect, we have to remove anon-linear ones. Every method body definition must be an explicit

linear method from its objedteforethat method’s body is evalu-
ated. Thus the methddn figure 4 is not only no longer available
after! was evaluated, buitcannot invoke itself orel f again either.

lambda abstraction foself the receiver object. The type oflf
essentially listall methods expected to be defined for the receiver,
when the method is called. Additional arguments can be captured

We forbid cloning of objects with linear methods for the same with nested lambdas.

reason: That would result into pairs of linear methods accessing

The requirement thatelf must be typed with a recursive record

the very same variable. However, the object can be linear (becauseype is essentially not different from typing an object with a class

it is completely duplicated), and the resulting clone is linear in name in e.g. Java: Since the methods in a Java class cannot be
any case. Thus all objects are linear in the beginning of their manipulated the class name can be used as a (shorter) synonym
lifetime and can be converted into a non-linear object explicitly for a record type containing all methods defined for that class.

usingchangelinearity (but not back into a linear object).

In fact, our system is much more flexible in that different meth-

An alternative to the solution of consuming linear methods ods of the same object can declare different receiver object types.
upon invocation would be to consume the receiver as a whole. We This is useful to encode typestate-like examples; as the object's
consider this a bad choice: Only one method could be ever executedtype changes over time due to method addition, method removal,

on a linear object.

and delegation changes, different methods in the object become ap-

Independent of the linearity of a lambda itself, its argument plicable. Thus the programmer can enforce possible sequences of
can be linear or non-linear. A linear lambda argument requires a method invocations on the object, i.e. the objeptistoco[10, 11].
linear object. The object applied to such a lambda is no longer Figure 5 gives an example of method definitions using typestate.
available at the invocation site after that application (again, we say Note that we giveypedefdor several record types in the beginning
it is “consumed”). However, the lambda abstraction can return its to improve readability. They are not part of the coeddanguage.

argument to the caller as the methadin figure 4 illustrateso is
no longer available after the last line, but it is passed backdato

We illustrate the business logic of a Web-based phonebook.

Such applications are characterizedtbyp-phased actiongFirst,

the user indicates the type of action he wants the system to perform

2.4 Method Definition

In order to capture dynamic manipulations of objects statically,
EGo types objects with a recursive record type [1,15] that contains
an explicit list of all methods the object defines together with a
field for its delegate. A linear object containing an integer field as
well as a linear method that takes an integer argument and yields
an integer would be typed as follows. The object delegates to an
empty object likeDbject Note that in the body of the type below, t

is bound recursively to the entire type expression.

t.i(field : t — int,linMeth : t —o int —o int; super : ())

(e.g. create a new entry wigitepareNew. The phonebook applica-
tion will then present a form to enter the new contact information.
The user can now complete the action by sendinglamessage
(or cancel, which we omit).

Our phonebook therefore hasdefault and anaction state.

We see that objects in thaefaultstate have three methods, while
those inactionhave four. The methods applicable to the respective
states can be easily identified by the types of tkeif variables.

The triggers to switch from one state to the other are the business
methods anak, respectively.

The type system ensures that a method can only be called on a

receiver that matches its expected receiver type exaftiyr the



method itself has been removed in the case of linear methods
2. Thus, in thedefault state, the business methods can be called
because they expect a receiver of tymfault but theok method
cannot be called because it is not even part ofigfaultstate.

typede f minit = [* initial manager */
t.i(sec : mwork — u.(doWork : msec — unit),
setWorker : (t—setWorker) —o worker — mwork)

Inthe action state, the three business methods are still part ofthe ;e de £ worker = t.(doWork : mwork—unit,

type, but they cannot be called because these non-linear methods
expect an object in théefaultstate and the receiver is in thetion

state, which has the additional methokl On the other hand, the

ok method is linear, and it can be called in #xetionstate because
once you take thek method out of theaction type, you get the
defaulttype which is what thek method expects.

Note thatok behaves differently depending on the action that is
to be performed. Therefore each business method defines its own
ok method.

Our system tracks the exact type, rather than a supertype, for
linear objects, in order to make sure that changes to the object are
legal with respect its complete current type. In particular, when

workerSick : mwork—msec)

typede f mwork = [* manager delegating to worker */
t.i{(sec: t — u.(doWork : msec — unit),

myworker : msec — worker;
super: worker)

typedef msec = [* manager delegating to secretary */
t.i{sec : mwork — u.(doWork : t — unit),

myworker : t — worker,

worker Recover : (t—worker Recover) — mwork;

super : (doWork : t—unit))

let Secretary = change_linearity(clone(Object)

changing delegation the type system has to determine the exactnew . goWork = Aself:msec. Atask:r....) in

record type of the object, which can only be done on the basis of

the exact old type of the object and its new delegate. Otherwise, ;i W orker Proto = clone(Object)

the object could define a method with a name also used in the ., goWork = Aself mwork. Atask:r
new delegate but with a different return type. If that method were . yorkerSick = Asel frmwork . self.delegate(sel f < sec)
«—+ worker Recover = jAsel f:msec .

not listed in the object type (which could happen if we allowed
subtyping for linear objects) then the system would expect the
wrong return type (the one defined in the delegate object) from a
later call to that method.

The restriction of exact type tracking could be relaxed for

sel f.delegate(sel f < myworker) in

let Manager = clone(Object)
«+ sec = Aself : mwork.Secretary

aliased objects. Here, subtyping could be introduced to accept 0b- ., setWorker = jAself : minit.

jects with more methods than expected, because the object type
cannot change in a way that would introduce the problem men-
tioned above. Even though subtyping is well defined for record
types, we elide this extension from our formal core system to keep
it as simple as possible.

2.5 Expressive Power

i\ newworker:worker.
(self <+ myworker =

Asel f:msec . newworker).

delegate(newworker)
< setWorker(change_linearity(clone(Worker Proto))) ...

The examples we have seen so far were mostly intended to illustrate
syntax and semantics ofd®. This section will present higher-
level examples in order to demonstrate the expressiveness of the
language. In fact, one was already given in the previous section
(figure 5) to illustrate the application ofd® to typestates. We will

see typestates [10, 11] again in the examples that follow. The final
example will implement the TCP socket from the introduction in
EGo.

The examples rely on dynamic inheritance and adding new
methods to objects over time. They are therefore not directly ex-
pressible in languages with static inheritance like Java. They are
expressible in SLF, but SELF would not be able to statically guar-
antee that the program evaluation will succeed at runtime. Our sys-
tem does guarantee successful evaluation of the presented examples
by virtue of the type safety proof presented later.

Throughout the examples we rely on the intuition of the reader
to assume the semantics of certain objects to which we merely
refer by name. Explicitly defining a sufficiently large library for
interesting examples is outside the scope of this paper.

Consider the Eo program in figure 6. It models the workflow
in a company between a manager, her secretary, and her designated
worker. We first implement the secretary who can do some work.

1Removing the method from the type is necessary to ensure tiesrli
methods cannot recursively call themselves. Recursive galldd break
the invariant that no linear method is called more than once.

2We have chosen to make the type of the receiver reflect the hgidei

Figure 6. Using delegation to implement workflows

let PowerSupply = clone(Object).
«—+ generate Power =
Aself:t.(generate Power : t — power). .. ..

let On = change_linearity(clone(Object)

—+ getPower =
Aself :t.i(supply, on, of f; super : (getPower)).
self < supply < generatePower) in

let Of f = change_linearity(clone(Object)) in

let PowerSwitch = clone(Object)
—+ on = Aself :t.i(supply, on, of f; super : ().
(self.delegate(On).
<~ Off =
Aself :t.i(supply, on, of f; super : (get Power)).
self.delegate(Off)) in

let ps = clone(PowerSwitch) «+ supply =
Aself :t.i(supply, on, of f; super : {(get Power)).
PowerSupply in

ps <= on <= get Power <= getPower <= of f <= on <

getPower <= of f

the method, rather than the type as seen by the caller (bdferealled
linear method is removed from it). The other choice would be rirdtative
from the client’s perspective, but more confusing from tleadpoint of the
implementor.

Figure 7. A power network using composition and delegation.
Certain types have been abbreviated.



We also define a prototype worker who, no surprise, can also
do some work. We define a concrete secretary as opposed to a
prototype worker for purely pedagogical reasons. Both could be
prototypes. Also note that we do not use titzét idiom known from

SELF to generate a worker “class”. Instead we define the worker
prototype as an object to be cloned to create instances. We feel that
this more closely resembles the real world where different workers
are different autonomous individuals.

Finally we implement the manager who has fields for her secre-
tary and her worker. By default, the manager forwards all the work
she has to do to her worker. We do this simply by delegation. (That
forces the complicated typing afelf in the two doWorkimple-
mentations.) The use of delegation here models delegation in a real
company, where work is delegated from one to the other person. - ——
Slightly confusing might be the implication that our manager does Figure 8. A TCP socket object in &0
not even “see” the work items she delegates to her subordinate. But

maybe this is not too unrealistic, either. structure. Derived fields, as tpert here, can be added to the object

Now imagine the worker gets sick. We would invoke therk- . ; . .
erSickmethod on our manager. That causes the manager to dumpWhen they are available ind®, effectively preventing reads from

her work onto her secretary from now on. The secretary can- not yet defined fields. .
not get sick, so that's a safe guess. But also, the manager ex- thf[e call toacceptwill %eneraltlteaead, wng;, andclosetr)neth](c)d.s.
pects her worker to recover eventually. Thus she defines an addi;hg IrreStutinV:aCI?nne;cévl\; ane d (r::tuern i?zn?:rhalltr:agj Eu?;n g(r)rg |te”t'?§n&
tional methodvorkerRecoveto anticipate this event. Note that this f tﬁ/ d I ol | . i if bgt d P i P it
changes the manager's signature. She is now in a different state, th € call. closealso requires a fineasell but does not give |
“worker sick” stateworkerRecoveis defined to be linear and thus ack, effectively making the object inaccessible. Lending [2] or
will be consumed on invocation. The method will also redelegate borrowing [7] for the methods returningelf would make this
to the now recovered worker, effectively transferring the manager EXPIiCit return unnecessary. We elide this possible extension to
back to her original state. As a final remark concerning states we EGo for simplicity.
point out t_hat the manager is in a sort of initialization state before 5 g Summary
setWorkeis called. Only then can she do (or rather, delegate) work. ) ) . . )
Next we implement a power network in figure 7. It consists of In the precedlng sections we gave an informal |n.troduct|0ndo>.l.5
a power supply, an on-off-switch and a client that requests power. We have seen in detail how programs can be implemented in the
In this example we use delegation to model the different states of language. We discussed its handling of aliasing as well as the no-
the power switch (on and off). Obviously, only t@n object has tion of typestates which it naturally supports through its method
a getPowermethod that forwards the power request to the supply defln.ltlons. Finally we could express a numberi of relevant exam-
configured for that object. Thus our client first has to connect the Ples in EG0. We saw that delegation and dynamic method changes
switch to the supply by adding treipplyfield. Then it can switch are sor_newhat interchangeable, effectively allowing different pro-
on, get power for a while, switch off, and on again to get more gramming styles. o
power. The examples were complex enough to imagine that an ad-hoc
TheOnandOff objects that implement the two controller states SELF programmer can introduce bugs that result in runtime errors.
can be aliased by an arbitrary number of switches that all delegate That motivates the need for static typechecking for such programs
to one of these two objects. The power supply is unique to each in order to make sure that all object manipulations and method
switch (both being physical devices) and therefore represented aghvocations will succeed. Throughout this section we described the
an instance field to the switch. Without that field defined, the switch restrictions Eo imposes on the programmer to contratL$'s
is not functional as the signatures for tieandoff methods donot - Power of simplicity”. We have seen that they are loose enough to
match. It can redirect to a different source later, though. implement interesting programs ins®, and although the current
The power network example uses an implementation strategy tYPe System is somewhat complex we believe this can be simplified
that is quite the opposite to the workflow example above. In the considerably in a practical system. Itis the main result of this paper
power network, we use delegation to express states (on and off)that these restrictions are also strong enough to enseasEype
and explicit forwarding (similar to composition in object-oriented ~Safety. This will be formalized in the next section.
programming) to transfer the power from the supply to the con-
sumer. In the workflow example, on the other hand, we added and3. Formal Model
removed methods to change the state of the manager object. Wa,

d delegation to (implicitiv) f d calls f biect to th e now introduce the cored® language to formalize the intu-
gfﬁer elegation to (implicitly) forward calls from one object to the itions given above. This section contains the full dynamic seman-

. . . tics, the full static semantics, and a summarized e safety proof
Finally, we look into the TCP socket example from the introduc- yp yp

tion section again. Figure 8 gives an implementation GoEWe of EGO. The full type safety proof is available in [5].
do not use delegation at all but rather manipulate the object with 3.1 Syntax
each method call. The implementation relies on linear methods to
enforce thabind, listen, andacceptare called exactly once. Each
of these generates the following method; therefore a client must
follow the prescribed call sequence.

We show as an example hadwnd also generates a field that
contains the port on which the socket is going to listen in order to
demonstrate that a real socket implementation is a full-blown data

typedef open = t.j(port : t — (t,int),read : t — (¢, 7),
write : t — T —o t, close : t —o unit; super : ())
typede f portt = t.i{port : open — (open,int))

let Socket = clone(Object)
— bind = jAself : ¢.i()./* bind impl */;
self <+ port = Aself : open.(self, prt)
«~+ listen = jAsel f : portt./* listen impl */;
self <+ accept = jAsel f : portt./* accept impl *#
self <+ read = Asel f : open.(sel f,[* result */)
«—+ write = Aself : open.iidata:T....;self
«+ close = jAself:open. . ..;unit

Figure 9 presents the syntax of our model. We do not include base
types, control flow structures, exceptions, and subtyping into the
model as they are well-known from the literature. We omit multiple
inheritance and polymorphism as these are orthogonal to the typing
issues at hand. Note that an overbar is used to represent a sequence
An expression is a variablg), a value(v), a clone of an object
(clone), a method invocatior{<=), an object delegation change



(delegate) the addition of a new method to an object or the change does not allow another call to that linear method we remove
of a method body+«+), a function applicatiorff a) and a change of it from the store. The locatioh. is passed as an argument to

the type linearity of an objeqchangelinearity). A method(M) the method becausself is not a free variable in the lambda
is defined as a pair: the name of the metfim)l and an expression  expression. The type system does not support this in order to
that reduces to a method body. not have aliasing issues. The result of the reduction is a method

A method body definition is a lambda expression with a linearity apply withL as an argument and a store without the methad it.
for the function and an explicit type for arguments (type inference
is future work). We require that the outermost lambda types the (R — NInvk) invokes a non-linear method. The result of
receiver object. Our storgS) is a set of pairs: the location of the  the reduction is the same as the one above except that the store
object and the object descript@descr) is unchanged now: The type system allows the client to invoke a
An object descriptor is a pair: the location of the super object, non-linear method more than once .
and a sequence of methods defined for this object. While our syntax
for methods follows that of functional languages in order to connect (R — Clone) creates a new object from an existing one.
more directly to previous linear type systems [27], our record-based The list of methods and the address of the super object are copied
object encoding is similar to standard object encodings [1,6,15,16]. from the cloned object to the newly created location.
The primary difference in our encoding is that we must represent
inheritance explicitly—since it might be changed—rather than just (R — Deleg) changes the reference to the super object of
merging inherited methods into the object itself as previous systemsthe receiver object. The result of the reduction is the modified

have done. location of the receiver. Here the overbar represents a sequence of
There are four kinds of types: for variabl@}, for non-linear method bindings\/.

functions (—), for linear functions(—) and finally for objects

(t.R). The object type is a recursive type wheras bound toR. (R — AddM) adds a new method to the receiver object.

The record typgR) is a list of the types of the metho@8) defined dom(M) represents the set of the methods name for an object

for the object and the type of the super objésper). In [16] a descriptor. The result returned is the modified location of the

row type is also a row variable, a row lambda abstraction and a receijver.

row application. We omit these row types as we don't need them in

our system to express any kind of row polymorphism. The type of a (R — ChanM Bd) changes the body of meth¢uh) of the receiver.

linear object is presented hyWe usdjj] to represent that the object

might be linear or non-linear. That is, optional syntax is enclosed (R — ChanLin) has no operational effect; thehangelinearity

in[]. construct is needed only to track where a linear object becomes
Instance variables are represented by parameterless methodsionlinear in the static semantics. The result of the reduction is the

LocationsL are not part of the source code. We assume to have a|ocation passed as argument for the expression.

first object(Object) defined when we want to evaluate a program.

(expressions) e = z|v|e< m|ei.delegate(ez) R — Appl
I clone(e) |e—+m=¢e (lij]xz : 7".e0)v, S — [v/x]eo, S
€1 €2
| change_linearity(e) mb?dy(S[L],m) =0 v=jAzT...
(values) v = L[] T . eo 5" = S[L — (S[L]\ (m = )] R Linvk
(heap) S = Object — super : Object L<m,S—wvlL,S v
| L+~ Odescr,S
(objectdesc)  Odescr = super:L mbody(S[L],m) =v v = Az... R — NInvk
|  Odescer «+ M L<m,S—vL,S
method desc M = m=e
Etypes) ) 7ou= |7 =1 | tR| T —o 1" S[L] = /Odescr , L" & domain(S)
(records) R = [[10 | [i1{B;super : 7) 5" = S[L” — Odescr] R — Clone
B = e|m:7,B clone(L),S — L", S’
(heap location) L _
(variable) z S[La] = super : Ly <+ M__
(type variable) t S" = S[L1 — super : Ly < M] R Del
(method name) m Li.delegate(Ls), S — L1,S8’ aee
Figure 9. Syntax of the language, store, types. S[L) = super : L' <+ M m ¢ dom(D)
S" = S[L — (super : L' «+ M <+ m = v)]
3.2 Dynamic Semantics L~m=v,8 L,s R~ AddM
m=v, — L,
The dynamic semantics we defined foc&is a standard small S[L] = super:L' <+ my:vy... — miv
step operational semantics. The st{fgis a function from loca- S/:S[L—>supe7:~[,’ - mll)l - erU’ ]
tions(L) to object descriptorOdescr). Figure 10 summarizes the : o " R _ ChanMBd
rules for evaluating expressions. We describe each rule in turn. Lemi=0,5— L5
(R — Appl) shows how a method is applied to its arguments. We change_linearity(L),S — L, S R = ChanLin

write [v/x]eo for the result of replacing by v in expressions,.

Figure 10. Evaluation rules for expressions
(R — LInvk) invokes a linear method on an object. The
method is owned by the receiver and is linear. As the type system



Mm] =wv Y(L) = t.i(B; super : t'.R)

— - n T — Loc
mbody(super Lo+ M’m) = Xi-F L t.|<B;Sup€T ot R> — {L}
m & dom (W) B(L) = tBisuper st R) g
mbody(super : L <+ M,m) = mbody(S[L], m) Z;- B L t(B;super : U'.R) = {}
- Azt e = {}
Figure 11. Rules for lookup of methods body. x & A, nonlinear A
; T—Method
AR Az 7o) T =7 = {} evHo
3.3 Static Semantics S Az et — list s A
) ) . . en
Figure 12 presents the typing rules for expressions. Every typing - N 7 ‘ T — LMethod
rule has the standard forri; A - e : 7 = list. that contains a TiAF (idw s rleo) i T 7" = listeo
store type(X), an assumption ligfA or A’) , an expression that is — - T — Var
typed(e), the type of the expressidm)and the list of linear objects Bizirha:r = {}
(list.) that are used to type the expression. SiAFu: U= list, )
We use a type storE to store the types of our objects: S Az XFu.U— list, T — Kill
¥ = Object - t.() | 35 Lt YsA,x: X,z X Fu:U = list, nonlinearX T_C
The assumption list A (or A) contains the types of the bound YAz X Fu: U= list, i

variables in the expressiomthat is typechecked. An assumption

list, A, is defined as: YAk e: t./[i](B; super /7/'>> = list.
Vm:r' € B. 7 =17"—=T "
Av=-[Aw:r Y A F clone(e) : t.i(B; super : 7)) = liste ~ one

We use:- to present the empty assumption list. An assumption list
is non-linear if each assumption:x; in it has a non-linear type;.
Note that linear variables will be removed from the assumption list

SiAbke: 7 = list,
’ ! ’ 1"
mtype(m, 7', 7)) =17 — T
7' = t.(B;super : )

upon usage. T—Invk
The type expression[i] (m1:71, ..., Mk Tk; S Ak e < m: [t(B;super:T) /t]T" = list,

super : t'.[i](my:71, ..., m}:7})) is a type t with the property that ) . ) .

when we invoke a methogh; for 1 < i < k or a methodn/, for LiAb et [(mir’ — 77)/(mir” — 7]

1 <4 < j to any element x of this type, like.m;, the result has , Superij) ? liste

type 7; or 7/ with ¢ substituted witht.R. Thust.R is a form of ' =ti(., [mur' ="/ —]; super : )

recursively-defined type. . S . SiAFeem: [Lilo, [ —1"] —; T — LInvk
Let us describe each rule and give a brief justification with super : T)/t]T" => list.

examples for selected cases. Note that the word location is used

somewhat ambiguously because sometimes it refers to the label of S Ak er : ti(B;super : T') = liste,

a location and sometimes it is used to refer to the object at that lo- S A ey = liste, m¢gB

cation. However, what is meant is always obvious from the context. S A A — T—AddM
y 4Ly €1 <+ MM = €2 !

(T — Loc), (T — NLoc) A location is well-typed if it is LilB,m i super 1 ') = liste,, liste,

defined inX. The list returned is empty if the location is non-linear YiAb e ti(.,m: 7, ... super: ")
or L if the location is linear. = Iste,
. . o B A e i T = Iste,
(T — Method) A non-linear method is well-typed if its T—LChanMBd

YA A Fe v m=ey:

body is well-typed. The restriction on the assumption list to be M
tile..,muT, .. super:Ty = lst.,, lste,

non linear is because we want each variable needed to type the
expression to be non-linear so we can safely call the method more
than once. There is no restriction on the arguments of the methods — st

. X - o -
because if they are linear there is no way of duplicating them. S A'F ey = {} 7' is nonlinear
The returned list is empty as the objects used here are all non-linear. T — ChanMBd

;A A Fep+m=ey:

(T — LMethod) A linear method, too, is well-typed if its t(eym 7', s super s T) = liste,
body is well-typed. However in this rule, there is no restriction on
the assumption list. Linear variables can safely be used in a linearFigure 12. Static semantics of expression§} represents the
method because it will be called only once during the program. empty list.
The list returned is the one returned from the type rule applied to
the method body.

S;Abker i t(,m: 7. super : T)

(T — Kill) This rule is used in the case we have to delete a
(T — Var) The type of a variable is the one that it has in record from the assumption list in order to typecheck an expres-
the assumption list. The returned list is empty as there are no ob-sion. We need it in typing cases likag: X \y:Y.x wherey can
jects used to type it. The assumption list has only the record to type be non-linear. As long as it is not use€d, — Kll) can remove it
the variable. The type system does not need to forget information from the context to type this linear method. The list returned is the
in the assumption list during the typing of an expression. same as the expression that is typed with the new assumption list.



(T — Copy) This rule makes another copy of a non linear variable
in the assumption list. We use it in cases like:Nat . z+x or
Ax:X . (x <+ m = M\y:Y . z) wherez is non-linear. The type

Y At er i t1.i{By; super : t'.Ry) = liste,
¥, A’k es i to.(Ba; super 1 t".Ro) = liste,

system has to explicitly duplicatein order to use it multiple times. 33 A, A’ F eq.delegate(es) : T~ Deleg
t1.i(Bu; super : (t2.(Ba; super : t".Ra))[t1/t2])
(T — Clone) A clone expression is well-typed & (the prototype = liste,, liste,
object) is well-typed and the super object @has a non-linear
type (which is true automatically by virtue d¢fi’ — Deleg) in EiAF e iR = list. T — ChanLi
Figure 13). The methods defined for the cloned object must all be ¥ A - change linearity(e) : t.R — liste
non-linear in order not to copy references to linear objects through , . ]
the back door. The new object created has a linear type. LAk e 7= ) —o]r" = liste,
YA g T = liste,
(T — Invk) A <= m expression is well-typed for non-linear S A, A F eres s 7 — liste,, liste, T — Appl
m if e (the receiver) andn are well-typed,m is non-linear and
the argument type ah is the same as the type of the object. The Figure 13. Static semantics of expressions continued.

mtype function (see Figure 14) returns the type of the method that
is invoked. The type returned is the type where the typsetffis
updated with the type of the receiver of the method.
meB B={(.,m:T1,..)
Unlike systems such as Featherweight Java, our type system mtype(m, t.[i|(B; super : t'.R),t".R") = 7[t" .R" /1]
does not modekelf as a free variable. Insteaself is bound

explicitly with a lambda. This binding ensures that the linearity m¢ B
of self is tracked like that of any other variable, ensuring (for mtype(m, t.[i](B; super : t'.R),T)
example) that a lineaselfis not used more than once. = mtype(m,t'.R,T)

(T’ — LInvk) The difference of this rule from the one above is that  Figyre 14. Rules for looking up a method’s type in a record type
e (the receiver) is linear and can be either linear or nonlinear. The

new type ofe does not allow the client to cath again ifm is linear.
This is expressed in the rule by takimg out of the type of the _
objectin the result. This prevents aliasing of linear objectsinthe as- ~ VL; € dom(X).%;- & S(L;) : X(L;) = list;

sumption list (the stack). The following example illustrates the idea Y:-F S = concat(list;) T — Store
let obj = clone(Object) <+ m =jA\.unit.self in (L) =t.R VYmi=e;.%;-Fe; : 7, = list.,
let 0bj2 = obj < min T — Odescr

Y- super : L <+ mi=ej... <+ mnp=¢€n :

let 0bj3 = obj2 < m [*we have two references to obj*/ t.[i)(77; super : t'.R) = concat(list.,)

(T — AddM) The type-system adds new methods only to
linear objects because aliases to an object would not be aware of
the new method. The assumption list used to type the expression is
split to type the two different expressions, andez, in order to
track the linearity of the objects. The list returned is the concatena-
tion of the lists returned from the typing rulese@&ndm.

Figure 15. Static semantic of Store

(T — Appl) This rule checks if the first expressiaa has a
function type and that the second expressgmas the same type
of the argument oé; .

Figure 15 contains the rules for type-checking the s®iést;
is a list of all linear objects used to type the locati§[L;]. The
storeS is well-typed if every location in the store is well-typed. A
locationL is well-typed if the super object which it inherit is well-
typed and each method’s body defined for that location is well-
typed.list., is a list of linear objects used during the typing of the
eexpressiore.

(T — LChanMBd) This rule checks if the object is linear
and then checks if the new method body is well-typed. We can
change the type of the method when the receiver is linear just like
we can add new methods.

(T — ChanMBd) This rule checks if the object is non-
linear and that the new method body has the same type as th
existing one. We do that for the same typing problem we can have
nthel - AddM orT Deleg. yPnap 3.4 Soundness

In this section we describe the approach taken for proving type
(I' — Deleg) This rule only allows delegation changes to safety for our system. We define important conditions and present
linear objects for the same reason the type-system only permitsthe key lemmas needed for proving preservation and progress. We
new methods for linear objects. The rule only allows delegation to also briefly consider the most interesting cases of the progress and
non-linear objects because if the type system allows the client to preservation proofs. The full type safety proof is available in [5].
delegate to linear objects then we effectively have more than one
reference to it. Each occurrencetgfis replaced by, in the new
type oft; because the receiver type for the inherited methods is
That is to preserve method specialization.

Preservation Preservation ensures that the type of an expression
is preserved during its evaluation.

The most interesting issue in type preservation is ensuring that
linear references are not duplicated. For example, in an untyped
version of K50 consider an objectl that contains a linear method
M, which in turn contains a reference to a linear objecif we
could cloneA, then we would get a copy ¥/ in the clone, and
we could invoke both versions df/ to extract two references to

(T — ChanLin) This rule changes the linearity of an object
from linear to non-linear. The super object is non-linear anyway.



L. Our type system prohibits this by checking that clone is never To give an idea of the preservation proof we present the case

called on an object with linear methods.

wheree is typed with rule T-Deleg. There are three subcases, two

For the proof of preservation, we need two standard properties for congruence rules (of which we show the first; the second is
about the substitution operation as it occurs in function application. symmetric) and one for the evaluation rule:

Lemma 1 (Properties of Typing)

(i) (Weakening) IfS; A, A’ + e : 7 = list. andt is non-linear
theny; A,z : 1, A" - e: 7 = liste.

(i) (Substitution)lfS; A,z : 7, A’ =€’ : 7/ = list andX; - +
e: 7 = list. then; A, A’ + {e/x}e’ : 7/ = list.s, list.

The first property follows from rule T-Kill, the second is proved
by rule induction on the typing judgment ferande’ respectively.

As a program executes, the number of locations in the store ;. - § = lists
can expand aslone operations are performed, and the types of No duplicateist., lists
locations can change as a result of method addition or delegationy; . I- e : ¢.i(Bu; super : t'.R1) = liste,
changes. We formalize the way the store type can change as a stor@; . - e, : to.(Bsy; super : t”.Ro) = list.,

extension operatioR’ >, ¥. This judgment means that differs
from X because of. in one of two cases :

1. ¥’ may have an additiondl in its domain

dom(X") = dom(Z)U{L} VL' € dom(X).2(L')=X'(L")
>

2. L was linear inX but is non-linear ir2’
dom(X') =dom(X) %(L)=tjR Y'(L)=t.R
VL' €{dom(2) — L} . X(L")=%'(L")
>3

The first differ case o2’ and T is introduced by theclone
typing rule and the second case is introduced byaith@Method,
delegateor changelinearity typing rules. This lemma is used for
the proof of T-AddM, T-Deleg and T-Appl.

Next, we define two lemmas that are useful in ensuring that lin-
ear methods and objects remain unaliased as the program executes.

Lemma 2
If ;A F e : 7 = list,, ¥ >;, Y andL ¢ list. then
YiAke: T = list..

This lemma is used to prove that if the old Ii&ist., , liste,, lists)

of linear objects has no duplicates and part of that list, 5. 7, : t1.i(By; super : t'.Ry) = {L1}

(liste,, lists), has changed taz’stﬁll ,listss) because of an eval-
uation rule then the modified Ii$tz‘ste/1 ,liste,, listg/) has no du-

plicates. This is because if there are no duplicates in the bigger listtheny'; . - L, : ¢1.i(By; super : t2.Rs) = {L1}

there could not possibly be duplicates in the smaller one.
The proof is by rule induction on the typing judgment éor

Lemma 3

For any rulee, S — €', S’, whereZ; - e : 7 = list., ;- I
S = lists and no duplicateBist., lists, and fory > ¥ and
Yioke i1 = listy,Y; -+ S" = lists: and no duplicate in
listgs,list.r then{lists:} U {list. } C {lists} U{liste} U{L}.

The proof is by rule induction on the evaluation judgment.

Theorem 4 (Preservation)

If¥;-+e: ™= liste and%;- - S = listgs and there are no
duplicates irtist., lists ande, S — ¢’, S’ then forsom&’ > &
we haveY'; - + ¢ : 7 = list,, andY';- = ' = listgr and
there are no duplicates lixst,./ , listg: .

Proof: By rule induction on the derivation ef S — ¢, S’.

Case
e1,S — e}, s

e1.delegate(es), S — e!.delegate(ez), S’

e1,S —ef, S Subderivation
3k er.delegate(ez) :
t1.i(Bu1; super : t2.(Ba; super : t".Ra)[t1/t2])
= liste Assumption
Assumption
Assumption
By inversion
By inversion

¥ > %, %5 eyt i{By;super i t'.Ry) = listﬁ/l By i.h.
ik S = listg By i.h.
No duplicatelz’ste/l,listsl By i.h.
L € liste, listss By definition of &' >, &

No  duplicates in listezl,liste2,lists/ because if
liste,, liste1,lists has no duplicates then from lemma 3
andL ¢ list., we know thatlist62,liste/1,listsz has no dupli-
cates.

Y5 Feg : ta.(Ba; super : t'.Ro) = list,, By lemma 2
5 ef.delegate(ez) :
t1.i(Bu1; super : t2.Re) = listexl ,iste, By rule

Case
S[L1] = super : L «+ M 8" = S[L1 + super : Ly <+ M]
Li.delegate(Ls),S — L1, S’

3; -+ Li.delegate(L2) :
t1.i(Bu; super : ta.(Bo; super : t'".Ra))

= {L.} Assumptionl
Y-+ S = lists Assumption2
No duplicateL4, lists Assumption3
By inversion

Y; b Ly : t2.(Ba; super : t'.R2) = {} By inversion

let™' = X[Ly — t1.i(B1; super : t2.(Ba; super : t".Ra))]

By rule
Yok Lot to.{Bassuper : "' .Ro) = {} By lemma 2
VL' € dom(X).Z(L") = ¥'(L) By definition of X' >, &
VL' € {dom(S) — L1} andvm € S(L') then

Yok M(m) T = listm By Assumption* and lemma 2

¥ ok S = lists By rule
No duplicateL, lists By Assumption3
|

Progress Progress asserts that the evaluation of closed well-typed
expressions will never get stuck, i.e. the expression is a value or can
make an evaluation step.

The critical observation behind the proof is that a value of
function type will indeed be a function and a value of object type
be an object. We state these critical properties in inversion lemmas,
because they are not immediately syntactically obvious.

Lemma 5 (Value inversion)
() If ;- +v:t.R=list, thenv = L.



(i) If ;- Fo:7'[— ) —o]r"” = list, thenv = [j]Az : T'.e. interactions between method and object linearity in the presence of
inheritance, method update, and method execution.
Theorem 6 (Progress) . Linear logic is used as a tool for modeling OO programming in
If3; e 7= liste and%;- = S = lists then either logic [4, 8, 12, 19]. In [8] methods are characterized as resources
() e, S — ¢, S for someS’ ande’, or that reside within objgcts, and are con§umed right after haying_ been
(i) e is a value v selected for evaluation upon invocation. We apply the intuition
from this technique in a more concrete setting (i.e., operational
Proof: By induction on the derivation of the typing judgment, semantics instead of an encoding in logic) in order to control
analyzing all possible cases. ] aliasing for linear methods.
Predicate classes [9] and their more general form, predicate dis-
patch [14] support method dispatch based on predicates over the
4. Related work run-time state of the object. When a message is sent in these sys-
tems, the predicates of all relevant methods are evaluated, and the
' method chosen is the one with the most specific predicate that eval-
uates to true. Dynamic inheritance and dynamic method modifi-
tation are complimentary ways to get similar behavior: instead of
dispatching indirectly based on the state of an object, the state is
encoded through the dispatch hierarchy. These mechanisms are ap-
propriate in different situations; one advantage of our approach is
that it can change the type of an object, allowing the system to ex-
press typestate-like constraints on clients.
Typestates were initially introduced by [25] for procedural pro-
fgramming languages. [10] defines a resource-controlling system
for such languages based on keys. Keys can optionally be parame-
terized with typestates. This class of systems is formally modeled
in [21] as refinement types that layer additional, changing resources
%n a conventional static type system. All these approaches do not
consider inheritance and effectively only allow linear types. Thus
they are unsuitable for object-oriented languages.
The State design pattern in [17] allows implementing different
havior for a method depending on the main object’s state. How-
ever, there is no way of statically restricting the available methods
for a state. [11] defined a model for statically tracking typestates in

This section summarizes related work in language foundations
aliasing, and state-based method dispat@LrFJ26] is the most
influential prototype-based language and also defined mechanism
for dynamic modifications of object definitions. In this paper, our
goal is to statically typecheck many uses @fL&'s mechanisms for
dynamic object updates.

The most closely related work is Anderson et al.’s application
of Alias Types to the problem of statically checking imperative
method and delegation updates [3]. Compareddo Eheir design
achieves precision through singleton types and effects, at a cost o
great complexity: the type of a method includes not just the type
of the arguments and body, but also the effects of the method and
the environment where it was typedGE's goal, in contrast, is to
support many useful cases of method and delegation update in
comparatively simple and usable type system based on linearity.

Abadi and Cardelli [1] use prototype-based object calculi to
study issues of subtyping, quantification, and the typing of the
receiver objecself Our work builds on this foundation, but because be
we incorporate first-class functions and linearity we use a notation
taken more from the lambda calculus. Our calculus also differs

from prev_ious work in that we must model tbqperfield directly object-oriented languages. In particular, they address the issue of
because its value may change, whereas previous systems generally seqiates in the presence of subtyping. In our work, objects have a
compile inheritance away once an object is created. While Abadi 2 mically changing type instead of a changing typestate layered
and Cardelli support functional update to methods, or imperative on top of a fixed type. Our work also differs in supporting method

update at the same type, our system allows imperative updates thaf, 4 i ; 1 ~
change the type of the updated method. taddltlon, removal, and delegation change, rather than simply pro

: v o o hibiti IIs t thods not licable in th tt tate.
Variants of the Abadi-Cardelli object calculus taking into ac- 1ofting cafls to methods not applicable In the current typestate

count object extensions are presented in [20, 23, 24]. Fisher, Hon- .
sell and Mitchell describe a delegation-based object calculus and5' Conclusions
method specialization where method extension represents delegaEGO is a prototype-based language that has expressiveness, sim-
tion[16]. Furthermore, they add a limited form of subtyping and plicity and a static typechecker. The expressiveness follows from
type inference to their calculus[15]. Compared to these systems,dynamic inheritance, adding methods, changing method bodies,
our work focuses on the orthogonal issue of statically checking the and even changing method types dynamically. Its simplicity fol-
type safety of operations such as adding and removing methods orows from the lack of the class concept, from the concept of cloning
changing inheritance. instead of instantiation, and from the unification of fields and meth-

Re-classification in Fickle [13] allows an object to change its ods.
class at runtime in class-based OO languages. In this manner class- EGO imposes restrictions on the programmer in order to con-
based OO languages can achieve the same effect as changing detrol SELF's “power of simplicity”. These are loose enough to allow
egation at runtime. Fickle is more limited than our system because interesting programs usingd®’s dynamic features. But these re-
it restricts re-classification to a fixed set of state classes rather thanstrictions are also strong enough to ensue®E static type safety.
supporting arbitrary changes to the methods and inheritance hierar-Its static typechecker provides a safer and more efficient paradigm
chy of an object. Furthermore, because it does not track aliasing ofthan SELF: EGo programs will only contain valid method invoca-
fields, Fickle cannot track the state of an object in a field a® E tions.
does. We have implemented an interpreter foc& which supports

Our work builds on Philip Wadler’s linear type system [27], typechecking and execution of simple examples in the language.
which in turn builds on a foundational linear logic developed by Gi- The implementation is available attp://www.cs.cmu.edu/
rard [18]. The concept of linear types [27] is used for resourcats th  ~aldrich/ego/. In future work, we plan to investigate adding
should not be duplicated or lost. In contrast, our system uses linearmore advanced object-oriented language features to the system, in-
types to allow programs to safely change the type of an object, thus cluding multiple inheritance, parametric polymorphism, and mul-
enabling highly dynamic language features for non-aliased objects.tiple dispatch. Our system can easily be extended to support sub-
In the area of linear type systems, the primary contribution of this typing for non-linear objects, but in the presence of dynamic type
paper is showing how to naturally meld method or function linear- updates on linear objects, subtying is more challenging. Recent de-
ity with object linearity. This issue is challenging due to the subtle velopments in typestate systems may provide a path forward here
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