
EGO: Controlling the Power of Simplicity

Andi Bejleri
Universit̀a di Pisa
Lugarno Pacinotti

43 - 56126 Pisa, Italy
bejleri @ cli.di.unipi.it

Jonathan Aldrich
Carnegie Mellon University
Pittsburgh, PA 15213, USA

jonathan.aldrich @ cs.cmu.edu

Kevin Bierhoff
Carnegie Mellon University
Pittsburgh, PA 15213, USA

kevin.bierhoff @ cs.cmu.edu

Abstract
The SELF programming language provides powerful dynamic fea-
tures, allowing programmers to add and remove methods from ob-
jects and to change the inheritance hierarchy at run time. These
facilities are useful for modeling objects that behave in different
ways at different points in the object’s lifecycle. Unstructured use
of these techniques, however, can result in arbitrary changes to the
interface of the object, and thus is incompatible with static type
checking.

This paper proposes a structural type system for tracking changes
to the interface of an object as methods are added and removed,
and inheritance is changed at run time. The type system tracks
the linearity of object and method references in order to ensure
that objects whose interfaces change are not aliased. We show
how our type system can express and enforce interesting protocol
specifications. We then define a formal model of the language and
type system, and prove that the type system is sound. Thus, our
system is a foundation for languages that combine much of the
power of dynamic languages like SELF with the benefits of static
typechecking.

Keywords Prototype-based languages, dynamic inheritance, Self,
Type safety

1. Introduction
Objects, by their nature, often have different behavior in different
stages of their lifecycle. SELF [26] is a prototype-based object-
oriented language that allows programmers to dynamically change
the inheritance hierarchy and the set of methods that each object
understands. Thus SELF objects can have different behavior at
different points in program execution. This model is appealing for
implementing a large variety of software systems.

SELF is dynamically typed, allowing arbitrary changes to ob-
jects. Unfortunately, this leads to runtime errors when objects re-
ceive messages they don’t understand. Static typing can eliminate
these errors at compile-time. However, this traditionally comes at a
cost: In existing statically typed object-oriented languages the class
of an object and the messages it understands are fixed at object
creation time and cannot be changed later. We propose a new lan-

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

FOOL/WOOD ’06 14 January 2006, Charleston, SC
Copyright c© 2006 ACM [to be supplied]. . . $5.00.

| socket <− () | ”a new empty object”
socket AddSlots: (|bind = (〈code〉...

socket AddSlots: (| port <− Nil |)
”adding a new data slot”

socket AddSlots: (|listen = (〈code〉...
socket AddSlots: (|accept = (〈code〉...

socket AddSlots: (|read = (〈code〉...
socket DeleteSlots:(accept))|)

socket AddSlots: (|write = (| : data...|〈code〉...
socket DeleteSlots:(accept))|)

socket AddSlots: (|close = (〈code〉...
socket DeleteSlots:(accept)
socket DeleteSlots:(read)
socket DeleteSlots:(write))|)

socket DeleteSlots:(listen)
socket DeleteSlots:(bind)

)|))|))|)

Figure 1. TCP socket example illustrating the expressiveness of
SELF for ensuring that method protocols are respected

guage, EGO, that has the power of SELF to change the behavior
of objects but controls this power with a static type system. The
following two subsections explain in more detail what changes to
objects are allowed in SELF and how EGO guarantees the validity
of those changes.

1.1 Expressing Method Protocols in SELF

SELF’s dynamism can be used to express constraints on the order-
ing of calls to an object’s methods. For example, Figure 1 demon-
strates how a Berkeley TCP socket might be implemented in SELF;
theAddSlots:message is used to add new methods and theDeleteS-
lots: message is used to delete methods to the socket object. A con-
straint on the design of sockets is that methods must be called in
a particular order: firstbind, then listen, thenaccept, and finally
any series ofread and write before callingclose. In SELF, we
can ensure thatlisten is not called beforebind by not even adding
the listen method to the socket object until thebind method has
been called. Similarly, when thelistenmethod is called, theaccept
method is added to the object, and when that is called, theread,
write, andclosemethods are added. We can use the same technique
for fields: theport field is not meaningful untilbind is called, and
so in SELF we can simply avoid adding it to the object until the
bind method executes. The protocol has been respected not only by
adding methods at the appropriate time but also deleting them at the
appropriate time, i.e we do not allow the client of the socket object
to invokereador write afterclosehas been invoked by deleting this
slots whenclosehas been invoked.

If a client of the socket object tries to invokereadbefore any of
the earlier methods, the system will raise a message not understood
error, since this method has not yet been defined for the socket ob-
ject. Thus, adding and removing methods to an object dynamically
is an elegant way to ensure that methods are not called inappropri-
ately, because the method simply does not exist.

In contrast, in a more conventional object-oriented language
such as Java, clients could call methods in an arbitrary order. The
developer of a Java socket library must either manually implement
run-time checks that throw an exception if the methods are called
in the wrong order, or risk corruption of the socket’s internal data
structures if clients invoke operations in the wrong order.

Thus, compared to languages like Java, SELF’s dynamic mech-
anisms can be used to express and enforce constraints on the order-
ing of method calls in an elegant way. However, because SELF is
dynamically typed, a violation of these constraints will not be de-
tected until the message not understood exception is raised at run
time.

It is easier to identify the cause of this error than it would be if
the method call succeeded but corrupted the socket’s data structures
(as might happen without the use of dynamic method addition), but
nevertheless it would be nice to detect the possibility of the error
statically. Static detection of errors is challenging, however, due to
the changes in an object’s interface when the set of methods in an
object is modified, and due to the possibility that there might be
aliases to the object being modified. Because of the lack of static
checking, the potential benefits of dynamic inheritance and method
change at run time are underutilized in practice.

1.2 Contributions

The contribution of this paper is a type system that statically en-
sures that all accesses to object slots will succeed at runtime,
even in the presence of method changes and dynamic inheritance.
We formally define an imperative, object-oriented language, EGO,
which is a core language modelled after a well-known calculus de-
veloped by Fisher et al. [16]1, with additional SELF-style primitives
and typing restrictions sufficient to ensure type safety. In particu-
lar we control dynamic changes to aliased objects. We designed
EGO in such a way that a static type checker can guarantee that a
well typed program will lack “message not understood” errors at
run time. The type safety proof for EGO directly implies this prop-
erty. A consequence of type safety is that the technique of adding
and removing methods to an object dynamically can be used to
statically enforce message protocols in EGO.

The type system of EGO blends the features of several previous
type systems in order to achieve soundness. For each object it
keeps track of all methods a client can invoke. The type system
distinguishes between linear (non-aliased) and non-linear (aliased)
objects [18]. It statically ensures that linear variables are used at
most once, and that linear functions are called at most once, while
allowing aliasing of non-linear variables and multiple calls to non-
linear functions.

The use of linearity in typing objects solves crucial aliasing and
typing issues. Dynamic changes to the type of the object (e.g. by
adding a method) are only permitted on linear objects. A new object
has a linear type when it is created and the type system guarantees
its linearity during the program unless the client explicitly makes it
an aliased object (on which fewer changes are allowed).

To our knowledge, our system is the first sound, static, user-level
type system that supports imperative method addition, removal, and
dynamic changes of an object’s inheritance. Previous systems have
been limited to adding methods to an object (without supporting

1 An untyped lambda calculus, extended with object primitives that reflect
the capabilities of delegation-based object-oriented languages.

method removal), or determining an object’s inheritance at run time
(but not allowing it to be changed), or supporting only functional
changes to an object’s interface (where a new object is created and
the original object is left unchanged, as opposed to our imperative
object updates). Our system is also the first (of which we know)
to integrate first-class linear functions into an object-oriented lan-
guage.

Our system can be considered a foundation for research into
more flexible typestate systems for objects [10, 11]. As a founda-
tional system, it may not be as succinct or easy to use as a source-
level language, but instead is designed to further understanding into
the core mechanisms of typestate and to explore more flexible im-
plementation strategies for typestate, such as dynamic changes to
the methods and superclass of an object. Incorporating this addi-
tional flexibility into easy-to-use source-level languages is an im-
portant area of future work.

Organization. The remainder of this paper is organized as follows.
Section 2 gives an intuitive presentation of EGO illustrated with a
number of examples. Section 3 introduces the core language, its
dynamic semantics, static semantics, and a brief presentation of the
type safety proof. Section 4 summarizes related work, and the last
section concludes.

2. Overview of EGO

This section gives an informal introduction to our language. Af-
ter giving a brief intuition of its constructs, we show how to en-
code some common object-oriented programming idioms. We then
discuss how EGO tackles the important problem of aliasing. That
forms the basis for a detailed description of how methods are de-
fined. Finally we demonstrate EGO’s expressive power with a num-
ber of examples. Throughout the section we highlight the chal-
lenges that static typechecking must confront.

2.1 Language Intuition

A program in EGO is a pair of an expression and a mutable store.
An expression can be anything from a simple value to a complex
object manipulation. Some kinds of expressions can contain other
nested expressions. The store keeps track of the current objects in
the system, and allows us to model imperative updates to objects.
We use lambda abstractions to define a function and bind a variable
in its body expression. Moreover, we use the notation of Fisher et
al.’s calculus [16] and introduce also a number of primitives for
object manipulation that are inspired by the work on SELF [26].

• cloneduplicates an object.

• delegateimperatively changes the super field of an object, thus
determining from whom the object inherits.

• 7← imperatively adds a method to an object (or changes the
implementation of an existing method).

• changelinearity is a technical primitive used for dealing with
aliasing, as we shall see later.

• Finally e ⇐ m invokes a method on an object.

The first four primitives yield the object created or manipulated
to be used in the surrounding expression. The last one is used for
method calls and thus yields the body of that method.

In the following sections we will develop a number of examples
that show these primitives in action.

2.2 Elementary Programming Idioms

EGO is designed as a core language for expressing dynamic in-
heritance and method addition. We can define a number of derived
forms for well-known and convenient idioms that will help us write

more concise programs. That will also help us in presenting more
advanced examples in the remainder of the section.

This section focuses on the notions of alet construct and in-
stance fields for objects. We will also discuss how to create new
objects and how to use them like traits in SELF (or equivalently,
like classes in languages like Java).

The let variable binding construct can be simulated in the stan-
dard way, using a simple lambda expression as reflected in the fol-
lowing definition. It also allows us to define sequences of opera-
tions.

let x : τ = e1 in e2

def
= (λx :τ.e2) e1

e1; e2

def
= let = e1 in e2

We model instance fields as methods which take a self parame-
ter but no others. Defining a field would look like the following:

e1.f := e2

def
= let x = e2 in (e1 7← f = λself : τ.x)

This will also work for reassigning a field value. In this case,
7← will just redefine the method body. Note thate1 has to be an

object and we use a let binding to evaluatee2 to a value before the
method body is created. Access of a field then becomes invoking a
parameterless method (withe ⇐ f , wheree is an object andf the
name of a field).

In fact we can use the above derived form to add or change an
arbitrary method on an object: Ife2 is itself a lambda expression
then it simply defines a method body that relies on additional
arguments as well asself . (We will discuss method definitions in
detail below.)

How do we get an object in the first place? EGO is a prototype-
based language that allows us tocloneexisting objects. We assume
that a well-known variableObject is bound to the first object in
the system. Thus creating a new object, adding two methods, and
invoking the first one can be realized as follows.

clone(Object) 7← m1 = e1 7← m2 = e2 ⇐ m1

Expressions for a method body have to evaluate to a lambda
abstraction with argumentself . When a method is executed, the
receiver object will be applied to this outermost lambda. Methods
can refer to their receiver and its (other) methods by accessing the
bound variableself .

We often want to use an object in a class-like manner, meaning
that the object contains instance methods to be used by other ob-
jects. Such an object is called atrait in the SELF literature [26]. We
can use thelet construct in combination with delegation to realize
traits as shown below.

typedefτ = t.¡〈f : t ⊸ nat;
super : t′.〈succ : t → nat; super t′′.¡〈〉〉〉

let Trait = change linearity(clone(Object)
7← succ = λself :τ . self⇐f + 1) in

(clone(Object).delegate(Trait)
7← f = λself :τ . 5) ⇐ succ

The result of this expression would be6. Obviously, an arbitrary
number of objects can be defined that inherit their behavior from
the Trait object above by delegation and define their ownf field.
Another option is to simply clone the trait object, which would
result in simply duplicating all of the methods ofTrait rather than
sharing them through delegation. We will present an example of
this more prototype-oriented approach in a later section.

// trait for s
let b = clone(Object)

7← service = λself : τb. x : Nat x + 1 in
// now define s itself
let s = clone(Object).delegate(b) in
// and finally the clients

let c1 = clone(Object) 7← r = λself : τc.s in
let c2 = clone(Object) 7← r = λself : τc.s in

. . .

Figure 2. An incorrect version of the server objects referenced by
multiple clients

// trait for s
let b = change linearity(clone(Object)

7← service = λself : τb. x : Nat x + 1) in
// now define s itself
let s = change linearity(clone(Object).delegate(b)) in
// and finally the clients

let c1 = clone(Object) 7← r = s in
let c2 = clone(Object) 7← r = s in
...

// invalid: let = s.delegate(a) in
c2 ⇐ r ⇐ service(5)

Figure 3. A correct version of the server objects referenced by
multiple clients

2.3 The Challenge of Aliasing

So far we have ignored a major complication of our system: alias-
ing. An aliased object is (possibly) referred to by multiple names
(references) in a program as opposed tolinear objects that have
only one name. Aliased objects are also called “non-linear”, and
linear ones are sometimes called “non-aliased”.

In an object-oriented setting, aliasing is almost inevitable be-
cause of the state held in instance fields. A very common notion is
that a server objects is used by multiple clientsci that all hold a ref-
erence tos in their fieldsci.r. The objects is then heavily aliased
(see figure 2). If we now change the configuration ofs e.g. by
changing its delegate fromb to a with s.delegate(a), obviously
all clients are affected. In particular, it is hard to tell whethers will
still work the way its current clients expect it to.

For this reason, we forbid a change of delegation for aliased
objects as well as adding or changing methods for such objects if it
changes the method’s signature. We allow methods to be modified
for aliased objects as long as the new method has the same signature
as the old method. This allows us to model field updates, for
example.

Moreover, we forbid delegation to a linear object (because that
would be just like a second explicit reference to that object). In-
stead, we introduce thechangelinearity primitive mentioned ear-
lier to explicitly convert a linear into an aliased object that can then
be a delegatee. Note that there is no way of turning an aliased object
back into a linear one. Figure 3 shows howchangelinearity must
be added to the code from Figure 2 to typecheck properly in EGO.

Intuitively, these restrictions have to do with the typing of ob-
jects. Changing a method signature or the delegation changes the
type of the object. That means that the aliases to that expression
somehow would have to invisibly change their types as well, which
would be difficult or impossible for a static type system to track
in the general case. Conversely, changing a linear object affects

let lin = clone (Object)
let o = clone (Object) 7← l = ¡λself :τ.(self, lin) in
// lin is no longer available

let (o2, lin2) = o ⇐ l in
// instead we can now use lin2
// o2 replaces o, but does not contain l any more

Figure 4. A linear method consuming a variable on the stack and
its linear receiver

only the type of the expression at hand, which is what a static type
checker tracks anyway.

On the typing level we introduce alinearity flag for ob-
jects and lambdas, which we write as “¡” following Wadler [27].
changelinearity explicitly removes this flag for an object, thus al-
lowing it to be aliased. Bodies of linear lambda abstractions have
access to the linear variables defined in the current scope abstrac-
tion. The type system guarantees that such linear variables are
used only once. (We say they are “consumed” on usage.) Fig-
ure 4 gives an example, with pairs written as(x, y). Non-linear
lambda-abstractions, on the other hand, can only access the non-
linear variables in the context. Non-linear variables can be used
multiple times.

We call a method linear if it is written with a linear lambda ab-
straction. Linear methods are consumed upon invocation, i.e. they
are effectively removed from the receiver object. This guarantees
the linearity of the context variables: If we could call the linear
methodl from figure 4 twice, then we would gain two aliases to
lin “through the back door”. As recursive calls to the same linear
method would have the same harmful effect, we have to remove a
linear method from its objectbeforethat method’s body is evalu-
ated. Thus the methodl in figure 4 is not only no longer available
afterl was evaluated, butl cannot invoke itself onself again either.

We forbid cloning of objects with linear methods for the same
reason: That would result into pairs of linear methods accessing
the very same variable. However, the object can be linear (because
it is completely duplicated), and the resulting clone is linear in
any case. Thus all objects are linear in the beginning of their
lifetime and can be converted into a non-linear object explicitly
usingchangelinearity (but not back into a linear object).

An alternative to the solution of consuming linear methods
upon invocation would be to consume the receiver as a whole. We
consider this a bad choice: Only one method could be ever executed
on a linear object.

Independent of the linearity of a lambda itself, its argument
can be linear or non-linear. A linear lambda argument requires a
linear object. The object applied to such a lambda is no longer
available at the invocation site after that application (again, we say
it is “consumed”). However, the lambda abstraction can return its
argument to the caller as the methodo.l in figure 4 illustrates.o is
no longer available after the last line, but it is passed back intoo2.

2.4 Method Definition

In order to capture dynamic manipulations of objects statically,
EGO types objects with a recursive record type [1,15] that contains
an explicit list of all methods the object defines together with a
field for its delegate. A linear object containing an integer field as
well as a linear method that takes an integer argument and yields
an integer would be typed as follows. The object delegates to an
empty object likeObject. Note that in the body of the type below, t
is bound recursively to the entire type expression.

t.¡〈field : t → int, linMeth : t ⊸ int ⊸ int; super : 〈〉〉

typedef entry = t.〈name : t→string,
number : t→string; super : 〈〉〉

typedef default = t.¡〈prepareNew : t→action,
makeEditable : t→entry→action,
confirmDelete : t→entry→action; super : 〈〉〉

typedef action = t.¡〈prepareNew : default→t,
makeEditable : default→entry→t,
confirmDelete : default→entry→t,
ok : default⊸default; super : 〈〉〉

let Entry = clone(Object)
7← name = λself :entry.“”
7← phone = λself :entry.“” in

let WebPhonebook = clone(Object)
7← prepareNew = λself : default.
let curEntry = clone(Entry) in
self 7← ok = ¡λself : default. /* save new entry */
7← makeEditable = λself : default.
λcurEntry : entry.
self 7← ok = ¡λself : default. /* save edited entry */
7← confirmDelete = λself : default.
λcurEntry : entry.
self 7← ok = ¡λself : default. /* delete selected entry */

Figure 5. Web phonebook business logic

We use⊸ for typing linear lambda abstractions and→ for
non-linear ones. Every method body definition must be an explicit
lambda abstraction forself, the receiver object. The type ofself
essentially listsall methods expected to be defined for the receiver,
when the method is called. Additional arguments can be captured
with nested lambdas.

The requirement thatself must be typed with a recursive record
type is essentially not different from typing an object with a class
name in e.g. Java: Since the methods in a Java class cannot be
manipulated the class name can be used as a (shorter) synonym
for a record type containing all methods defined for that class.

In fact, our system is much more flexible in that different meth-
ods of the same object can declare different receiver object types.
This is useful to encode typestate-like examples; as the object’s
type changes over time due to method addition, method removal,
and delegation changes, different methods in the object become ap-
plicable. Thus the programmer can enforce possible sequences of
method invocations on the object, i.e. the object’sprotocol[10, 11].
Figure 5 gives an example of method definitions using typestate.
Note that we givetypedefsfor several record types in the beginning
to improve readability. They are not part of the core EGO language.

We illustrate the business logic of a Web-based phonebook.
Such applications are characterized bytwo-phased actions: First,
the user indicates the type of action he wants the system to perform
(e.g. create a new entry withprepareNew). The phonebook applica-
tion will then present a form to enter the new contact information.
The user can now complete the action by sending anok message
(or cancel, which we omit).

Our phonebook therefore has adefault and anaction state.
We see that objects in thedefaultstate have three methods, while
those inactionhave four. The methods applicable to the respective
states can be easily identified by the types of theirself variables.
The triggers to switch from one state to the other are the business
methods andok, respectively.

The type system ensures that a method can only be called on a
receiver that matches its expected receiver type exactly,after the

method itself has been removed in the case of linear methods1

2. Thus, in thedefault state, the business methods can be called
because they expect a receiver of typedefault, but theok method
cannot be called because it is not even part of thedefaultstate.

In the action state, the three business methods are still part of the
type, but they cannot be called because these non-linear methods
expect an object in thedefaultstate and the receiver is in theaction
state, which has the additional methodok. On the other hand, the
ok method is linear, and it can be called in theactionstate because
once you take theok method out of theaction type, you get the
defaulttype which is what theok method expects.

Note thatok behaves differently depending on the action that is
to be performed. Therefore each business method defines its own
ok method.

Our system tracks the exact type, rather than a supertype, for
linear objects, in order to make sure that changes to the object are
legal with respect its complete current type. In particular, when
changing delegation the type system has to determine the exact new
record type of the object, which can only be done on the basis of
the exact old type of the object and its new delegate. Otherwise,
the object could define a method with a name also used in the
new delegate but with a different return type. If that method were
not listed in the object type (which could happen if we allowed
subtyping for linear objects) then the system would expect the
wrong return type (the one defined in the delegate object) from a
later call to that method.

The restriction of exact type tracking could be relaxed for
aliased objects. Here, subtyping could be introduced to accept ob-
jects with more methods than expected, because the object type
cannot change in a way that would introduce the problem men-
tioned above. Even though subtyping is well defined for record
types, we elide this extension from our formal core system to keep
it as simple as possible.

2.5 Expressive Power

The examples we have seen so far were mostly intended to illustrate
syntax and semantics of EGO. This section will present higher-
level examples in order to demonstrate the expressiveness of the
language. In fact, one was already given in the previous section
(figure 5) to illustrate the application of EGO to typestates. We will
see typestates [10, 11] again in the examples that follow. The final
example will implement the TCP socket from the introduction in
EGO.

The examples rely on dynamic inheritance and adding new
methods to objects over time. They are therefore not directly ex-
pressible in languages with static inheritance like Java. They are
expressible in SELF, but SELF would not be able to statically guar-
antee that the program evaluation will succeed at runtime. Our sys-
tem does guarantee successful evaluation of the presented examples
by virtue of the type safety proof presented later.

Throughout the examples we rely on the intuition of the reader
to assume the semantics of certain objects to which we merely
refer by name. Explicitly defining a sufficiently large library for
interesting examples is outside the scope of this paper.

Consider the EGO program in figure 6. It models the workflow
in a company between a manager, her secretary, and her designated
worker. We first implement the secretary who can do some work.

1 Removing the method from the type is necessary to ensure that linear
methods cannot recursively call themselves. Recursive callswould break
the invariant that no linear method is called more than once.
2 We have chosen to make the type of the receiver reflect the type inside
the method, rather than the type as seen by the caller (before the called
linear method is removed from it). The other choice would be moreintuitive
from the client’s perspective, but more confusing from the standpoint of the
implementor.

typedef minit = /* initial manager */
t.¡〈sec : mwork → u.〈doWork : msec → unit〉,

setWorker : (t−setWorker) ⊸ worker ⊸ mwork〉
typedef worker = t.〈doWork : mwork→unit,

workerSick : mwork→msec〉
typedef mwork = /* manager delegating to worker */

t.¡〈sec : t → u.〈doWork : msec → unit〉,
myworker : msec → worker;
super: worker〉

typedef msec = /* manager delegating to secretary */
t.¡〈sec : mwork → u.〈doWork : t → unit〉,

myworker : t → worker,
workerRecover : (t−workerRecover) ⊸ mwork;
super : 〈doWork : t→unit〉〉

let Secretary = change linearity(clone(Object)
7← doWork = λself :msec.λtask :τ. . . .) in

let WorkerProto = clone(Object)
7← doWork = λself :mwork.λtask :τ. . . .
7← workerSick = λself :mwork . self.delegate(self ⇐ sec)
7← workerRecover = ¡λself :msec .

self.delegate(self ⇐ myworker) in

let Manager = clone(Object)
7← sec = λself : mwork.Secretary
7← setWorker = ¡λself : minit.
¡λ newworker:worker.
(self 7← myworker =

λself :msec . newworker).
delegate(newworker)

⇐ setWorker(change linearity(clone(WorkerProto))) . . .

Figure 6. Using delegation to implement workflows

let PowerSupply = clone(Object).
7← generatePower =
λself :t.〈generatePower : t → power〉.

let On = change linearity(clone(Object)
7← getPower =
λself :t.¡〈supply, on, off ; super : 〈getPower〉〉.
self ⇐ supply ⇐ generatePower) in

let Off = change linearity(clone(Object)) in

let PowerSwitch = clone(Object)
7← on = λself :t.¡〈supply, on, off ; super : 〈〉〉.
〈self.delegate(On).
7← off =
λself :t.¡〈supply, on, off ; super : 〈getPower〉〉.

self.delegate(Off)〉 in

let ps = clone(PowerSwitch) 7← supply =
λself :t.¡〈supply, on, off ; super : 〈getPower〉〉.

PowerSupply in
ps ⇐ on ⇐ getPower ⇐ getPower ⇐ off ⇐ on ⇐
getPower ⇐ off

Figure 7. A power network using composition and delegation.
Certain types have been abbreviated.

We also define a prototype worker who, no surprise, can also
do some work. We define a concrete secretary as opposed to a
prototype worker for purely pedagogical reasons. Both could be
prototypes. Also note that we do not use thetrait idiom known from
SELF to generate a worker “class”. Instead we define the worker
prototype as an object to be cloned to create instances. We feel that
this more closely resembles the real world where different workers
are different autonomous individuals.

Finally we implement the manager who has fields for her secre-
tary and her worker. By default, the manager forwards all the work
she has to do to her worker. We do this simply by delegation. (That
forces the complicated typing ofself in the two doWork imple-
mentations.) The use of delegation here models delegation in a real
company, where work is delegated from one to the other person.
Slightly confusing might be the implication that our manager does
not even “see” the work items she delegates to her subordinate. But
maybe this is not too unrealistic, either.

Now imagine the worker gets sick. We would invoke thework-
erSickmethod on our manager. That causes the manager to dump
her work onto her secretary from now on. The secretary can-
not get sick, so that’s a safe guess. But also, the manager ex-
pects her worker to recover eventually. Thus she defines an addi-
tional methodworkerRecoverto anticipate this event. Note that this
changes the manager’s signature. She is now in a different state, the
“worker sick” state.workerRecoveris defined to be linear and thus
will be consumed on invocation. The method will also redelegate
to the now recovered worker, effectively transferring the manager
back to her original state. As a final remark concerning states we
point out that the manager is in a sort of initialization state before
setWorkeris called. Only then can she do (or rather, delegate) work.

Next we implement a power network in figure 7. It consists of
a power supply, an on-off-switch and a client that requests power.
In this example we use delegation to model the different states of
the power switch (on and off). Obviously, only theOn object has
a getPowermethod that forwards the power request to the supply
configured for that object. Thus our client first has to connect the
switch to the supply by adding thesupplyfield. Then it can switch
on, get power for a while, switch off, and on again to get more
power.

TheOnandOff objects that implement the two controller states
can be aliased by an arbitrary number of switches that all delegate
to one of these two objects. The power supply is unique to each
switch (both being physical devices) and therefore represented as
an instance field to the switch. Without that field defined, the switch
is not functional as the signatures for theonandoff methods do not
match. It can redirect to a different source later, though.

The power network example uses an implementation strategy
that is quite the opposite to the workflow example above. In the
power network, we use delegation to express states (on and off)
and explicit forwarding (similar to composition in object-oriented
programming) to transfer the power from the supply to the con-
sumer. In the workflow example, on the other hand, we added and
removed methods to change the state of the manager object. We
used delegation to (implicitly) forward calls from one object to the
other.

Finally, we look into the TCP socket example from the introduc-
tion section again. Figure 8 gives an implementation in EGO. We
do not use delegation at all but rather manipulate the object with
each method call. The implementation relies on linear methods to
enforce thatbind, listen, andacceptare called exactly once. Each
of these generates the following method; therefore a client must
follow the prescribed call sequence.

We show as an example howbind also generates a field that
contains the port on which the socket is going to listen in order to
demonstrate that a real socket implementation is a full-blown data

typedef open = t.¡〈port : t → (t, int), read : t → (t, τ),
write : t → τ ⊸ t, close : t ⊸ unit; super : 〈〉〉

typedef portt = t.¡〈port : open → (open, int)〉

let Socket = clone(Object)
7← bind = ¡λself : t.¡〈〉./* bind impl */ ;
self 7← port = λself : open.(self, prt)

7← listen = ¡λself : portt./* listen impl */;
self 7← accept = ¡λself : portt./* accept impl */;

self 7← read = λself : open.(self, /* result */)
7← write = λself : open.¡λdata:τ. . . . ; self
7← close = ¡λself :open. . . . ; unit

Figure 8. A TCP socket object in EGO

structure. Derived fields, as theport here, can be added to the object
when they are available in EGO, effectively preventing reads from
not yet defined fields.

The call toacceptwill generateread, write, andclosemethods.
The first two can now be called an arbitrary number of times.
They require a linearself and return it unchanged upon completion
of the call. closealso requires a linearself but does not give it
back, effectively making the object inaccessible. Lending [2] or
borrowing [7] for the methods returningself would make this
explicit return unnecessary. We elide this possible extension to
EGO for simplicity.

2.6 Summary

In the preceding sections we gave an informal introduction to EGO.
We have seen in detail how programs can be implemented in the
language. We discussed its handling of aliasing as well as the no-
tion of typestates which it naturally supports through its method
definitions. Finally we could express a number of relevant exam-
ples in EGO. We saw that delegation and dynamic method changes
are somewhat interchangeable, effectively allowing different pro-
gramming styles.

The examples were complex enough to imagine that an ad-hoc
SELF programmer can introduce bugs that result in runtime errors.
That motivates the need for static typechecking for such programs
in order to make sure that all object manipulations and method
invocations will succeed. Throughout this section we described the
restrictions EGO imposes on the programmer to control SELF’s
“power of simplicity”. We have seen that they are loose enough to
implement interesting programs in EGO, and although the current
type system is somewhat complex we believe this can be simplified
considerably in a practical system. It is the main result of this paper
that these restrictions are also strong enough to ensure EGO’s type
safety. This will be formalized in the next section.

3. Formal Model
We now introduce the core EGO language to formalize the intu-
itions given above. This section contains the full dynamic seman-
tics, the full static semantics, and a summarized type safety proof
of EGO. The full type safety proof is available in [5].

3.1 Syntax

Figure 9 presents the syntax of our model. We do not include base
types, control flow structures, exceptions, and subtyping into the
model as they are well-known from the literature. We omit multiple
inheritance and polymorphism as these are orthogonal to the typing
issues at hand. Note that an overbar is used to represent a sequence.

An expression is a variable(x), a value(v), a clone of an object
(clone), a method invocation(⇐), an object delegation change

(delegate), the addition of a new method to an object or the change
of a method body(7←), a function application(f a) and a change of
the type linearity of an object(changelinearity) . A method(M)
is defined as a pair: the name of the method(m) and an expression
that reduces to a method body.

A method body definition is a lambda expression with a linearity
for the function and an explicit type for arguments (type inference
is future work). We require that the outermost lambda types the
receiver object. Our store(S) is a set of pairs: the location of the
object and the object descriptor(Odescr).

An object descriptor is a pair: the location of the super object,
and a sequence of methods defined for this object. While our syntax
for methods follows that of functional languages in order to connect
more directly to previous linear type systems [27], our record-based
object encoding is similar to standard object encodings [1,6,15,16].
The primary difference in our encoding is that we must represent
inheritance explicitly–since it might be changed–rather than just
merging inherited methods into the object itself as previous systems
have done.

There are four kinds of types: for variables(t), for non-linear
functions (→), for linear functions(⊸) and finally for objects
(t.R). The object type is a recursive type wheret is bound toR.
The record type(R) is a list of the types of the methods(B) defined
for the object and the type of the super object(super). In [16] a
row type is also a row variable, a row lambda abstraction and a
row application. We omit these row types as we don’t need them in
our system to express any kind of row polymorphism. The type of a
linear object is presented by¡. We use[¡] to represent that the object
might be linear or non-linear. That is, optional syntax is enclosed
in [].

Instance variables are represented by parameterless methods.
LocationsL are not part of the source code. We assume to have a
first object(Object) defined when we want to evaluate a program.

(expressions) e ::= x | v | e ⇐ m | e1.delegate(e2)
| clone(e) | e 7← m = e
| e1 e2

| change linearity(e)
(values) v ::= L | [¡]λx:τ . e0

(heap) S ::= Object 7→ super : Object
| L 7→ Odescr, S

(object desc) Odescr ::= super : L
| Odescr 7← M

(method desc) M ::= m = e
(types) τ ::= t | τ ′ → τ ′′ | t.R | τ ′

⊸ τ ′′

(records) R ::= [¡]〈〉 | [¡]〈B; super : τ〉
B ::= ǫ | m : τ, B

(heap location) L
(variable) x
(type variable) t
(method name) m

Figure 9. Syntax of the language, store, types.

3.2 Dynamic Semantics

The dynamic semantics we defined for EGO is a standard small
step operational semantics. The store(S) is a function from loca-
tions(L) to object descriptors(Odescr). Figure 10 summarizes the
rules for evaluating expressions. We describe each rule in turn.

(R − Appl) shows how a method is applied to its arguments. We
write [v/x]e0 for the result of replacingx by v in expressionse0.

(R − LInvk) invokes a linear method on an object. The
method is owned by the receiver and is linear. As the type system

does not allow another call to that linear method we remove
it from the store. The locationL is passed as an argument to
the method becauseself is not a free variable in the lambda
expression. The type system does not support this in order to
not have aliasing issues. The result of the reduction is a method
apply withL as an argument and a store without the methodm in it.

(R − NInvk) invokes a non-linear method. The result of
the reduction is the same as the one above except that the store
is unchanged now: The type system allows the client to invoke a
non-linear method more than once .

(R − Clone) creates a new object from an existing one.
The list of methods and the address of the super object are copied
from the cloned object to the newly created location.

(R − Deleg) changes the reference to the super object of
the receiver object. The result of the reduction is the modified
location of the receiver. Here the overbar represents a sequence of
method bindingsM .

(R − AddM) adds a new method to the receiver object.
dom(M) represents the set of the methods name for an object
descriptor. The result returned is the modified location of the
receiver.

(R−ChanMBd) changes the body of method(m) of the receiver.

(R − ChanLin) has no operational effect; thechangelinearity
construct is needed only to track where a linear object becomes
nonlinear in the static semantics. The result of the reduction is the
location passed as argument for the expression.

([¡]λx : τ ′.e0)v, S −→ [v/x]e0, S
R − Appl

mbody(S[L], m) = v v = ¡λx...
S′ = S[L → (S[L] \ (m = v)]

L ⇐ m, S −→ v L, S′
R − LInvk

mbody(S[L], m) = v v = λx...

L ⇐ m, S −→ v L, S
R − NInvk

S[L] = Odescr L′′ 6∈ domain(S)
S′ = S[L′′ → Odescr]

clone(L), S −→ L′′, S′
R − Clone

S[L1] = super : L1 7← M
S′ = S[L1 7→ super : L2 7← M]

L1.delegate(L2), S −→ L1, S
′

R − Deleg

S[L] = super : L′ 7← M m 6∈ dom(M)
S′ = S[L → (super : L′ 7← M 7← m = v)]

L 7← m = v, S −→ L, S′
R − AddM

S[L] = super:L′ 7← m1:v1... 7← mi:v...
S′=S[L→super:L′ 7← m1:v1... 7← mi:v

′...]

L 7← mi = v′, S −→ L, S′
R − ChanMBd

change linearity(L), S −→ L, S
R − ChanLin

Figure 10. Evaluation rules for expressions

M [m] = v

mbody(super : L 7← M, m) = v

m 6∈ dom(M)

mbody(super : L 7← M, m) = mbody(S[L], m)

Figure 11. Rules for lookup of methods body.

3.3 Static Semantics

Figure 12 presents the typing rules for expressions. Every typing
rule has the standard form,Σ; A ⊢ e : τ =⇒ liste that contains a
store type(Σ), an assumption list(A or A’) , an expression that is
typed(e), the type of the expression(τ)and the list of linear objects
(liste) that are used to type the expression.

We use a type storeΣ to store the types of our objects:

Σ ::= Object : t.〈〉 | Σ; L:τ

The assumption list A (or A’) contains the types of the bound
variables in the expressione that is typechecked. An assumption
list, A, is defined as:

A ::= · | A, x : τ

We use· to present the empty assumption list. An assumption list
is non-linear if each assumption xi:τ i in it has a non-linear typeτ i.
Note that linear variables will be removed from the assumption list
upon usage.

The type expressiont.[¡]〈m1:τ1, ..., mk:τk;
super : t′.[¡]〈m′

1:τ
′

1, ..., m
′

j :τ
′

j〉〉 is a type t with the property that
when we invoke a methodmi for 1 ≤ i ≤ k or a methodm′

i for
1 ≤ i ≤ j to any element x of this type, likex.mi, the result has
type τi or τ ′

i with t substituted witht.R. Thus t.R is a form of
recursively-defined type.

Let us describe each rule and give a brief justification with
examples for selected cases. Note that the word location is used
somewhat ambiguously because sometimes it refers to the label of
a location and sometimes it is used to refer to the object at that lo-
cation. However, what is meant is always obvious from the context.

(T − Loc), (T − NLoc) A location is well-typed if it is
defined inΣ. The list returned is empty if the location is non-linear
or L if the location is linear.

(T − Method) A non-linear method is well-typed if its
body is well-typed. The restriction on the assumption list to be
non linear is because we want each variable needed to type the
expression to be non-linear so we can safely call the method more
than once. There is no restriction on the arguments of the methods
because if they are linear there is no way of duplicating them.
The returned list is empty as the objects used here are all non-linear.

(T − LMethod) A linear method, too, is well-typed if its
body is well-typed. However in this rule, there is no restriction on
the assumption list. Linear variables can safely be used in a linear
method because it will be called only once during the program.
The list returned is the one returned from the type rule applied to
the method body.

(T − V ar) The type of a variable is the one that it has in
the assumption list. The returned list is empty as there are no ob-
jects used to type it. The assumption list has only the record to type
the variable. The type system does not need to forget information
in the assumption list during the typing of an expression.

Σ(L) = t.¡〈B; super : t′.R〉

Σ; · ⊢ L : t.¡〈B; super : t′.R〉 =⇒ {L}
T − Loc

Σ(L) = t.〈B; super : t′.R〉

Σ; · ⊢ L : t.〈B; super : t′.R〉 =⇒ {}
T − NLoc

Σ; A, x : τ ′ ⊢ e0 : τ ′′ =⇒ {}
x 6∈ A, nonlinear A

Σ; A ⊢ (λx : τ ′.e0) : τ ′ → τ ′′ =⇒ {}
T−Method

Σ; A, x : τ ′ ⊢ e0 : τ ′′ =⇒ liste0
x 6∈ A

Σ; A ⊢ (¡λx : τ ′.e0) : τ ′
⊸ τ ′′ =⇒ liste0

T − LMethod

Σ; x : τ ⊢ x : τ =⇒ {}
T − Var

Σ; A ⊢ u : U =⇒ listu

Σ; A, x : X ⊢ u : U =⇒ listu
T − Kill

Σ; A, x : X, x : X ⊢ u : U =⇒ listu nonlinearX

Σ; A, x : X ⊢ u : U =⇒ listu

T − Copy

Σ; A ⊢ e : t.[¡]〈B; super : τ〉〉 =⇒ liste

∀m:τ ′ ∈ B . τ ′ = τ ′′→τ ′′′

Σ; A ⊢ clone(e) : t.¡〈B; super : τ〉〉 =⇒ liste

T − Clone

Σ; A ⊢ e : τ ′ =⇒ liste

mtype(m, τ ′, τ ′) = τ ′ → τ ′′

τ ′ = t.〈B; super : τ〉

Σ; A ⊢ e ⇐ m : [t.〈B; super:τ〉/t]τ ′′ =⇒ liste

T−Invk

Σ; A ⊢ e : t.¡〈..., [(m:τ ′ → τ ′′)/(m:τ ′
⊸ τ ′′)];

super:τ〉 =⇒ liste

τ ′ = t.¡〈..., [m:τ ′→τ ′′/ −]; super : τ〉

Σ; A ⊢ e ⇐ m : [t.¡〈..., [m:τ ′→τ ′′/ −];
super : τ〉/t]τ ′′ =⇒ liste

T − LInvk

Σ; A ⊢ e1 : t.¡〈B; super : τ ′〉 =⇒ liste1

Σ; A′ ⊢ e2 : τ =⇒ liste2
m 6∈ B

Σ; A, A′ ⊢ e1 7← m = e2 :
t.¡〈B, m : τ ; super : τ ′〉 =⇒ liste1

, liste2

T−AddM

Σ; A ⊢ e1 : t.¡〈..., m : τ ′, ...; super : τ ′′〉
=⇒ lste1

Σ; A′ ⊢ e2 : τ =⇒ lste2

Σ; A, A′ ⊢ e1 7← m = e2 :
t.¡〈..., m:τ, ...; super:τ ′′〉 =⇒ lste1

, lste2

T−LChanMBd

Σ; A ⊢ e1 : t.〈..., m : τ ′, ...; super : τ〉
=⇒ liste1

Σ; A′ ⊢ e2 : τ ′ =⇒ {} τ ′ is nonlinear

Σ; A, A′ ⊢ e1 7← m = e2 :
t.〈..., m : τ ′, ...; super : τ〉 =⇒ liste1

T − ChanMBd

Figure 12. Static semantics of expressions.{} represents the
empty list.

(T − Kill) This rule is used in the case we have to delete a
record from the assumption list in order to typecheck an expres-
sion. We need it in typing cases like ¡λx:Xλy:Y.x wherey can
be non-linear. As long as it is not used,(T − Kill) can remove it
from the context to type this linear method. The list returned is the
same as the expression that is typed with the new assumption list.

(T − Copy) This rule makes another copy of a non linear variable
in the assumption list. We use it in cases likeλx:Nat . x+x or
λx:X . (x 7← m = λy:Y . x) wherex is non-linear. The type
system has to explicitly duplicatex in order to use it multiple times.

(T − Clone) A clone expression is well-typed ife (the prototype
object) is well-typed and the super object ofe has a non-linear
type (which is true automatically by virtue of(T − Deleg) in
Figure 13). The methods defined for the cloned object must all be
non-linear in order not to copy references to linear objects through
the back door. The new object created has a linear type.

(T − Invk) A ⇐ m expression is well-typed for non-linear
m if e (the receiver) andm are well-typed,m is non-linear and
the argument type ofm is the same as the type of the object. The
mtype function (see Figure 14) returns the type of the method that
is invoked. The type returned is the type where the type ofself is
updated with the type of the receiver of the method.

Unlike systems such as Featherweight Java, our type system
does not modelself as a free variable. Insteadself is bound
explicitly with a lambda. This binding ensures that the linearity
of self is tracked like that of any other variable, ensuring (for
example) that a linearself is not used more than once.

(T −LInvk) The difference of this rule from the one above is that
e(the receiver) is linear andm can be either linear or nonlinear. The
new type ofedoes not allow the client to callm again ifm is linear.
This is expressed in the rule by takingm out of the type of the
object in the result. This prevents aliasing of linear objects in the as-
sumption list (the stack). The following example illustrates the idea

let obj = clone(Object) 7← m =¡λ:unit.self in
let obj2 = obj ⇐ m in
let obj3 = obj2 ⇐ m /*we have two references to obj*/

(T − AddM) The type-system adds new methods only to
linear objects because aliases to an object would not be aware of
the new method. The assumption list used to type the expression is
split to type the two different expressions,e1 ande2, in order to
track the linearity of the objects. The list returned is the concatena-
tion of the lists returned from the typing rules ofeandm.

(T − LChanMBd) This rule checks if the object is linear
and then checks if the new method body is well-typed. We can
change the type of the method when the receiver is linear just like
we can add new methods.

(T − ChanMBd) This rule checks if the object is non-
linear and that the new method body has the same type as the
existing one. We do that for the same typing problem we can have
in theT − AddM or T − Deleg.

(T − Deleg) This rule only allows delegation changes to
linear objects for the same reason the type-system only permits
new methods for linear objects. The rule only allows delegation to
non-linear objects because if the type system allows the client to
delegate to linear objects then we effectively have more than one
reference to it. Each occurrence oft2 is replaced byt1 in the new
type oft1 because the receiver type for the inherited methods ist1.
That is to preserve method specialization.

(T − ChanLin) This rule changes the linearity of an object
from linear to non-linear. The super object is non-linear anyway.

Σ; A ⊢ e1 : t1.¡〈B1; super : t′.R1〉 =⇒ liste1

Σ; A′ ⊢ e2 : t2.〈B2; super : t′′.R2〉 =⇒ liste2

Σ; A, A′ ⊢ e1.delegate(e2) :
t1.¡〈B1; super : (t2.〈B2; super : t′′.R2〉)[t1/t2]〉

=⇒ liste1
, liste2

T − Deleg

Σ; A ⊢ e : t.¡R =⇒ liste

Σ; A ⊢ change linearity(e) : t.R =⇒ liste

T − ChanLin

Σ; A ⊢ e1 : τ ′[→ / ⊸]τ ′′ =⇒ liste1

Σ; A′ ⊢ e2 : τ ′ =⇒ liste2

Σ; A, A′ ⊢ e1e2 : τ ′′ =⇒ liste1
, liste2

T − Appl

Figure 13. Static semantics of expressions continued.

m ∈ B B = 〈..., m : τ, ...〉

mtype(m, t.[¡]〈B; super : t′.R〉, t′′.R′′) = τ [t′′.R′′/t]

m 6∈ B

mtype(m, t.[¡]〈B; super : t′.R〉, τ)
= mtype(m, t′.R, τ)

Figure 14. Rules for looking up a method’s type in a record type

∀Li ∈ dom(Σ).Σ; · ⊢ S(Li) : Σ(Li) =⇒ listi

Σ; · ⊢ S =⇒ concat(listi)
T − Store

Σ(L) = t′.R ∀mi=ei . Σ; · ⊢ ei : τi =⇒ listei

Σ; · ⊢ super : L 7← m1=e1... 7← mn=en :
t.[¡]〈τi; super : t′.R〉 =⇒ concat(listei

)

T − Odescr

Figure 15. Static semantic of Store

(T − Appl) This rule checks if the first expressione1 has a
function type and that the second expressione2 has the same type
of the argument ofe1.

Figure 15 contains the rules for type-checking the storeS. listi

is a list of all linear objects used to type the locationS[Li]. The
storeS is well-typed if every location in the store is well-typed. A
locationL is well-typed if the super object which it inherit is well-
typed and each method’s body defined for that location is well-
typed.listei

is a list of linear objects used during the typing of the
expressione.

3.4 Soundness

In this section we describe the approach taken for proving type
safety for our system. We define important conditions and present
the key lemmas needed for proving preservation and progress. We
also briefly consider the most interesting cases of the progress and
preservation proofs. The full type safety proof is available in [5].

Preservation Preservation ensures that the type of an expression
is preserved during its evaluation.

The most interesting issue in type preservation is ensuring that
linear references are not duplicated. For example, in an untyped
version of EGO consider an objectA that contains a linear method
M , which in turn contains a reference to a linear objectL. If we
could cloneA, then we would get a copy ofM in the clone, and
we could invoke both versions ofM to extract two references to

L. Our type system prohibits this by checking that clone is never
called on an object with linear methods.

For the proof of preservation, we need two standard properties
about the substitution operation as it occurs in function application.

Lemma 1 (Properties of Typing)
(i) (Weakening) IfΣ; A, A′ ⊢ e : τ =⇒ liste andτ is non-linear

thenΣ; A, x : τ, A′ ⊢ e : τ =⇒ liste.
(ii) (Substitution)IfΣ; A, x : τ, A′ ⊢ e′ : τ ′ =⇒ liste′ andΣ; · ⊢

e : τ =⇒ liste thenΣ; A, A′ ⊢ {e/x}e′ : τ ′ =⇒ liste′ , liste

The first property follows from rule T-Kill, the second is proved
by rule induction on the typing judgment fore ande′ respectively.

As a program executes, the number of locations in the store
can expand asclone operations are performed, and the types of
locations can change as a result of method addition or delegation
changes. We formalize the way the store type can change as a store
extension operationΣ′ ≥L Σ. This judgment means thatΣ′ differs
from Σ because ofL in one of two cases :

1. Σ′ may have an additionalL in its domain

dom(Σ′) = dom(Σ) ∪ {L} ∀L′ ∈ dom(Σ).Σ(L′) = Σ′(L′)

Σ′ ≥L Σ

2. L was linear inΣ but is non-linear inΣ′

dom(Σ′) = dom(Σ) Σ(L) = t.¡R Σ′(L) = t.R
∀L′∈{dom(Σ) − L} . Σ(L′)=Σ′(L′)

Σ′ ≥L Σ

The first differ case ofΣ′ and Σ is introduced by theclone
typing rule and the second case is introduced by theaddMethod,
delegateor changelinearity typing rules. This lemma is used for
the proof of T-AddM, T-Deleg and T-Appl.

Next, we define two lemmas that are useful in ensuring that lin-
ear methods and objects remain unaliased as the program executes.

Lemma 2
If Σ; A ⊢ e : τ =⇒ liste, Σ′ ≥L Σ and L 6∈ liste then
Σ′; A ⊢ e : τ =⇒ liste.

This lemma is used to prove that if the old list(liste1
, liste2

, listS)
of linear objects has no duplicates and part of that list,
(liste1

, listS), has changed to(liste′
1
, listS′) because of an eval-

uation rule then the modified list(liste′
1
, liste2

, listS′) has no du-
plicates. This is because if there are no duplicates in the bigger list
there could not possibly be duplicates in the smaller one.

The proof is by rule induction on the typing judgment fore.

Lemma 3
For any rule,e, S → e′, S′, whereΣ; · ⊢ e : τ =⇒ liste, Σ; · ⊢
S =⇒ listS and no duplicatesliste, listS , and forΣ′ ≥L Σ and
Σ′; · ⊢ e′ : τ =⇒ liste′ , Σ

′; · ⊢ S′ =⇒ listS′ and no duplicate in
listS′ , liste′ then{listS′}∪ {liste′} ⊆ {listS}∪ {liste}∪ {L}.

The proof is by rule induction on the evaluation judgment.

Theorem 4 (Preservation)
If Σ; · ⊢ e : τ =⇒ liste andΣ; · ⊢ S =⇒ listS and there are no
duplicates inliste, listS ande, S → e′, S′ then for someΣ′ ≥L Σ
we haveΣ′; · ⊢ e′ : τ =⇒ liste′ andΣ′; · ⊢ S′ =⇒ listS′ and
there are no duplicates inliste′ , listS′ .

Proof: By rule induction on the derivation ofe, S → e′, S′.

To give an idea of the preservation proof we present the case
wheree is typed with rule T-Deleg. There are three subcases, two
for congruence rules (of which we show the first; the second is
symmetric) and one for the evaluation rule:

Case
e1, S → e′1, S

′

e1.delegate(e2), S → e′1.delegate(e2), S
′

e1, S → e′1, S
′ Subderivation

Σ; · ⊢ e1.delegate(e2) :
t1.¡〈B1; super : t2.〈B2; super : t′′.R2〉[t1/t2]〉
=⇒ liste Assumption

Σ; · ⊢ S =⇒ listS Assumption
No duplicateliste, listS Assumption
Σ; · ⊢ e1 : t1.¡〈B1; super : t′.R1〉 =⇒ liste1

By inversion
Σ; · ⊢ e2 : t2.〈B2; super : t′′.R2〉 =⇒ liste2

By inversion
Σ′ ≥L Σ, Σ′; · ⊢ e′1 : t1.¡〈B1; super : t′.R1〉 =⇒ liste′

1
By i.h.

Σ′; · ⊢ S′ =⇒ listS′ By i.h.
No duplicateliste′

1
, listS′ By i.h.

L ∈ liste′
1
, listS′ By definition ofΣ′ ≥L Σ

No duplicates in liste′
1
, liste2

, listS′ because if
liste2

, liste1, listS has no duplicates then from lemma 3
andL 6∈ liste2

we know thatliste2
, liste′

1
, listS′ has no dupli-

cates.

Σ′; · ⊢ e2 : t2.〈B2; super : t′′.R2〉 =⇒ liste2
By lemma 2

Σ′; · ⊢ e′1.delegate(e2) :
t1.¡〈B1; super : t2.R2〉 =⇒ liste′

1
, liste2

By rule

Case

S[L1] = super : L 7← M S′ = S[L1 7→ super : L2 7← M]

L1.delegate(L2), S → L1, S
′

Σ; · ⊢ L1.delegate(L2) :
t1.¡〈B1; super : t2.〈B2; super : t′′.R2〉〉
=⇒ {L1} Assumption1

Σ; · ⊢ S =⇒ listS Assumption2
No duplicateL1, listS Assumption3
Σ; · ⊢ L1 : t1.¡〈B1; super : t′.R1〉 =⇒ {L1} By inversion
Σ; · ⊢ L2 : t2.〈B2; super : t′′.R2〉 =⇒ {} By inversion
let Σ′ = Σ[L1 → t1.¡〈B1; super : t2.〈B2; super : t′′.R2〉〉]
thenΣ′; · ⊢ L1 : t1.¡〈B1; super : t2.R2〉 =⇒ {L1} By rule
Σ′; · ⊢ L2 : t2.〈B2; super : t′′.R2〉 =⇒ {} By lemma 2
∀L′ ∈ dom(Σ).Σ(L′) = Σ′(L′) By definition ofΣ′ ≥L1

Σ
∀L′ ∈ {dom(S) − L1} and∀m ∈ S(L′) then
Σ′; · ⊢ M(m) : τ =⇒ listm By Assumption* and lemma 2
Σ′; · ⊢ S′ =⇒ listS By rule
No duplicateL1, listS By Assumption3

¥

Progress Progress asserts that the evaluation of closed well-typed
expressions will never get stuck, i.e. the expression is a value or can
make an evaluation step.

The critical observation behind the proof is that a value of
function type will indeed be a function and a value of object type
be an object. We state these critical properties in inversion lemmas,
because they are not immediately syntactically obvious.

Lemma 5 (Value inversion)
(i) If Σ; · ⊢ v : t.R =⇒ listv thenv = L.

(ii) If Σ; · ⊢ v : τ ′[→ / ⊸]τ ′′ =⇒ listv thenv = [¡]λx : τ ′.e0.

Theorem 6 (Progress)
If Σ; · ⊢ e : τ =⇒ liste andΣ; · ⊢ S =⇒ listS then either

(i) e, S → e′, S′ for someS′ ande′, or
(ii) e is a value v

Proof: By induction on the derivation of the typing judgment,
analyzing all possible cases. ¥

4. Related work
This section summarizes related work in language foundations,
aliasing, and state-based method dispatch. SELF [26] is the most
influential prototype-based language and also defined mechanisms
for dynamic modifications of object definitions. In this paper, our
goal is to statically typecheck many uses of SELF’s mechanisms for
dynamic object updates.

The most closely related work is Anderson et al.’s application
of Alias Types to the problem of statically checking imperative
method and delegation updates [3]. Compared to EGO, their design
achieves precision through singleton types and effects, at a cost of
great complexity: the type of a method includes not just the type
of the arguments and body, but also the effects of the method and
the environment where it was typed. EGO’s goal, in contrast, is to
support many useful cases of method and delegation update in a
comparatively simple and usable type system based on linearity.

Abadi and Cardelli [1] use prototype-based object calculi to
study issues of subtyping, quantification, and the typing of the
receiver objectself. Our work builds on this foundation, but because
we incorporate first-class functions and linearity we use a notation
taken more from the lambda calculus. Our calculus also differs
from previous work in that we must model thesuperfield directly
because its value may change, whereas previous systems generally
compile inheritance away once an object is created. While Abadi
and Cardelli support functional update to methods, or imperative
update at the same type, our system allows imperative updates that
change the type of the updated method.

Variants of the Abadi-Cardelli object calculus taking into ac-
count object extensions are presented in [20, 23, 24]. Fisher, Hon-
sell and Mitchell describe a delegation-based object calculus and
method specialization where method extension represents delega-
tion[16]. Furthermore, they add a limited form of subtyping and
type inference to their calculus[15]. Compared to these systems,
our work focuses on the orthogonal issue of statically checking the
type safety of operations such as adding and removing methods or
changing inheritance.

Re-classification in Fickle [13] allows an object to change its
class at runtime in class-based OO languages. In this manner class-
based OO languages can achieve the same effect as changing del-
egation at runtime. Fickle is more limited than our system because
it restricts re-classification to a fixed set of state classes rather than
supporting arbitrary changes to the methods and inheritance hierar-
chy of an object. Furthermore, because it does not track aliasing of
fields, Fickle cannot track the state of an object in a field as EGO
does.

Our work builds on Philip Wadler’s linear type system [27],
which in turn builds on a foundational linear logic developed by Gi-
rard [18]. The concept of linear types [27] is used for resources that
should not be duplicated or lost. In contrast, our system uses linear
types to allow programs to safely change the type of an object, thus
enabling highly dynamic language features for non-aliased objects.
In the area of linear type systems, the primary contribution of this
paper is showing how to naturally meld method or function linear-
ity with object linearity. This issue is challenging due to the subtle

interactions between method and object linearity in the presence of
inheritance, method update, and method execution.

Linear logic is used as a tool for modeling OO programming in
logic [4, 8, 12, 19]. In [8] methods are characterized as resources
that reside within objects, and are consumed right after having been
selected for evaluation upon invocation. We apply the intuition
from this technique in a more concrete setting (i.e., operational
semantics instead of an encoding in logic) in order to control
aliasing for linear methods.

Predicate classes [9] and their more general form, predicate dis-
patch [14] support method dispatch based on predicates over the
run-time state of the object. When a message is sent in these sys-
tems, the predicates of all relevant methods are evaluated, and the
method chosen is the one with the most specific predicate that eval-
uates to true. Dynamic inheritance and dynamic method modifi-
cation are complimentary ways to get similar behavior: instead of
dispatching indirectly based on the state of an object, the state is
encoded through the dispatch hierarchy. These mechanisms are ap-
propriate in different situations; one advantage of our approach is
that it can change the type of an object, allowing the system to ex-
press typestate-like constraints on clients.

Typestates were initially introduced by [25] for procedural pro-
gramming languages. [10] defines a resource-controlling system
for such languages based on keys. Keys can optionally be parame-
terized with typestates. This class of systems is formally modeled
in [21] as refinement types that layer additional, changing resources
on a conventional static type system. All these approaches do not
consider inheritance and effectively only allow linear types. Thus
they are unsuitable for object-oriented languages.

The State design pattern in [17] allows implementing different
behavior for a method depending on the main object’s state. How-
ever, there is no way of statically restricting the available methods
for a state. [11] defined a model for statically tracking typestates in
object-oriented languages. In particular, they address the issue of
typestates in the presence of subtyping. In our work, objects have a
dynamically changing type instead of a changing typestate layered
on top of a fixed type. Our work also differs in supporting method
addition, removal, and delegation change, rather than simply pro-
hibiting calls to methods not applicable in the current typestate.

5. Conclusions
EGO is a prototype-based language that has expressiveness, sim-
plicity and a static typechecker. The expressiveness follows from
dynamic inheritance, adding methods, changing method bodies,
and even changing method types dynamically. Its simplicity fol-
lows from the lack of the class concept, from the concept of cloning
instead of instantiation, and from the unification of fields and meth-
ods.

EGO imposes restrictions on the programmer in order to con-
trol SELF’s “power of simplicity”. These are loose enough to allow
interesting programs using EGO’s dynamic features. But these re-
strictions are also strong enough to ensure EGO’s static type safety.
Its static typechecker provides a safer and more efficient paradigm
than SELF: EGO programs will only contain valid method invoca-
tions.

We have implemented an interpreter for EGO, which supports
typechecking and execution of simple examples in the language.
The implementation is available athttp://www.cs.cmu.edu/
∼aldrich/ego/. In future work, we plan to investigate adding
more advanced object-oriented language features to the system, in-
cluding multiple inheritance, parametric polymorphism, and mul-
tiple dispatch. Our system can easily be extended to support sub-
typing for non-linear objects, but in the presence of dynamic type
updates on linear objects, subtying is more challenging. Recent de-
velopments in typestate systems may provide a path forward here

[11]. Another potential area of future work is to extend the type sys-
tem to a by-name (nominal) type system, which is more common
for object-oriented languages.

Acknowledgments
This work was supported in part by the High Dependability Com-
puting Program from NASA Ames cooperative agreement NCC-
2-1298, NSF grant CCR-0204047, and the Army Research Office
grant number DAAD19-02-1-0389 entitled ”Perpetually Available
and Secure Information Systems.”

References
[1] M. Abadi, L. Cardelli. A theory of objects. Springer, 1996.

[2] J. Aldrich, V. Kostandinov, C. Chambers. Alias Annotations for
Program Understanding. Proc. Object-Oriented Programming,Systems,
Languages, and Applications, November 2002.

[3] C. Anderson, F. Barbanera, M. Dezani-Ciancaglini. Alias and Union
Types for Delegation. Ann. Math., Comput. & Teleinformatics 1(1),
2003.

[4] J. M. Andreoli, R. Pareschi. Linear objects: Logical Processes with
Built-In Inheritance. New Generation Computing, 9:445-473, 1991.

[5] A. Bejleri. A Type Checked Prototype-based Model with Linearity.
Draft senior thesis, published as Carnegie Mellon Technical Report
CMU-ISRI-04-142, December 2004.

[6] V. Bono, K. Fisher. An Imperative, First-Order Calculus with Object
Extension. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), 1998.

[7] J. Boyland. Alias burying: Unique variables without reads. Journal :
Software—Practice and Experience 31(6):533-553, May 2001.

[8] M. Bugliesi, G. Delzanno, L. Liquori, M. Martelli. Object Calculi in
Linear Logic. Journal of Logics and Computation, 10(1): 75-104, 2000.

[9] C. Chambers. Predicate classes. Proc. European Conference on Object-
Oriented Programming, 1993.

[10] R.DeLine, M. F̈ahndrich. Enforcing High-Level Protocols in Low-
Level Software. Proc. Programming Language Design and Implementa-
tion, June 2001.

[11] R. DeLine, M. F̈ahndrich. Typestates for Objects. Proc. European
Conference on Object-Oriented Programming, 2004.

[12] G. Delzanno, M. Martelli. Objects in Forum. ILPS 1995.

[13] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, P.Giannini.
More Dynamic Object Reclassification: Fickle. ACM Transaction on
Programming Languages and Systems 24(2):153-191 (2002).

[14] M. D. Ernst, C. Kaplan, C. Chambers. Predicate Dispatching: A
Unified Theory of Dispatch. Proc. European Conference on Object-
Oriented Programming, 1998.

[15] K. Fisher, J. C. Mitchell. A Delegation-based Object Calculus with
Subtyping. Proc. Fundamentals of Computation Theory, 1995.

[16] K. Fisher, F. Honsell, J. C. Mitchell. A lambda calculus of objects
and method specialization. Nordic J. Computing (formerly BIT), 1:3-37,
1994.

[17] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
October 1994.

[18] J.-Y. Girard. Linear logic. Theoretical Computer Science 50(1):1-102,
1987.

[19] N. Kobayashi, A. Yonezawa. Type-Theoretic Foundations for
Concurrent Object-Programming. In Proceedings of the Ninth ACM-
SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications, 31-45, 1994.

[20] Luigi Liquori. An Extended Theory of Primitive Objects:First Order
System. Proc. ECOOP’97.

[21] Y. Mandelbaum, D. Walker, R. Harper. An effective theoryof type re-
finements. Proc. International Conference on Functional Programming,
2003.

[22] R. Milner, M.Tofte, R. Harper, D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[23] D. Rèmy. From Classes to Objects via Subtyping. In ESOP’98.

[24] J.C. Riecke, C.A. Stone. Privacy via Subsumption. FOOL’98 1998.

[25] R. E. Strom, S. Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Trans. Software Engineering
12(1):157-171, January 1986.

[26] D. Ungar, R. B. Smith. Self: The power of simplicity. Proc.Object-
Oriented Programming Systems, Languages, and Applications, 1987.

[27] P. Wadler. Linear types can change the world! In M. Broy and C.
Jones, editors, Programming Concepts and Methods, North Holland,
1990.

12

