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Rectangular Multi-chart Geometry Images

We describe a new mesh clustering method that creates rectangular patches whose texels align across boundaries (above, inset) to
conveniently support the implementation of various surface processing applications (above).

Abstract

Many mesh parameterization algorithms have focused on minimizing distortion and utilizing texture area, but few
have addressed issues related to processing a signal on the mesh surface. We present an algorithm which partitions
a mesh into rectangular charts while preserving a one-to-one texel correspondence across chart boundaries. This
mapping permits any computation on the mesh surface which is typically carried out on a regular grid, and
prevents seams by ensuring resolution continuity along the boundary. These features are also useful for traditional
texture applications such as surface painting where continuity is important. Distortion is comparable to other
parameterization schemes, and the rectangular charts yield efficient packing into a texture atlas. We apply this
parameterization to texture synthesis, fluid simulation, mesh processing and storage, and locating geodesics.

1. Introduction

Many powerful surface processing operations can be ex-
pressed as the solution of partial differential equations
(PDEs) on a surface, including feature-sensitive smoothing,
reaction-diffusion texturing, texture synthesis, mesh editing,
fluid flow, and geodesic tracing. Traditional approaches for
solving surface PDEs rely on an irregular mesh over the
surface or in space. Recently, geometry images [GGH02]
have provided an efficient square domain that allows surface
PDEs to be solved through simpler image operations.

The main problem with using geometry images to gener-
ate a domain for surface PDEs is that mapping the surface
to a single rectangular chart incurs a large amount of dis-
tortion. High parametric distortion reduces the precision and

efficiency of surface processing applications. Multi-chart ge-
ometry images [SWG∗03] reduce distortion by cutting the
mesh into multiple irregular pieces, each retessellated with
a regular triangle mesh and packed into a single atlas. The
added flexibility of multiple cuts reduces distortion, but ir-
regular charts do not pack efficiently and require additional
processing of the “topological sideband” to determine pixel
neighbors across charts.

We present a new surface parameterization scheme that
decomposes a triangle mesh into four-cornered quasi-
rectangular clusters which map to rectangular charts in pa-
rameter space, and whose texels align across shared bound-
aries. This representation facilitates simple, efficient surface
PDE solutions using image processing operations over a set
of images with well-defined neighbors at their boundaries.
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Many of these operations are easily implemented on the
GPU for accelerated surface mesh processing.

A key feature of our approach is the use of parameteriza-
tion distance to control cluster shape. This distance approx-
imates geodesic distance within a cluster-centric coordinate
system. We gain flexibility in chart selection by permitting
T-junctions and self-neighboring charts, which helps mini-
mize the distortion of the parameterization, as discussed in
Sec. 6.

Section 2 compares our approach to other methods for pa-
rameterizing meshes and solving PDEs on a surface. Sec-
tion 3 describes our algorithm, which extends iterative clus-
tering to find developable charts that map naturally into rect-
angular regions. Section 7 demonstrates the utility of this
new data structure with a variety of surface processing ap-
plications. Section 6 compares the distortion incurred by
this representation to other options, establishing it as one of
the most attractive choices for surface PDE processing. Sec-
tion 8 discusses the limitations of this method, and ideas for
its further improvement.

2. Previous Work

2.1. Surface Parameterization

Recent work has demonstrated the utility of decomposing
meshes into a regular domain. Geometry images [GGH02]
use a regular domain to implicitly encode the connectivity of
a mesh, allowing standard image compression to be applied
to mesh geometry. Carr and Hart[CH02] and Purnomo et al.
[PCK04] show how square charts can be efficiently packed
(and repacked [CH04]) to eliminate wasted texture space.

Polycube maps warp and project geometry on the quadri-
lateral faces of a manually-constructed cuberille exoskele-
ton [THCM04], whereas our approach constructs its charts
automatically on meshes, even those containing small in-
tricate features that would significantly challenge Polycube
construction.

Purnomo et al. [PCK04] merged triangles based on
coplanarity into clusters, straightened them into polygons
[SSGH01], and used barycentric subdivision to divide them
into quadrilaterals. Boier-Martin et al. [BMRJ04] con-
structed a centroidal Voronoi diagram on planar clusters that
tended to yield hexagons which were divided and subdivided
into a quad mesh. Both techniques yield semi-regular quad-
rangulations with no T-junctions, whereas we generate rect-
angular clusters on developable (not necessarily planar) sur-
face segments with T-junctions.

Our cluster growth seeks to minimize distortion while
constraining growth to a rectangular shape. Our cluster
growth is an extension of Sorkine et al. [SCOGL02], which
parameterized during cluster growth to prevent clusters from
exceeding a distortion bound. We likewise parameterize dur-
ing cluster growth but with additional cluster shape rules.

Iso-charts uses iso-map’s geodesic metric extension to
multidimensional scaling to grow large contiguous charts
within a distortion bound [ZSGS04]. Alternatively such
near-developable charts may be formed by iterative cluster-
ing based on fitting to a union of conics[JKS05]. Because
we parameterize during cluster growth, we use parameteri-
zation distance as an approximation of geodesic distance to
constrain chart growth to rectangular forms.

Others considerations of cluster shape include forc-
ing their boundaries through regions of high curva-
ture [LPRM02], or (additionally) lower average visibility
[SH02]. Sander et al. [SSGH01] constrained greedy clus-
ter growth that avoided crossing base domain boundaries,
and straightened the boundaries of clusters as a post-process,
whereas our greedy cluster growth straightens the sides of its
rectangular clusters through the cluster growth rules.

Our proposed method is only guarantees C0 continuity
across charts, whereas techniques such as globally smooth
parameterization [KLS03] produce a smoother parameteri-
zation. More recent work has extended this method to form
globally smooth parameterizations containing nearly uni-
form sized square charts[RLL∗05].

We use a modified chessboard metric to coerce k-means
clustering to form rectangles, whereas Hausner [Hau01]
used a modified manhattan metric to construct squarish clus-
ters used to artistically tile planar image regions.

2.2. Surface PDEs.

Our goal of establishing a continuous mapping between a
surface and an array of rectangular images is a novel contri-
bution among a recent flurry of similar methods that use a
parameterization as a basis for solving surface partial differ-
ential equations on a surface.

Bertalmio et al. [BSCO01] derive formulas for diffusion
on a volumetric isosurface by lifting the dynamics to a voxel
grid in the embedding space, and applied the results to tex-
ture filtering, reaction diffusion texturing and the visualiza-
tion of the surface’s principal curvature flow. Such Eulerian
space-grid formulations are more accurate but consume too
much space and work at a fixed resolution that ignores sur-
face features.

Sibley and Taubin [ST04] implement diffusion across the
irregular chart boundaries of an atlas, whereas the texels of
our surface chart images are pre-aligned across chart bound-
aries by design to overcome these concerns.

Bajaj and Xu [BX03] implemented flow on a loop-
subdivided triangulated surface to perform anisotropic
(feature-sensitive) smoothing, and Stam [Sta03] implement
flows on Catmull-Clark surfaces. They both use the met-
ric tensor to reduce the effects of parametric distortion on
flow, and overcome the effects of irregular valence through
repeated subdivision about extraordinary points. While the
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metric tensor is designed to accommodate the distortion of
length due to differences in element size, it does not com-
pletely eliminate these effects [Sta03]. We too depend on
subdivision around extraordinary points, but our method au-
tomatically forms an evenly distributed base mesh for the
subdivision.

Shi and Yu [?] also implemented flow on a mesh by repre-
senting fluid fields directly on the mesh topology. This cou-
ples fluid detail to tessellation. However, since their implicit
Lagrangian technique traces velocity vectors on the mesh
surface, it proves robust in the face of extraordinary vertices.
Our method handles these points as a special case.

Lui et al. [LWC05] solved PDEs on a global confor-
mal parameterization of a surface using the metric tensor
to reduce the effects of distortion, with applications in fluid
flow, segmentation, denoising and inpainting applied to the
surface signal. Conformal parameterization produces quads
that meet at right angles, but with wide variances in ele-
ment size that focuses computation in arbitrary regions un-
related to shape or signal. In contrast, our proposed algo-
rithm parameterizes surfaces in a curvature sensitive manner
into uniformly-sized quadrilaterals that reduce the effects of
element-size variation on the underlying PDE solution, and
distribute computation evenly across the surface.

3. Algorithm Overview

Our algorithm is inspired by the greedy flattening bounded-
distortion parameterization algorithm of Sorkine et al.
[SCOGL02] and the iterative k-means mesh clustering al-
gorithm used by Sander et al. [SWG∗03], Schlafman et al.
[STK02], Cohen-Steiner et al. [CSAD04], and more recently
[JKS05]. An overview of our approach is as follows:

Phase I: Iterative Face Clustering (Sec. 4 )
1. Select an initial set of seed faces to form clusters
2. Grow clusters outward from seed faces
3. While large gaps of unassigned triangles remain

Re-orient each cluster along its local parameter axes
Regrow clusters outward from seed faces
Insert a new seed face

4. Add remaining faces to nearest cluster
Phase II: Chart Parameterization (Sec. 5 )

5. Determine chart boundaries
6. Solve each chart’s local parameterization

Figure 5 illustrates this process. Phase I uses iterative
clustering and greedy flattening to determine clusters of
faces that parameterize with low distortion into roughly rect-
angular regions. Phase II forces each cluster into a rectan-
gular region of texture space such that edges shared across
chart boundaries sample the same number of texels in both
charts. The resulting parameterization provides a seamless
set of rectangular domains useful for rendering, storage, and
computation.

4. Rectangular Cluster Formation

Standard methods for iterative mesh clustering begin with an
initial collection of disjoint seed faces and attach remaining
faces to the cluster whose seed face is closest, according to a
given metric (often a combination of Euclidean distance and
orientation). The triangles containing the centroids of these
clusters then become the seed faces for the next iteration,
and the process repeats until it converges, i.e., when cluster
centers stabilize.

With a goal of rectangular shaped clusters, our approach
differs from this standard algorithm in several ways. First,
we parameterize new triangles during cluster growth to pre-
dict and track chart distortion, and evaluate additional rules
to avoid jagged boundaries and holes in the cluster. Sec-
ond, the “distance” metric uses a different coordinate frame
for each cluster, and is approximated using the distance in
the parameterization domain. Third, even though we use a
chessboard metric to encourage rectangular cluster shapes,
we can still get charts extending away from the original axes,
so we select a new reference frame at the end of each itera-
tion.

4.1. Parameterization Distance

To constrain chart growth to a rectangular shape, we must
estimate geodesic distances on the meshed surface. We can
take the same parameterization used during cluster growth
to bound chart distortion, and use it to approximate geodesic
distance. Distances in this domain correspond to geodesic
distance altered by the path integral of the parameteric dis-
tortion.

Seed Triangle

u

v

Figure 1: An isolated cluster grown under the chessboard
metric forms a square in the parameterization domain.

We encourage rectangular clusters by changing our met-
ric from the usual Euclidean L2 distance that would form
round clusters to a chessboard L∞ distance whose equidis-
tant “circles” are squares, as illustrated in Fig. 1. We fur-
ther generalize to rotated rectangular clusters by formulating
the oriented, anisotropic metric L∞a,θ such that magnitude is
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measured

||u, v||∞a,θ = max

„
|u cos θ − v sin θ|

au
,
|u sin θ + v cos θ|

av

«
(1)

for aspect ratio a and orientation θ.

Since each cluster has its own unique distance metric, the
notion of distance does not extend globally across the mesh.
This certainly defies the definition of a distance metric and
somewhat confounds the direct assignment of triangles to
their “nearest” cluster, but still assigns triangles to the chart
which is in some sense the best.

4.2. Frontier Face Parameterization

Frontier faces lie just outside of a cluster, sharing at least
one edge with the cluster’s boundary. Before we can include
a frontier face to a cluster, it must be flattened into the pa-
rameterization domain so we can evaluate the four inclusion
criteria: (1) its parameteric distance to the cluster center, (2)
the amount of distortion it would contribute to the cluster,
(3) its potential for fold-over, and (4) its effect on boundary
smoothness. Face parameterization depends on the number
of edges shared with the cluster boundary:

1

2

3

Figure 2: Three cases of triangles adjacent to the frontier
on the corresponding number of its edges.

Case 1: One shared edge. The two vertices of the shared
edge inherit the cluster’s parameterization coordinates, but
the third vertex is assigned new coordinates. Coordinates
can be assigned by a rigid unfolding of the triangle about its
shared-edge hinge, but a simple look ahead during flattening
can reduce distortion and lead to larger, more efficient clus-
ters. Following Sorkine et al. [SCOGL02], we rigidly unfold
any frontier faces that share the same free vertex, and assign
to the free vertex the average of the resulting parameteriza-
tion coordinates for it.

Case 2: Two shared edges. All three vertices inherit the
parameterization coordinates from the cluster boundary. If
the frontier face fails the inclusion criterion, then it is re-
evaluated as a Case-1 frontier face with respect to the edge
it shares with the most recently added cluster face, while its
second shared edge potentially forms a seam.

Case 3: Three shared edges. An annulus has formed
and the frontier face is filling it. The triangle is evaluated as

in Case-2 with respect to the two edges it shares with the
most recently added contour faces, and the third edge shared
with an uncooperative contour face becomes a seam.

The frequency of these Case-3 situations is reduced by bi-
asing the order of cluster growth. When a Case-2 frontier
face satisfies the cluster candidacy requirements, it is im-
mediately added to the cluster, bypassing the priority queue
usually used to include the best candidates first. This order
bias also helps to smooth the cluster boundary.

4.3. Candidacy Criteria

Once a frontier face has been parameterized, the following
criteria are evaluated.

Parameterization Distance to Seed Face. We mea-
sure distance to the cluster center by evaluating (1) using
parameters a, θ of the cluster’s coordinate frame. Note that
the same triangle may be a frontier face of multiple clusters,
but should be added to the closest one.

Incurred Distortion. Numerous parameterization distor-
tion metrics exist, e.g. [SSGH01, SdS00, ZMT05], and noth-
ing in our algorithm precludes the use of any of these. We
use the metric of [SCOGL02] which penalizes both stretch
and shrinkage for parameterized triangles, and is minimized
when the parameterization is perfectly isometric.

Foldover Prevention. To test the parameterization of the
frontier face for intersection with the existing cluster param-
eterization, it is sufficient to test the frontier face’s edges
against the parameterization of the cluster boundary. We
maintain a quad-tree of parameterized boundary edges to
hasten intersection queries.

Boundary Smoothness. Since clusters are mapped to
rectangular charts, boundary smoothness is very important.
We ensure smoothness through the use of boundary con-
straints. The final boundary of a cluster is the subset of
its boundary edges which border either another cluster or
a frontier face which failed the candidacy test. Given a mid-
point m of a final boundary edge, let n denote the nearest
position along the cluster’s coordinate axes (which are ori-
ented and stretched by θ, a) for which (1) yields the same
distance. (For the midpoint m, the vector n is an outward
“normal” quantized to be perpendicular to the desired cluster
boundary shape.) We exclude from consideration any fron-
tier face whose centroid makes an incidence angle less than
α ≈ 80◦ with respect to any final boundary edge midpoint
and its associated outward quantized normal.

Since our distance metric is evaluated at triangle cen-
troids, saw-toothed boundaries between patches are preva-
lent. We prevent sawtooth boundaries by ignoring distance
for Case-2 frontier faces, instead relying on the other three
criteria for cluster inclusion. In practice this virtually elimi-
nates boundary irregularities.
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Figure 3: Constraint regions ensure smooth cluster edges in
the parameter domain.

4.4. Cluster Re-alignment

After each patch growth iteration, clusters may not be rect-
angular in shape or even centered in their local parameter do-
main. To guide the patch shape toward its rectangular goal,
we perform two refinement operations. Fig. 4 shows the op-
erations of the centering and re-orientation process.

(c)

u

v

(b)

u

v

(a)

u

v

Figure 4: Patch centering and reorienting process: (a) be-
fore, (b) re-centering, (c) reorientation.

Patch Centering. To center a patch, we offset its coordi-
nates by its (negated) center of mass, computed as follows:

µ =
X
t∈T

(Atct)/
X
t∈T

At (2)

where T is the set of triangles in the patch, At is the area of
triangle t ∈ T in the parameter domain and ct is the location
of its barycenter.

Patch Re-orientation and Size Estimation. We re-
orient the patch to better align it with the target rectangu-
lar shape. Similar to Gottschalk [GLM96], we use princi-
ple component analysis to perform area integrals over the
triangles in the patch. We express the texture coordinates
of a triangle t using barycentric coordinates ut(α, β) =
ut

0α + ut
1β + ut

2(1 − α − β), where ut
0, ut

1, and ut
1 are

texture coordinates of triangle t. The symmetric 2 × 2 co-
variance matrix C is given by

Cij =
X
t∈T

Z 1

0

Z 1

0

(ut
i − µi)(u

t
j − µj)Atdαdβ (3)

(where ui denotes the ith coordinate of u) and has a closed-
form expression. The eigenvectors of C define the new co-
ordinate frame. Additionally, by comparing the ratio of the

eigenvalues of C, we can compute the target size a for the
of the patch to guide the L∞a metric in the next iteration.

4.5. Seed Faces

The clustering process involves the introduction of new seed
faces both at the start of algorithm and between growth pro-
cess iterations. Careful choice of seed face locations can
improve the resulting cluster quality and convergence prop-
erties of our algorithm. Ideally a new seed face should be
placed as far way from mesh boundaries, high curvature re-
gions, and existing cluster boundaries as possible, to maxi-
mize the size of its potential cluster.

To do this, we grow an advancing front starting with faces
that are adjacent to feature regions (i.e. mesh boundaries,
high curvature, or an existing cluster). The front moves over
only the faces currently unassigned to any cluster. The last
face reached by this front becomes the new seed face to start
a new cluster. Our implementation for finding such a face
follows the algorithmic technique described in [SWG∗03]
for finding new cluster centers, where distance between
faces is measure by the Euclidean distance between their
centroids.

Once a new seed face has been found, we parameterize
it with its centroid sitting on the origin of its own local pa-
rameter domain. Initially we do not know the appropriate
aspect scale for this new cluster, so we cannot immediately
introduce it into the iterative clustering process. To solve this
problem, we perform an outward growth around this seed
while leaving existing clusters in place. This growth is per-
formed with a cluster target size of a = (1, 1). Following
this growth the cluster is re-centered and re-oriented, and its
aspect scale a is updated. At this point the new cluster is
ready to take part in the iterative growth process.

4.6. Termination

Though we provide no proof of the convergence, we do re-
port that the method tends to settle and approaches a good
solution once enough seed faces have been added. In our
current implementation we continue adding seed faces until
the the gaps between patches becomes small. This process
could be easily automated, however, we currently do this by
visual inspection.

Due to the strictness of the cluster smoothness criteria,
some faces remain unassigned to any cluster as shown in the
second figure of Fig. 5. We assign these remaining faces to
their nearest clusters in a final outward cluster growth phase,
ignoring the distortion, smoothness and even fold-over crite-
ria.

5. Chart Parameterization

The goal of our final patch parameterization is to force each
patch’s parameter domain into a rectangle while achieving
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Figure 5: Dragon model undergoing the iterative clustering process followed by final mapping.

perfect texel continuity between patches. The latter condi-
tion makes our method a texture resolution dependent pa-
rameterization; texture coordinate assignment is done with
knowledge of the underlying texel grid. While our final pa-
rameterization computes a specific texture map resolution
for each patch, the parameterization supports continuity for
texture map resolutions that are successive powers of two
larger.

5.1. Chart Boundaries and Fixed Vertices

To achieve perfect texel continuity between patches, care-
ful attention must be paid to the shared boundary segments
occurring within and between charts. Each shared boundary
segment must be assigned a discrete texel length, and the
fixed end-points of the boundary segments must be assigned
texel coordinates that lie on texel boundaries.

Two different types of vertices may start or end a bound-
ary segment. A fixed vertex is any vertex that resides on the
start of a seam where one to many patches come together. A
corner vertex is any vertex that has been chosen to be placed
at one of the four corners of a rectangular parameter domain,
which may also be at a fixed vertex location. At the end of
the clustering phase, the fixed vertices are determined by the
layout of the patches, and the corner vertices may be freely
chosen. Figure 6 shows the possible cases for fixed and cor-
ner vertices and the resulting boundary segments.

Corner Vertices Fixed Vertices

Figure 6: Fixed and corner vertices for a patch.

5.2. Patch Size and Corner Determination

For each patch, we walk the boundary in counter-clockwise
order and collect fixed and corner vertices into an ordered list
`. Corner vertices at this point arise from adjacent patches
that have already been visited and thus have their corners
assigned.

Discrete texel lengths are assigned to each of the boundary
segments. The texel length for any boundary segment shared
with an already visited patch is set to be equal to the length
of the corresponding segment in the adjacent patch. The re-
maining boundary segment lengths are directly computed by
multiplying the 3D arc length of the segment by a user speci-
fied parameter γ to convert to texel length. This value is then
rounded up or down to the closest non-zero texel length di-
visible by two. The last patch visited on a closed mesh has all
of its boundary segment lengths determined. Requiring that
all segments between fixed vertices are of even texel length
ensures that the texel perimeter p of every patch is even and
can therefore be mapped to a rectangular texel grid. If the
user specifies a γ value too low, it is possible to have a patch
with a boundary length of two, which cannot be mapped to a
rectangle. In such cases, we repeat the process with a larger
γ so that all patches have the necessary resolution.

Corner vertices for the patch are chosen by first selecting
a vertex vll on the boundary of the patch to be the lower left
corner of the parameterization. We select vll by computing
the bounding box for the already flattened patch, and choose
the vertex closest to any of the bounding box corners. The
ordered list ` is traversed to find the segment that contains
vll. If vll is not already in `, then we insert the vertex, which
divides a boundary segment into two pieces. To compute the
texel distance of vll along the divided segment, we use com-
pute vll’s fractional arc length along the segments and snap
it to the closest integer texel location.

To insert the remaining three corner vertices into the or-
dered list, we start by computing an appropriate texel width
and height for the patch. The bounding box aspect ratio α
and the texel perimeter p allows us to compute the texel
width w of our rectangular patch: w = bp/(2.0 + 2.0 ∗α)c.
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We can now search for a vertex vlr to assign to the lower
right corner. This vertex must be placed at w units along the
boundary in counter clock-wise order from vertex vll. We
search the ` for a vertex that is w units away from vll. If one
is not found we search the containing segment for a vertex
that closest matches this distance and then insert it into `,
making it exactly w units away from vll. The remaining two
corner vertices are found in a similar manner. In rare cases,
no free vertex exists within a segment needing to be subdi-
vided. In such cases we insert a new vertex into the mesh,
splitting the two adjacent triangles into four.

5.3. Patch Parameterization and Crossing Edges

After computing the texel size, boundary segment lengths,
and corner positions for every patch we can parameterize
each patch into a rectangle. The boundary segment lengths
and corner vertices determine the location of the boundary
of each patch in its local parameter domain. Vertices interior
to the patch are solved using a linear spring model[Flo97]
which guarantees a valid embedding of the mesh.

Forcing patches into square parameter domain regions re-
quires special handling to avoid degenerate triangles from
forming in the parameter domain. We refer to any edge that
is not on the boundary of the patch, but whose end vertices
sit on the boundary of the patch as a crossing edge. Crossing
edges form parameter domain degeneracies if the vertices of
this edge are mapped to the same edge of the rectangular
parameter boundary.

One solution to this problem is to carefully assign patch
boundary vertices in such a way that the crossing edges do
not result in degeneracies. In general, this is impossible. Fur-
thermore, the location of the crossing edges may require
choosing an edge assignment that results in high distortion
effectively undoing the work of forming rectangular target
patches. To avoid this problem altogether, we perform local
re-meshing of any crossing edge that leads to a degeneracy
by inserting a new vertex along the edge.

5.4. Parameterization Optimization

To improve the parameterization, we apply non-linear opti-
mization using the stretch metric from [SSGH01]. Our cur-
rent optimization strategy uses the fast relaxation scheme
proposed by [SY04]. Stretch error is then further minimized
by visiting vertices one at a time, optimizing their location
in their one-ring by performing a conjugate gradient descent.
Non-fixed vertices on the border between patches may be
optimized with one degree of freedom. This may be accom-
plished by transforming the two pieces of the one-ring strad-
dling the boundary into a consistent space, applying the op-
timization, and transforming each piece of the ring back to
their local coordinate system.

Param. Quality Models
Method Metric Gargoyle Horse Dragon Feline

SE 80.0%
TMPM PE 70.0%

TE 56.0%
GI TE 67.8% 32.4% 42.4% 33.3%

SE 98.7% 99.2% 92.7% 99.1%
MCGI PE 72.7% 75.6% 73.1% 75.6%

TE 71.8% 75.0% 67.8% 74.9%
SE 72.7% 75.0% 64.8% 67.6%

RMCGI PE 83.6% 81.7% 82.9% 80.1%
TE 60.9% 61.3% 53.7% 54.4%

Table 1: Comparisons of efficiency metrics: stretch (SE),
packing (PE) and texture (TE = SE×PE), for Texture Map-
ping Progressive Meshes (TMPM), Geometry Images (GI),
Multi-chart Geometry Images (MCGI) and our Rectangular
Multi-chart Images (RMCGI). PE for RMCGI was measured
for packing into a single texture, whereas for per-chart tex-
ture maps TE = SE.

Tris Cluster Param. Packing
Model Charts Time/Rate Time/Rate Time/Rate
Horse 97K 1m:22s 2m:15s 4.23s

68 1190 ∆/s 720.2 ∆/s 16.08 �/s
Gargoyle 200K 6m:35s 5m:30s 5.76s

128 505.7 ∆/s 606.3 ∆/s 22.22 �/s
Feline 100K 3m:58s 1m:39s 4.78s

120 419.5 ∆/s 1011 ∆/s 25.10 �/s
Dragon 150K 6m:30s 3m:46s 7.98s

164 384.7 ∆/s 663.8 ∆/s 20.55 �/s
Jerry 94860 1m:30s 1m:50s 3.11s

64 1060 ∆/s 863.5 ∆/s 20.58 �/s
Bunny 69451 1m:31s 1m:24s 3.69s

64 765.6 ∆/s 822.7 ∆/s 17.34 �/s

Table 2: Clustering, parameterization, and packing perfor-
mance of our algorithm for a variety of models.

6. Results and Discussion

Distortion Forcing each patch into a perfect rectangle re-
quires additional distortion when compared with algorithms
which permit natural chart boundaries. However, increased
distortion is balanced well by the high packing efficiency of
rectangular charts.

Table 1 measures and compares the distortion of our rect-
angular multi-chart geometry images (RMCGI) using the
efficiency metrics of Sander et al. [SSGH01] (including
stretch efficiency: the area weighted average of the inverted
stretch of each surface patch). RMCGI’s mapping of each
quasi-rectangular cluster into a perfectly rectangular param-
eterization incurs additional distortion when compared to
algorithms which allow natural chart boundaries (such as
multi-chart geometry images). On the other hand, the pack-
ing efficiency of these rectangular charts is quite high, and
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Param. Packing
Param. Method CPU Rate Rate
BDPMP (fast) 1.0 GHz P3 7833 ∆/s N/A
BDPMP (relax) 1.0 GHz P3 657 ∆/s N/A
FBSPTM 2.4 GHz PC 17 ∆/s N/A
GI N/A (2002) 19 ∆/s N/A
Iso-Charts 3.0 GHz Xeon 1576 ∆/s 1897 c/s
LSCM 1.3 GHz Pentium 643 ∆/s 96,968 c/s
MCGI N/A (2003) 58 ∆/s 19 c/s
RMCGI 2.0 GHz Athlon 297 ∆/s 22,923 c/s

Table 3: Comparisons of parameterization and packing per-
formance (in elements per second), for Bounded-distortion
Piecewise Mesh Parameterization (fast and relaxation meth-
ods), Feature-based Surface Parameterization and Texture
Mapping, Geometry Images, Iso-Charts, Least Squares Con-
formal Mapping, Multi-chart Geometry Images and our
Rectangular Multi-chart Geometry Images.

PE=100% if each chart is assigned its own texture map,
which results in competitive overall texture efficiency.

We grow surface clusters using a stretch bound of 2.0.
Fig. 7 shows that the distortion of RMCGI patches peaks
near their boundaries, due in part to the final addition of
straggler triangles to the rectangular clusters.

Performance Table 2 decomposes the RMCGI execution
time per task and per element. The performance of the shape-
constrained k-means clustering algorithm is influenced by
a complicated combination of mesh size and shape. Pa-
rameterization is more clearly a function of the number of
charts, modulated by the complexity of the cluster bound-
aries which in turn is affected by curvature distribution
and tesselation frequency. We pack charts into a single tex-
ture atlas using the CompaSS rectangular packing software
[CM04]. Packing rectangles is generally easier and more ef-
ficient than other shapes.

Table 3 compares RMCGI’s performance to the median
per-triangle parameterization and per-chart packing rates re-
ported for other approaches. While such averages do not
compare algorithmic complexity, they do show RMCGI runs
slower than pure parameterization methods but faster than
other regular retessellations that produce geometry-image
structures.

Limitations On low-polygon meshes with irregular tessel-
lation, our method produces jagged boundaries, due to a
limited number of available decompositions. One might im-
plement a triangle splitting scheme to assist smoothing of
chart boundaries, which could also reduce parameteric dis-
tortion. Continuity near boundaries could also be improved
by a computing per-texel metric from a smooth surface
corresponding to the mesh. Figure 7 illustrates minor arti-
facts near a stretch discontinuity while simulating reaction-
diffusion, though these kinds of artifacts are not universally

Figure 7: Parametric stretch is plotted over the bunny
(upper-left); red/blue indicate over/under-sampling. Its gra-
dient (right) reveals distortion discontinuities at patch
boundaries that can interfere with some PDE processes if
special care is not taken to account for distortion.

Figure 8: The Dragon after various iterations of feature-
preserving smoothing implemented as a bilateral chart im-
age filter. Smoothing for a 1.4M triangle Dragon was per-
formed at about 7 iterations per second in graphics hard-
ware (GeForce 7800).

apparent (e.g., 9). Metric discontinuity along chart bound-
aries is not unique to our approach.

Because our charts are rectangular, we could achieve
higher memory efficiency by storing each chart in its own
texture, avoiding the wasted texture memory due to gaps be-
tween charts in the texture atlas. Current graphics cards only
allow sixteen textures to be bound simultaneously, but we
expect future hardware will lift this restriction.
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Figure 9: Reaction diffusion texture synthesis (left) and
Catmull-Clark subdivision (right) over the surface of the
Stanford bunny.

7. Applications

We have implemented several surface processing applica-
tions, using a GPU’s fragment pipelines to convolve data
stored in rectangular regions of a single texture. To ensure
well-defined neighbors at patch boundaries, we copy a bor-
der of texels from neighboring patches between each itera-
tion. Vector data is reoriented into the local parameteric basis
with a simple 2x2 matrix multiply. Handling of texels near
extraordinary vertices varies depending on the application.

Real-Time Fluid Flow on Surfaces. Our final applica-
tion solves on the surface the incompressible Navier-Stokes
equations for fluid flow. The implementation is based on
Stam’s stable fluid method [Sta99] and the GPU implemen-
tation detailed in [Har04]. Figure 11 shows our results. We
achieved 20 fps on a simulation grid with 206,632 cells.
Remaining distortion could be corrected using operators in
curvilinear coordinates [Sta03].

Texture Synthesis. A seamless parameterization is use-
ful for synthesizing textures which are continuous over the
surface. We generate wrinkles on the Stanford Bunny (figure
9) using the method of Witkin & Kass [WK91]. While the
metric tensor corrects for element area and shape, we find
distortion nevertheless affects the result further motivating
our efforts to generate low-distortion chart images.

Geodesics. Solving the Eikonal PDE |∇T | = 1 after set-
ting T = 0 at a single source vertex yields a distance field
over the surface, shown in Figure 10. Geodesic paths from
any vertex to this source vertex can then be found by a sim-
ple downhill flow on T. The fast marching method [Set96]
gives an approximate solution to the Eikonal equation on a
regular grid. RMCGIs enable a variation on the fast march-
ing method that better preserves the circular shape of the
front over the mesh [NK02] using a fragment shader kernel
operating on triangles constructed from nearby fragments.
Extraordinary vertices confound this approach, so their dis-
tance values are simply averaged from their neighbors.

Quad Meshes. Geometry images [GGH02, SWG∗03] im-

plicitly encode a regularly tessellated mesh in a texture by
storing one vertex position in each texel and constructing
edges between adjacent vertices. Figure 9 shows a quad
mesh reconstructed from a rectangular-patched representa-
tion of the bunny and rendered as a Catmull-Clark surface.
The closeup shows how we reconstruct geometry near ex-
traordinary vertices in the patch arrangement: each texel ad-
jacent to an extraordinary vertex becomes a vertex of an n-
gon. (These n-gons can be further tessellated into quads and
triangles if desired.) Note that the set of quads we form here
is unrelated to the arrangement of rectangular charts formed
by the atlas, which itself may contain T-junctions.

Smoothing. We implement feature-preserving smoothing
with bilateral filtering [TM98]. Seamless smoothing along
chart boundaries is handled by the boundary copy, yielding
simpler implementation compared to other parameter-space
smoothing methods [ST04]. Extraordinary vertices are han-
dled by averaging among the same texels used to construct
the n-gon in quad mesh reconstruction. The 1.4M triangle
Dragon in figure 8 was smoothed at a rate of approximately
seven smoothing iterations per second.

Figure 10: Isocontours of approximately equal geodesic dis-
tance, computed with a regular kernel in a fragment shader
using the fast marching method. (Left to right: Feline, Jerry,
Dragon, Bunny.)

8. Conclusion

We have demonstrated a novel method for generating low
distortion rectangular charts on manifold surfaces. These
charts provide good utilization of graphics hardware de-
signed for processing with texture images, and the low dis-
tortion mapping provides a vehicle for graphics hardware to
process a surface signal. We have demonstrated the useful-
ness of this map with the implementations of various sur-
face PDE applications as image operators on the rectangular
chart images. Such operations would incur greater distortion
artifacts if performed on a single geometry image [GGH02]
and would be more difficult to implement correctly and effi-
ciently on the non-square charts of multi-chart geometry im-
ages [SWG∗03]. Compromises of C0 continuity and some-
what increased storage are thus justified by the efficiency and
simplicity of the surface chart image data structure, resulting
in a tool for added effects and realism in GPU-accelerated
graphics.
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Figure 11: Results of user interaction with real-time fluid
flow evaluated over chart images by the GPU.
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