
Repulsive Surfaces

CHRIS YU, Carnegie Mellon University
CALEB BRAKENSIEK, Independent Researcher
HENRIK SCHUMACHER, RWTH Aachen University
KEENAN CRANE, Carnegie Mellon University

Fig. 1. We develop a numerical scheme for optimizing surface geometry while avoiding self-intersections. Here, we automatically find an unexpected transition
between linked and unlinked states of a pair of “handcuffs” by simply minimizing a repulsive energy.

Functionals that penalize bending or stretching of a surface play a key role
in geometric and scientific computing, but to date have ignored a very basic
requirement: in many situations, surfaces must not pass through themselves
or each other. This paper develops a numerical framework for optimization
of surface geometry while avoiding (self-)collision. The starting point is the
tangent-point energy, which effectively pushes apart pairs of points that are
close in space but distant along the surface. We develop a discretization of
this energy for triangle meshes, and introduce a novel acceleration scheme
based on a fractional Sobolev inner product. In contrast to similar schemes
developed for curves, we avoid the complexity of building a multiresolu-
tion mesh hierarchy by decomposing our preconditioner into two ordinary
Poisson equations, plus forward application of a fractional differential oper-
ator. We further accelerate this scheme via hierarchical approximation, and
describe how to incorporate a variety of constraints (on area, volume, etc.).
Finally, we explore how this machinery might be applied to problems in
mathematical visualization, geometric modeling, and geometry processing.

CCSConcepts: •Computingmethodologies→ Shapemodeling; •Math-
ematics of computing→ Continuous optimization.

Additional Key Words and Phrases: Computational design, shape optimiza-
tion, surfaces

Authors’ addresses: Chris Yu, Carnegie Mellon University; Caleb Brakensiek, Inde-
pendent Researcher; Henrik Schumacher, RWTH Aachen University; Keenan Crane,
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/12-ART268 $15.00
https://doi.org/XX

ACM Reference Format:
Chris Yu, Caleb Brakensiek, Henrik Schumacher, and Keenan Crane. 2021.
Repulsive Surfaces. ACM Trans. Graph. 40, 6, Article 268 (December 2021),
19 pages. https://doi.org/XX

1 INTRODUCTION AND RELATED WORK
A geometric functional assigns a real-valued score E(f) to each
immersion f : M → Rm of a surfaceM . Such functionals serve as
regularizers in many geometric problems, helping to define a unique
solution, or simply making the geometry “nicer” in some sense. For
instance, in geometric modeling they are used to smoothly interpo-
late given boundary data [Bucur and Butazzo 2006], in mathematical
visualization they can be used to endow an abstract surface with
a concrete geometry [Chern et al. 2018], and in digital geometry
processing they are used for, e.g., hole filling [Clarenz et al. 2004] or
denoising of measured data [Elsey and Esedoḡlu 2009]. However,
classic functionals ignore a basic requirement of many applications—
namely, that surfaces should not exhibit (self-)intersections. This
condition is critical when surfaces represent physical membranes
(e.g., in biological simulation), boundaries of solid objects (e.g., for
digital manufacturing), or certain mathematical objects (e.g., isotopy
classes of embeddings). It is therefore surprising that, to date, there
has been little focus on interpenetration in variational surfacemodel-
ing. We build on the recent framework of Yu et al. [2021], extending
their machinery for repulsive curves to the more computationally
demanding case of surfaces.

Curvature Functionals. A basic functional for surfaces is total sur-
face area; gradient descent on area leads to mean curvature flow,
which has been used for surface denoising [Desbrun et al. 1999] but
can develop non-smooth singularities or pinch-off artifacts. Though

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

https://doi.org/XX
https://doi.org/XX

268:2 • Chris Yu and Caleb Brakensiek and Henrik Schumacher and Keenan Crane

efforts have been made to desingularize this flow [Kazhdan et al.
2012], sharp peaks and cusps are ultimately impossible to detect from
area alone. For this reason, functionals used in geometric modeling
typically incorporate curvature information—most prominently the
Willmore energy EW (f) :=

∫
M (H

2 − K) dA, where H and K are the
mean and Gaussian curvatures, resp. Significant work has focused
on numerical optimization of Willmore energy [Droske and Rumpf
2004; Bobenko and Schröder 2005; Crane et al. 2013b; Soliman et al.
2021], but since this energy is Möbius invariant, it effectively pro-
vides a notion of regularity for surfaces in the 3-sphere S3, rather
than the Euclidean R3. In the context of geometric modeling, this
means that even minimizers of Willmore energy can have poor dis-
tributions of curvature—see for example Fig. 4, bottom left. Though
further energies have been developed to address such issues [More-
ton and Séquin 1992; Joshi and Séquin 2007], none of these energies
avoid intersections.

input

Coulomb tangent-point

Fig. 2. Ad-hoc schemes such as
vertex-vertex Coulomb forces do not
correspond to a meaningful smooth
energy and can be numerically un-
stable. Here we minimize Coulomb
and tangent-point energies subject
to a fixed area constraint.

Repulsive Forces. Collision re-
sponse from physical simula-
tion [Bridson et al. 2002] and
contact mechanics [Wriggers and
Zavarise 2004; Harmon et al.
2009] can be used to locally re-
solve contact, but does not help
guide shape optimization toward
a state that is far from interpene-
tration. Moreover, whereas level
set methods ensure (by construc-
tion) that surfaces have no self-
intersections, the raison d’être of
such methods is to allow the sur-
face topology to change, rather
than to preserve it [Osher and

Fedkiw 2006]. We instead consider “all-pairs” energies of the form

E(f) =

∫
M×M

k(x,y) dxf dyf ,

where dxf denotes the area element induced by f , and the kernel
k : M ×M → R is designed to discourage self-contact.

A tempting choice is a Coulomb-like potential

kCoulomb(x,y) =
1

| f (x) − f (y)|α

for some falloff parameter α > 0. On a triangle mesh, this amounts
to penalizing the distance between all pairs of vertices. However,
as noted by Yu et al. [2021, Section 3.1], this energy is too weak to
prevent collision for α < 2 (i.e., intersecting surfaces have finite
energy), and yet ill-defined in the continuum limit for α ≥ 1. The
issue is that there are always points y within an arbitrarily small
geodesic distanced(x,y) ≥ | f (x)− f (y)| of any point x ∈ M , causing
the energy to blow up. Numerically, ad-hoc vertex-vertex penalties
are hence unstable and highly unpredictable (Fig. 2).

For curves, [O’Hara 1991] regularizes the Coulomb-like potential
by subtracting the contribution of points that are nearby on the
curve:

kMöbius(x,y) =
1

| f (x) − f (y)|2
−

1
d(x,y)2

.

Fig. 3. For each pair of points x , y on the surface, the tangent-point energy
considers the radius r (x , y) of the smallest sphere tangent to x and passing
through y , penalizing 1/r (x , y). Hence, the contribution will be very large
for points y close in space but distant along the surface—and small for
points z nearby along the surface, where the radius is huge.

The resulting energy is well-defined and strong enough to prevent
collisions; it is referred as Möbius energy because it is invariant
under Möbius transformations [Freedman et al. 1994]. However,
Möbius invariance is actually a significant drawback for geometric
modeling: it leads not only to uneven curvature ([Kusner and Sulli-
van 1998, Figure 5]), but also “tight spots” where points distant in S3

become arbitrarily close when projected into R3 (see [Yu et al. 2021,
Figure 3]). Moreover, the geodesic distance d(x,y), though easy to
compute for curves, is prohibitively expensive to compute for all
pairs of points on a surface—much less to differentiate with respect
to motions of the surface.

Tangent-Point Energy. For all these reasons, we instead consider
the tangent-point energy introduced for curves by [Buck and Orloff
1995], and only recently extended to higher dimensions by [Strz-
elecki and von der Mosel 2013]. For each pair of points x,y ∈ M ,
consider the radius r (x,y) of the smallest sphere tangent to f (x)
and passing through f (y) (Fig. 3). The tangent-point kernel k is then
proportional to 1/r (x,y); see Sec. 2.1 and [Strzelecki and von der
Mosel 2018] for further discussion. Hence, points that are close in
space only because they are also close along the surface are auto-
matically ignored. This energy has several features that make it a
prime candidate for repulsive surface optimization, namely:
• It provides an infinite barrier to self-intersection [Strzelecki
and von der Mosel 2013].
• Like Willmore energy it penalizes bending [Yu et al. 2021,
Section 3.2], preventing singularities and cusps.
• Unlike Willmore and Möbius energy, it is neither Möbius nor
scale invariant, helping to evenly distribute curvature and
avoid tight spots.
• Unlike Möbius energy, it does not require geodesic distances
and instead depends only on quantities like surface normals
N and extrinsic distances | f (x) − f (y)| that are cheap to
compute and easy to differentiate.

However, two significant challenges remain, namely, (i) deriving
an inner product that accelerates optimization and (ii) efficiently
inverting this inner product.

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

Repulsive Surfaces • 268:3

Willmore

minimizer

self-intersection

minimizer

Tangent-Point

initial

Fig. 4. Willmore energy does nothing to prevent intersections (in red), and
can have minimizers that asymmetrically distribute curvature over the sur-
face. Right: tangent-point energy avoids intersections and tends to provide
a more uniform curvature distribution.

Accelerating Optimization. To integrate a parabolic gradient flow
of order k with average node spacing h, one must typically take time
steps of size around O(1/hk), which is prohibitively expensive for
fine meshes. However, redefining gradient descent with respect to a
different inner product can effectively it into a 0th-order equation—
mitigating the time step restriction. This idea of Sobolev gradients
has long been applied to surface flows [Pinkall and Polthier 1993;
Renka and Neuberger 1995; Eckstein et al. 2007; Martin et al. 2013;
Schumacher 2017; Soliman et al. 2021], and more recently to elastic
energies in geometry processing [Kovalsky et al. 2016; Claici et al.
2017; Zhu et al. 2018]. However, all these works consider energies
with integer-order differentials, whereas tangent point energy has a
differential of fractional order. As recently shown by Yu et al. [2021],
a fractional inner product performs far better than even integer
Sobolev schemes, especially for finely-tessellated or highly-knotted
curves. We adopt the same basic strategy, adapting it to surfaces.

Efficient Evaluation. A second challenge is the dramatic increase
in problem size going from curves to surfaces: rather than O(n2)
pairs of elements on a curve, we now haveO(n4) element pairs on a
surface (where n ≈ 1/h). Hierarchical Barnes-Hut approximation is
still sufficient to approximate the energy and its differential (Sec. 4),
but we must now invert a dense inner product matrix with O(n4)
entires. Yu et al. [2021] use a multigrid solver based on a simple
multiresolution curve hierarchy, but rebuilding a multiresolution
surface mesh hierarchy at each step is far more difficult and expen-
sive. Our key insight is that the inverse of our fractional operator
can be approximated by the inverse of two ordinary (integer-order)
Laplace operators, together with forward application of a lower-
order fractional derivative (Sec. 5.2). Since this decomposition is
only approximate in the discrete setting, we use it to precondition
an iterative linear solver (GMRES) that does not require a mesh hier-
archy. Note that simply omitting distant terms, or using a compactly-
supported kernel (à la Li et al. [2020, Section 4.2]) is not a viable
option, since global interactions play a key role in many applications
(Sec. 9). Moreover, due to the logarithmic nature of our hierarchical
approximation scheme, dropping far-field terms reduces cost by
only about 20%—at the cost of a lower-quality descent direction.

Overall, then, we apply preconditioning in two distinct ways: first
to precondition the flow, then to precondition the linear solver used
to compute the flow direction (see Sec. 5.2 for further comments).
The result is a highly effective scheme for the challenging surface
case, with performance suitable for iterative design exploration (see
Sec. 8.4 for detailed statistics).

1.1 Contributions
Overall, in this paper we develop

• the first discretization of tangent-point energy for surfaces,
• a novel preconditioner that avoids a multigrid hierarchy,
• a hierarchical solver that scales to large meshes, and
• a framework for handling auxiliary constraints and penalties.

We also perform a preliminary investigation of applications in geo-
metric modeling, mathematical visualization, and geometry pro-
cessing. Notably, although one can prove that minimizers of the
tangent-point energy exist [Kolasiński et al. 2015, Theorem 2], these
proofs are non-constructive. Since we provide the first discretiza-
tion and optimization procedure for the tangent-point energy on
surfaces, we obtain the very first glimpse (experimentally) at what
some of these surfaces might actually look like.

We begin by defining our problem in the smooth setting (Sec. 2),
followed by a novel discretization of the tangent-point energy and
a basic numerical strategy for minimizing it subject to constraints
(Sec. 3). We then significantly accelerate this strategy in two distinct
ways. First, we choose an inner product in the smooth setting that
vastly improves the convergence of the gradient flow (Sec. 2.4).
Second, in the discrete setting, we propose a preconditioner that
dramatically reduces the cost of solving for the descent step (Sec. 5).
We also accelerate evaluation of the energy and its derivatives, as
well as dense matrix-vector products, using hierarchical acceleration
(Sections 4 and 5). We then consider dynamic remeshing (Sec. 6) and
auxiliary penalties and constraints (Sec. 7), which enable a variety of
potential applications (Sec. 9); Sec. 8 provides numerical validation.

2 SMOOTH FORMULATION
In this section we define the smooth tangent-point energy Ep , and
give some remarks on the order of derivatives appearing in its dif-
ferential dEp . Knowing the order of the differential is essential for
accelerating the gradient flow d

dt f = −dE
p (f), since it enables us

to define a new inner product (in Sec. 2.4) with respect to which
gradient flow effectively becomes a 0th-order equation. (Readers
may wish to consult Yu et al. [2021, Section 4.1] for a slower-paced,
didactic introduction to this approach.) Hence, the integrator de-
veloped in Sec. 3 will be able to take dramatically larger time steps
whose size does not depend strongly on mesh resolution (Fig. 5).

2.1 Energy
As discussed in Sec. 1, we can define a repulsive energy by consid-
ering the tangent-point radius rf (x,y), defined as the radius of the
smallest sphere tangent to f (x) and passing through f (y) (Fig. 3).
Letting Nf (x) be the unit normal at x , this radius can be computed
as

rf (x,y) =
| f (x) − f (y)|2

2|Pf (x) (f (x) − f (y))|
, (1)

where Pf (x) = Nf (x)Nf (x)
T denotes the orthogonal projector onto

the normal space at x . Note that expressing rf via the projector
avoids picking a sign for the normal, which will be useful in Sec. 5.1
(it is also valid for submanifolds of arbitrary dimension and codi-
mension). Omitting the constant factor 2, the tangent-point kernel

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

268:4 • Chris Yu and Caleb Brakensiek and Henrik Schumacher and Keenan Crane

L2

co
ar

se
 (1

1k
 fa

ce
s) input Hs (ours) AQP BCQNH1 L-BFGSH2H1

m
ed

iu
m

 (4
0k

)
fi

ne
 (1

35
k)

result a�er same number of optimization steps

Fig. 5. Unlike other schemes, our fractional preconditioner does not suffer from a mesh-dependent time step restriction. Here for example we take 300
optimization steps of maximum size (determined by line search) for each scheme. As resolution increases, all methods but H s make slower and slower progress.
Note also that schemes based on H 1 preconditioning (H 1, H 1 L-BFGS, AQP, BCQN) quickly eliminate high-frequency details but are slower to smooth the
bulk shape; conversely, H 2 quickly smooths out the bulk shape but fine details remain. Using H s for 1 < s < 2 nicely handles both local and global features.

(due to Buck and Orloff [1995]) is then given by

kf ,p (x,y) :=
2p

rf (x,y)
p =
|Pf (x) (f (x) − f (y))|p

| f (x) − f (y)|2p
(2)

for some p > 0, and hence the energy itself is

Ep (f) :=
∬

M2
kf ,p (x,y) dxf dyf . (3)

While in principle it is possible to allow the exponents in the nu-
merator and denominator to vary independently [Blatt and Reiter
2015], we use exponents p, 2p (as above), which simplifies analysis.
Note that, because kf ,p has units m−p (in meters) and Ep is a dou-
ble integral over an n-dimensional manifold, Ep has units m2n−p .
Therefore, p > 2n is required for the energy to be truly repulsive
(i.e., to have units corresponding to inverse meters); otherwise, the
energy could be reduced to 0 by simply shrinking the domain to a
single point. As we deal with surfaces here (n = 2),p > 4 is sufficient.
Unless otherwise noted, we use p = 6 for all examples in this paper.

2.2 Gradient Flow
Attempting to perform standard L2 gradient descent on the tangent-
point energy yields a flow

d

dt
f = −dEp (f).

This flow exhibits poor convergence due to the presence of high-
order spatial derivatives on the right-hand side, which even aggres-
sive line search or general-purpose preconditioning (e.g., L-BFGS)
cannot alleviate; see Fig. 5. However, we can obtain a different de-
scent strategy by defining the gradient with respect to a different
inner product. In particular, if A is the linear operator defining the

inner product, the descent equation becomes

d

dt
f = −A−1dEp (f). (4)

An optimal choice ofAwill match the order of the differential, so that
the right hand side no longer involves any spatial derivatives (hence
avoiding a mesh-based time step restriction). We first establish the
order of the differentialdEp in the surface case (Sec. 2.3), then define
a fractional Sobolev inner product that matches this order (Sec. 2.2).

2.3 Order of the Differential
Though originally defined for curves, the tangent-point energy
Ep can be formulated for a quite broad class of n-dimensional sets
Σ ⊂ Rm “with tangent planes,” that need not even bemanifolds [Strz-
elecki and von derMosel 2013]. In the case of 2-dimensional surfaces,
one can argue (as discussed below) that dEp is a nonlocal, nonlinear
differential operator of fractional order 2(2 − 2/p) ∈]3, 4[, rather
than integer order. This distinguishes the tangent-point energy from
standard geometric energies like Willmore, and it is why we have
to develop special tools for it.
In more detail: Strzelecki and von der Mosel [2013] show that

if tangent-point energy is finite for some n-dimensional Σ ⊂ Rm ,
then Σ must be an embedded submanifold of Hölder class C1,α ,
where α = 2 − 2n/p. Intuitively: it must be free of self-intersections,
and also fairly regular. This result is improved by [Blatt 2013], who
establishes that Ep (Σ) is finite if and only if Σ is an embedded
submanifold of fractional Sobolev classW s ,p , where s = 2 − n/p. In
particular, this implies that Σ can be expressed as an embedding
f ∈W s ,p (M ;Rm) for some smooth manifoldM . For n = 2 we have
s ∈]3/2, 2[, so we inevitably have to deal with fractional Sobolev
spaces. Knowing the natural habitat of Ep is key because it allows
for the following observation: the differentialdEp is a mapping from

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

Repulsive Surfaces • 268:5

W s ,p to the dual space (W s ,p)∗ =W −s ,p . Hence it is plausible that
dEp reduces the differentiability of its argument by 2s = 2(2 − 2/p),
as claimed above.

2.4 Inner Product
Standard (integer) Sobolev inner products are expressed via the
Laplacian ∆. We likewise consider the fractional Laplacian of order
0 < 2σ < 2 on Rn , which can be expressed in integral form up to a
constant factor as〈

(−∆)σu,v
〉
L2 =

∬
Rn

(u(x) − u(y)) (v(x) −v(y))

|x − y |2σ+n
dx dy (5)

for sufficiently smooth functions u,v : Rn → R [Kwaśnicki 2017].
While this formula only relates to Rn , we can obtain an analogous
operator Lσ of fractional order 2σ on functions u, v : M → R by
mimicking this expression on the n-dimensional manifoldM :〈

Lσu,v
〉
L2 =

∬
M2

(u(x) − u(y)) (v(x) −v(y))

| f (x) − f (y)|2σ+n
dxf dyf . (6)

Note that, for p > 2n, the order of dEp is 2s = 2(2−n/p) > 3, which
is outside the bounds 0 < 2σ < 2. We can increase the order of this
operator by introducing a first order derivative operator Df in the
numerator, yielding a higher-order operator

⟨Bu,v⟩L2 =

∬
M2

〈
Df u(x) − Df u(y),Df v(x) − Df v(y)

〉
| f (x) − f (y)|2σ+n

dxf dyf .

(7)
More precisely, we use Df u(x) := du(x)d f (x)† ∈ End(Rm), where
d f (x)† ∈ Hom(Rm ;TxM) denotes the Moore-Penrose pseudoin-
verse of d f (x). If we now let σ = s − 1, then the operator B achieves
the desired order 2s .

Low order term. As proposed by Yu et al. [2021], we can get even
better preconditioning in situations with close contact by adding
an additional term of lower order, which in our case translates to

⟨B0u,v⟩L2 =

∬
M2

(u(x) − u(y))(v(x) −v(y))

| f (x) − f (y)|2σ+n
kf ,2(x,y)dxf dyf . (8)

The inclusion of the tangent-point kernel kf ,2(x,y) effectively dis-
torts lengths in regions of high energy: as the local energy increases,
so too does the apparent length induced by the inner product. As a
result, self-intersecting configurations, having infinite energy, are
so distant (if not infinitely so) that they are unlikely to be reached
within a finite time. The kernel kf ,2(x,y) is chosen here so that B
and B0 have the same units and thus behave similarly under scaling.

The overall operatorA = B+B0 then defines a positive-semidefinite
inner product that consider throughout this work. The order of this
inner product matches that of the Sobolev spaceW s ,2 = H s , hence
we use the term H s to refer to our fractional preconditioner.

3 DISCRETIZATION
We next discretize all components needed for our optimization
scheme. The basic idea is to minimize tangent-point energy via
gradient descent, preconditioned by our fractional inner product.
In practice we also want to incorporate constraints, which we do
by projecting the descent direction onto the tangent space of the
constraint manifold, then projecting the surface itself onto this
manifold. The overall algorithm for each descent step is:

ALGORITHM 1: Assembly of the exact discrete fractional operator Lσ

initialize Lσ ← 0
forall distinct pairs of faces S ,T do

forall vertices i in S or T do
forall vertices j in S or T do

Lσi j ← Lσi j +
(ϕ̄i (S)−ϕ̄i (T))(ϕ̄j (S)−ϕ̄j (T))
|Xf (S)−Xf (T)|2σ+2 af (S) af (T)

end
end

end
return Lσ

(1) Assemble the derivative dEp (f) of the energy (Sec. 3.1).
(2) Construct the fractional operator A = B + B0 (Sec. 3.2).
(3) Solve Eq. 14 to obtain the descent direction x.
(4) Take a step in the direction x using Armijo line search.
(5) Project onto the constraint manifold of Φ (Sec. 3.3.2).

This initial algorithm is quite inefficient, and is accelerated in Sec-
tions 4 and 5. Sec. 5.4 gives the final accelerated algorithm.

3.1 Discrete Energy
On a triangle meshM = (V , E, F) with vertex coordinates f : V →
R3, we approximate the energy Ep (Eq. 3) using midpoint quadra-
ture. In particular, we define the discrete tangent-point kernel on a
pair of faces S,T ∈ F as

Kf ,p (S,T) =
|Pf (S) (Xf (S) − Xf (T))|

p

|Xf (S) − Xf (T)|
2p , (9)

where Xf (S) denotes the barycenter of face S for an embedding f .
The full energy is then defined as a double sum

Ep (f) =
∑
S ∈F

∑
T ∈F

Kf ,p (S,T) af (S) af (T), (10)

where af (S) denotes the area of face S under embedding f . The
differential dEp (f) is then just the vector of partial derivatives of
the discrete energy Ep with respect to f ∈ R3 |V | , which can be
evaluated via any standard technique.

3.2 Discrete Inner Product
The fractional operator Lσ is discretized as a |V | × |V | matrix with
entries obtained from the right-hand side of Eq. 6. The rows and
columns of Lσ are indexed by vertices, with entries

Lσi j =
∑
S ∈F

∑
T ∈F

S,T

(ϕ̄i (S) − ϕ̄i (T)) (ϕ̄ j (S) − ϕ̄ j (T))

|Xf (S) − Xf (T)|
2σ+2 af (S) af (T), (11)

where ϕi denotes the piecewise linear hat-function centered at ver-
tex i , and where ϕ̄i (S) denotes its evaluation on the barycenter of
S , i.e., ϕ̄i (S) is 1/3 if vertex i is contained in face S and 0 other-
wise. A naïve entry-by-entry assembly of Lσ via Eq. 11 would take
time quartic in the number of mesh elements; however, since the
summand vanishes for most pairs S,T , assembly can be done in
quadratic time by iterating over mesh elements rather than matrix
entries—see Alg. 1.

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

268:6 • Chris Yu and Caleb Brakensiek and Henrik Schumacher and Keenan Crane

3.2.1 High- and Low-Order Terms. The high-order term of our dis-
crete inner product B ∈ R |V |× |V | (corresponding to Eq. 7) is also
assembled via Alg. 1, but using the summand〈

Df ϕi (S) − Df ϕi (T),Df ϕ j (S) − Df ϕ j (T)
〉

|Xf (S) − Xf (T)|
2σ+2 af (S) af (T) (12)

in place of the one in Eq. 11. Here Df is a discretization of Df .
Intuitively, Df u(S) is the derivative of the function u =

∑
i ∈V ui ϕi

within the triangle S , and can be evaluated as
1

2af (S)
(
Nf (S) × (uiejk + ujeki + ukei j)

)T
,

where i, j,k are the vertices of triangle S , and ei j , ejk , and eki are
the unit edge vectors of S . The low-order matrix B0 ∈ R |V |× |V | is
likewise assembled using the summand

(ϕ̄i (S) − ϕ̄i (T)) (ϕ̄ j (S) − ϕ̄ j (T))

|Xf (S) − Xf (T)|
2σ+2 Kf ,2(S,T) af (S) af (T) (13)

using the discrete kernelKf ,2(S,T) from Eq. 9.We then get a |V |×|V |
matrix A = B + B0 which acts on scalar functions. A corresponding
operator A3 for vector-valued functions u,v : V → R3 is obtained
by replacing each entry Ai j with the 3 × 3 block Ai j I3×3 (where I is
the identity), giving a matrix of size 3 |V | × 3 |V |.

3.3 Constraints
3.3.1 Gradient Projection. Suppose we want our surface to satisfy
a constraint Φ(f) = 0 for some constraint function Φ : R3 |V | → Rk

(e.g., to control area or volume). The constrained descent direction
x can be obtained by solving the saddle point problem[

A3 dΦ(f)T

dΦ(f) 0

] [
x
λ

]
=

[
−dEp (f)

0

]
, (14)

where dΦ(f) denotes the Jacobian of Φ and λ ∈ Rk are Lagrange
multipliers. The resulting descent direction x will then be tangent
to the constraint manifold { f | Φ(f) = 0}.
Importantly, we must always have some kind of constraint: the

matrix A3 has a null space corresponding to translations of the
surface, which means the unconstrained system A3x = −dEp (f)
does not have a unique solution. One simple solution is to fix the
barycenter (Sec. 7.1.1), though other constraints such as pinned
vertices (Sec. 7.2) can serve the same purpose.

3.3.2 Corrective Projection. Though our descent direction x is now
tangent to the constraint manifold, the embedding f may still drift
away from the constraint manifold. Hence, after finding a feasible
step size τ > 0 via line search, we project the new state f + τ x
back onto the constraint manifold of Φ via Newton’s method. In
particular, we reuse the matrix from Eq. 14 and solve[

A3 dΦ(f)T

dΦ(f) 0

] [
h
λ

]
=

[
0

−Φ(f + τ x)

]
(15)

to obtain a Newton step h, which we add to the updated embedding
f + τ x. The step h is the least-norm solution of the linear equation
dΦ(f) h = −Φ(f), with respect to the metric encoded by A3. This
correction can be repeated several times if the constraint violation
is not sufficiently small—though for the constraints we explored a
single step was always sufficient.

4 ENERGY AND DERIVATIVE EVALUATION
The algorithm of Sec. 3 is bottlenecked by several operations of
at least quadratic complexity. The first bottleneck is evaluation of
the energy Ep and its derivatives dEp , which requires iteration
over all pairs of elements. We thus use hierarchical Barnes-Hut
approximation [Barnes and Hut 1986] to accelerate computation.

Note that the kernel Kf ,p (S,T) (Eq. 9) involves only the barycen-
ters of S and T , and the normal projector of S . To clarify this depen-
dence, we here write it as Kp (Xf (S), Pf (S);Xf (T)), with

Kp (X , P ;Y) :=
|P (X − Y)|p

|X − Y |2p
. (16)

4.1 Approximate Energy
At each step we construct a bounding-volume hierarchy (BVH)
for the current face set, which is used to evaluate the Barnes-Hut
approximation

Ẽp (f) =
∑
S ∈F

∑
I∈adm(S)

Kp (Xf (S), Pf (S);XI) af (S) aI . (17)

Here adm(S) is the set of BVH nodes I that are admissible with
respect to face S , but have no admissible ancestors. In particular, a
Taylor series analysis of Eq. 16 indicates that to keep error bounded,
I must either (1) contain a single face, or (2) satisfy

max(r (S), r (I)) < θ dist(S, conv(I)),

where r (S), r (I) are the radii of the triangle S and the node I, resp.
(measured from their barycenters), θ ≥ 0 is a fixed parameter, dist
is the minimum distance between sets, and conv is the convex hull.
In practice, we approximate the convex hull by the axis-aligned

bounding box, leading to a stricter admissibility condition; the radius
r (I) is then the bounding box radius relative to the barycenter of
all faces in I. Likewise, rather than store individual faces in BVH
leaves, we stop when a node contains no more than l faces (l = 8
in our experiments). Hence, if a leaf is not admissible, we directly
sum over all its faces. Overall, each node I stores the total area aI ,
barycenter XI , and axis-aligned bounding box BI of its faces.
The separation parameter θ controls the approximation quality;

the higher θ is, the faster the computation, but the less accurate
the result. For θ = 0, the sum degenerates to an all-pairs exact
computation. Unless otherwise noted, we use θ = 0.5 for all ex-
periments. Note that we do not update the energy approximation
during line search, but rather just fix the admissibility of clusters at
the beginning of the search.

4.2 Approximate Derivative
Computing an approximate derivative with Barnes-Hut is not en-
tirely analogous to computing the energy. For each vertex v ∈ V ,
we evaluate the sum

∂̃vE
p (f) =

∑
S ∈F (v)

∑
I∈adm(S)

∂v
(
Kp (Xf (S), Pf (S);XI) af (S) aI

)
,

where F (v) denotes the set of faces containing v . This approximates
both the forward and reverse terms that would be differentiated by
v in an exact computation. Note that the outer sum over all S ∈ F (v)
for both energy and derivative evaluations can be evaluated as a
parallel reduction without modification.

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

Repulsive Surfaces • 268:7

5 ITERATIVE LINEAR SOLVER
An even more significant bottleneck than the energy is the dense
saddle point problem of Eq. 14. Rather than solving this problem
via dense matrix inversion, we will solve it instead using GMRES,
an iterative method. In general, efficient iterative methods require
two key ingredients: fast matrix-vector products, and effective pre-
conditioners. Here, we will describe methods for both.

5.1 Hierarchical Matrices
We use hierarchical matrices [Hackbusch 2015] to perform fast
multiplication with A without explicitly assembling the matrix. In
this section, we present the special case of rank-1 compression of
kernel matrices, while noting that the original method can also
perform higher-rank approximations. In our setting, a kernel matrix
H is a matrix of size |F | × |F | whose entries are defined by

HST = (1 − δST)h(Xf (S), Pf (S);Xf (T), Pf (S)),

where h : (Rm × End(Rm)) × (Rm × End(Rm)) → R is a suitable
kernel function. To motivate this approach, we first reduce the
actions of the operators Lσ , B, and B0 to the multiplication with
certain kernel matrices.

5.1.1 Applying the operator Lσ . An elementary computation shows
(see App. A) that the action of the discrete linear operator Lσ on a
vector v ∈ R |V | can be written as

Lσ v = 2UT [diag
(
diag(af)−1H af

)
− H

]
U v.

Here af is the |F |-vector of face areas; U is the |F | × |V |-matrix that
averages values on vertices onto faces and multiplies with the face
areas; and H is the kernel matrix of size |F | × |F | to the singular
kernel h(X , P ;Y ,Q) = |X − Y |−(2σ+2). U is sparse, so we just need
an efficient product with H to evaluate the full product with Lσ .

5.1.2 Applying the High-Order Term. To evaluate a matrix-vector
product with A = B + B0, it suffices to evaluate B and B0 separately.
This can be done in a similar fashion as for Lσ . For the higher order
term B, we have the identity

Bv = 2VT
[

diag
(
diag(af)−1H af

)
− H

]
V v,

where V = diag(af)Df with the discrete derivative operator Df
described in Sec. 3.2.1 and where the kernel h of the kernel matrix
H is given by h(X , P ;Y ,Q) = |X − Y |−(2(s−1)+2).

5.1.3 Applying the Low-Order Term. Likewise, we can write the
action of B0 as

B0v = 2VT
[

diag
(
diag(af)−1H af

)
− H

]
V v,

where the kernel h of the kernel matrix H is given by

h(X , P ;Y ,Q) =
k2(X , P ;Y) + k2(Y ,Q ;X)

2|X − Y |2(s−1)+2 .

5.1.4 Block Cluster Tree. EnergyAndDerivativeEvaluation In order
to compress these kernel matrices, we reuse the BVH from Sec. 4, but
additionally compute the average projector PI := a−1

I

∑
S ∈I af (S) Pf (S)

for each node I. From this, we construct a block cluster tree, whose
nodes (termed block clusters) consist of pairs of BVH nodes (termed

clusters in the following). For a given separation parameter χ ≥ 0,
we say that two BVH clusters I and J are an separated pair if

max (r (I), r (J)) ≤ χ dist(conv(I), conv(J)).

Fig. 6. A block decomposition of
a kernel matrix H induced by
a block cluster tree. Admissible
blocks are shown in green, while
inadmissible blocks are in red.

Here again, r (I), r (J) are the radii
of the nodes I, J as measured
from their barycenters. The param-
eter χ controls the accuracy of the
approximation; it will be discussed
further in the next section. Then,
denoting the BVH root by R, we
construct the block cluster tree by
starting with the single pair (R,R),
and iteratively splitting nonsepa-
rated nodes (I,J) into the Carte-
sian products of their constituents’
children until all leaf nodes are ei-
ther separated or cannot be split
any further. In practice, the tree
structure is not important to maintain; only the lists of leaf nodes
matter. We refer to the separated leaf nodes of the block cluster tree
as admissible blocks and to the others as inadmissible blocks; Fig. 6
illustrates the decomposition of the full matrix into these blocks.

5.1.5 Hierarchical Multiplication. The block cluster tree allows us
to perform approximate multiplication with a kernel matrix H as
follows. Every pair of BVH clusters (I,J) corresponds to a block
of H with rows indexed by I and columns by J . Let HIJ denote
this matrix block and let xI and 1I denote the slices of x ∈ R |F |
and of the all-ones vector indexed by I, respectively. Then, for all
leaf blocks (I,J), we compute the product y = H x in two steps:

(1) If (I,J) is inadmissible, then we multiply exactly:

yI ← yI + HIJ xJ .

(2) If (I,J) is admissible, we employ rank-one approximation:

yI ← yI + 1I h(XI, PI ;XJ, PJ) 1TJ xJ .

Here, we can see more clearly the effect of χ . For χ = 0, all blocks
are considered inadmissible, and the action ofH is evaluated exactly.
For χ > 0, the larger the value, the more blocks will be considered
admissible and thus multiplied using the fast approximation in
Step 2, leading to faster evaluation time – but also higher error,
analogous to the θ parameter for Barnes-Hut. For our experiments,
we found χ = 0.5 to be a broadly acceptable value. Note that, while
a straightforward implementation of these two steps is sufficient to
evaluate the product, a much faster implementation can be obtained
by employing multipole methods; see App. B for details.

5.2 Preconditioner
We can now efficiently evaluate matrix-vector products with A, but
to efficiently solve Ax = b we still need a good preconditioner for
A, i.e., an efficient approximation of A−1. Since we do not explic-
itly build A, classical preconditioners (e.g., diagonal or incomplete
Cholesky) cannot be used.

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

268:8 • Chris Yu and Caleb Brakensiek and Henrik Schumacher and Keenan Crane

Instead, consider the Laplace-Beltrami operator ∆f of the embed-
ding f : M → R3, which for a triangle mesh is given by the sparse
cotan-Laplace matrix [Crane et al. 2013a, Section 6.4]. Our inner
product A is closely related to the fractional Laplacian (−∆M)s , and
has the same order 2s . Evaluating the fractional power of a large
sparse matrix is prohibitively expensive—but we can still obtain a
cheap approximation of the inverse (−∆M)−s via the factorization

(−∆M)
−s = (−∆M)

−1(−∆M)
2−s (−∆M)

−1.

What remains is a forward application of the fractional Laplacian
(−∆M)

2−s , to which we do not have direct access. Fortunately, since
0 < 2 − s < 2, we can replace (−∆M)2−s with L2−s (as per Sec. 2.4),
whose action can efficiently approximated à la Sec. 5.1.1. Thus, if
we prefactor (−∆M), we can apply the preconditioner

Ã−1 := (−∆M)−1L2−s (−∆M)
−1

via just two back-substitutions and one hierarchical matrix-vector
product—all of which are efficiently evaluated.
Note that despite having the same order as our operator A, Ã−1

is not directly suitable as an inner product: it approximates only
the inverse of the high-order term, which means we cannot easily
incorporate other inner product terms such as Eq. 8 or Sec. 7.3.5.
Empirically, it provides poor preconditioning when applied to the
gradient flow equation directly. However, it is highly effective as a
preconditioner for GMRES, enabling efficient inversion of A (plus
any auxiliary terms).

5.3 Schur Complement
Though we can now iteratively solve the unconstrained problem
Ax = b, we must still be able to handle constraints. Empirically, we
find that applying an iterative method directly to the saddle-point
system (Eq. 14) exhibits poor convergence. Hence, we instead use
the Schur complement [Zhang 2005] to handle the additional rows.
In particular, letM be the saddle point matrix

M :=
[
A3 dΦT

dΦ 0

]
. (18)

The Schur complement ofM with respect to A3 is

(M/A) = −dΦ
(
A−1

3 dΦT), (19)

and the blocks ofM−1 can be expressed as[
A−1

3 +
(
A−1

3 dΦT)(M/A3)−1dΦA−1
3 −

(
A−1

3 dΦT)(M/A)−1

−(M/A)−1 (A−1
3 dΦT)T (M/A)−1

]
.

The operator A−1
3 can be applied using the iterative method just

outlined; a product with A3 is equivalent to three separate products
with A. The complement M/A is dense, but has dimensions k × k ,
corresponding to the number of scalar constraints. So, as long as k
is small, (M/A)−1 can be computed quickly. Thus, all blocks ofM−1

are computed without having to invert a large matrix.
Moreover, to get the constrained descent direction x, we need

only the top-left block: letting g := dEp (f), we compute the descent
direction by directly applying the top-left block to x, yielding

x = A−1
3 g +

(
A−1

3 dΦT)(M/A)−1dΦ
(
A−1

3 g
)
. (20)

Eq. 19 requires one application ofA−1
3 per row of dΦ. Eq. 20 contains

three occurrences of A−1
3 , but A−1

3 g can be reused in both places
where it appears, and A−1

3 dΦT can be reused from its earlier com-
putation in Eq. 19. Thus, the method requires just k + 1 iterative
solves, where k is the number of constraints.

5.3.1 Corrective Projection. We similarly use the Schur complement
to solve Eq. 15 for the corrective step h. Only the top-right block of
the Schur complement is needed, giving the expression

h = −
(
A−1

3 dΦT)(M/A)−1(−Φ(f)). (21)

(M/A) does not need to be recomputed, and A−1
3 dΦT can again be

reused. Thus, constraint projection incurs no significant costs.

5.4 Accelerated Algorithm Overview
The accelerated algorithm is as follows:

(1) Assemble the (approximate) derivative dEp (f) of the energy
using Barnes-Hut (Sec. 4).

(2) Construct a BVH that partitions the faces of the mesh, and
use it to create a block cluster tree (Sec. 5.1.4).

(3) Use the Schur complement to solve the constrained saddle
point problem (Eq. 14).

(a) Evaluate products with (A3)−1 by using a matrix-free iter-
ative method (e.g., GMRES), with the preconditioner from
Sec. 5.2, and an initial guess of 0.

(b) Within the iterative method, evaluate products with A us-
ing the block cluster tree (Sec. 5.1.2, Sec. 5.1.3).

(4) Take a step in the direction of x using standard line search.
(5) Reuse the Schur complement to project the resulting embed-

ding onto the constraint manifold of Φ (Sec. 5.3.1).
If no constraints are imposed, then the algorithm can be simplified:
step 3 can be replaced by a single iterative solve A3x = b, and step
5 can be omitted entirely.

6 DYNAMIC REMESHING
Minimizing the tangent-point energy often induces large surface
deformations that degrade triangle quality. We therefore use a dy-
namic remeshing scheme similar to the approach of Chen and Holst
[2011]. The exact algorithm we use is as follows:

(1) Edges with length greater than 3L0/2 are split and edges with
length smaller than L0/2 are collapsed, unless this operation
would result in triangle foldover.

(2) For N iterations:
(a) All edges that violate the Delaunay condition are flipped

until no such flippable edges can be found.
(b) Vertex positions are smoothed by computing a displace-

ment vector from neighboring triangles

ui = ρ

∑
S ∈F (i) af (S)(cf (S) − f (i))∑

S ∈F (i) af (S)
.

Here F (i) denotes the set of faces containing vertex i , cf (S)
is the circumcenter of the triangle S , and ρ < 1 is a constant.
This displacement is projected onto the tangent space of
the vertex and added to the original position.

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

Repulsive Surfaces • 268:9

input
without

remeshing
with

remeshing

Fig. 7. Adaptive remeshing not only improves element quality—it also helps
to avoid local minima where the surface gets “stuck.”

Our implementation uses ρ = 0.5 and N = 5; L0 is set to the average
edge length of the initial mesh and remains constant throughout.
We apply this remeshing procedure at the end of each iteration, after
the final step of Sec. 5.4. Remeshing is crucial to reaching minimizers
of the tangent-point energy; without it, degrading triangle quality
can impede or even halt progress, as seen in Fig. 7.

7 CONSTRAINTS AND PENALTIES
A variety of constraints and penalties can be imposed on the tangent-
point energy, both for regularization of minimizers and for specific
design purposes. In this section, we discuss the constraints and
penalties that we have investigated; more are certainly possible,
and in particular, combining the tangent-point energy with other
classical surface energies could make for interesting future work.

7.1 Constraints
We consider four types of constraints: fixed barycenter, vertex pins,
total area, and total volume.

7.1.1 Fixed Barycenter Constraint. A fixed barycenter constraint
can be defined as

ΦC (f) =

∑
i ∈V f (i)af (i)∑
i ∈V af (i)

− X0,

whereX0 is the target barycenter location and af (i) denotes the area
associated to vertex i . Its JacobiandΦC is a 3×3|V | matrix consisting
of |V | copies of the 3 × 3 identity matrix appended horizontally.
This constraint primarily serves to eliminate the nullspace of the
fractional Laplacian (Sec. 3.3); either a barycenter constraint or
at least one pin constraint must be added to every problem to be
well-posed. For domains with multiple components, barycenters are
constrained separately for each component.

Fig. 8. To handlemultiple components (as shown here), we fix the barycenter
of each one during preconditioning, then add back in the mean motion of
each component from the original L2-gradient after the solve.

Barycenter Motions. In some cases, it might be desirable to allow
the barycenter to float freely, e.g., when a scene contains fixed
obstacles for the surface to avoid. A simple modification enables
this motion: compute the weighted average over all vertices of the
L2 gradient before projection, and then add the constant translation
by that vector back to the descent direction after projection. For
domains with multiple components, the average motion is computed
separately for each component (Fig. 8).

7.1.2 Vertex Pin Constraints. A vertex pin constraint simply fixes
a vertex to a position. Every pinned vertex i produces a constraint
function ΦPi (f) = f (i) − f0(i), where f0(i) is the pinned position.
The Jacobian dΦPi is a 3× 3|V | matrix, but the only nonzero entries
consist of a single copy of the identity matrix in the block indexed
by i . A pin also eliminates the nullspace of the Laplacian, so if any
pins are used, then a barycenter constraint is unneeded.

7.1.3 Total Area Constraint. A total area constraint preserves the
total surface area of the mesh, and can be written as

ΦA(f) = (
∑
T ∈F af (T)) −A0,

where A0 is the target area. The Jacobian dΦA is a 3|V | row vector
with the area gradient at each vertex, which is equivalent to twice
the mean curvature normal.

7.1.4 Total Volume Constraint. Likewise, a total (signed) volume
constraint can be written as

ΦA(f) =
1
6
(∑
(i jk)∈F f (i) · (f (j) × f (k))

)
−V0,

where V0 is the target volume. For each vertex, the Jacobian dΦA is
proportional to the area-weighted vertex normal.

7.2 Fast Positional Constraints
As discussed in Sec. 5.3, computing the Schur complement requires
one iterative solve per constraint. For constraints such as fixed
barycenters (3 rows per mesh component) or pinned vertices (3
rows per vertex), these solves incur significant cost. Hence, rather
than use the full-blown Schur complement to handle these simpler
linear constraints, we incorporate them into the matrix A. More
precisely, if ΦQ describes all constraints on position, then we replace
A with another saddle-point matrix

A′ :=
[

A dΦT
Q

dΦQ 0

]
,

Conceptually, the corresponding matrixA′3 then becomes the upper-
left block of the original saddle-point matrixM (Eq. 18), though in
practice we work with the smaller matrix A′, since constraints on
position can be separated into three independent components. The
same constraint rows and columns are also appended to the integer
Laplacians in the preconditioner (Sec. 5.2). A forward matrix-vector
product with A′ now entails sparse products with dΦC and dΦPi ,
in addition to the usual hierarchical product with A from Sec. 5.1.

Overall, this scheme enables efficient handling of Dirichlet bound-
ary conditions (Fig. 9). Note that fast convergence in this scenario
requires that orthogonality to these constraints be sufficiently simi-
lar under the two inner products defined by the integer Laplacian ∆
and the fractional operator A. Empirically, this is the case for linear
positional constraints, but is not the case for constraints such as

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

268:10 • Chris Yu and Caleb Brakensiek and Henrik Schumacher and Keenan Crane

Fig. 9. Fast positional constraints enable Dirichlet boundary conditions.
Here, minimizing tangent-point energy on a cylinder yields a nearly spheri-
cal geometry (left). Using tangent-point energy to regularize area minimiza-
tion avoids the usual pinch-off singularities in minimal surfaces (center). We
can also compute (near-)minimal surfaces with obstacles, in the spirit of
[Giusti 1973] (right).

total area and volume. Thus, we reserve the Schur complement for
these more difficult constraints.

7.3 Penalties
In addition to hard constraints, a number of soft penalty potentials
can be added to regularize the flow in some way. These potentials
are added directly to the objective function with some weighting
coefficient alongside the tangent-point energy, and their gradients
are accumulated in the same step.

7.3.1 Total Area and Volume Potentials. Soft penalties for total area
and volume can be used in place of hard constraints, encouraging
these quantities to stay close to their initial values without enforcing
this exactly. For total area, the potential is defined as

Earea(f) =
(
(
∑
T ∈F af (T))/A0 − 1

)2
.

The raw deviation is normalized by the initial area A0 to make
the penalty scale invariant. The total volume potential is defined
analogously.

7.3.2 Static Obstacles. For practical modeling purposes, it may be
desirable not to design an object in isolation, but instead to design it
within its intended environment. To that end, we provide the ability
to place “obstacles”, which are static meshes that exert a repulsive
force on the optimization surface. These obstacles can be used to
model surrounding environments such as rooms and the objects
within them, which must be avoided by the object under design.
From an obstacleO with embedding fO , each point x in the domain
experiences a repulsive potential equal to

Eobs(x) =
∑
S ∈FO | fO (S) − x |

−p afO (S)

with p matching the exponent of the tangent-point energy. Naïvely,
this requires iteration over all faces of O , but Barnes-Hut can be
used as in Sec. 4 to approximate the obstacle potential.

7.3.3 Implicit Obstacles and Attractors. Similarly to static mesh
obstacles, one can also use implicit surfaces defined by signed dis-
tance fields as obstacles or attractors. Given a signed distance field
d : R3 → R, the repulsive potential experienced at any point x due

to the implicit obstacle defined by d(x) = 0 is simply

Ei (x) = d(x)
−p .

An implicit attractor, rather than repelling other objects away from
it, pulls objects towards it. The attractive potential experienced at
any point x is simply the reciprocal of the above, or

Ea (x) = d(x)
p .

7.3.4 Boundary Length and Curvature. For meshes with boundary
(e.g. Fig. 20), it may be beneficial to regularize the shape of the
boundary curves. We support two potentials for this purpose. One
is a regularizer on the length of the boundary, defined as

Eb = (L −
∑
e ∈∂M l(e))2 ,

where L is a target boundary length, and l(e) is the length of bound-
ary edge e . The other regularizes the curvature, and is defined as

Ec =
∑
v ∈∂M θ (v)2/ℓ(v),

where θ (v) is the turning angle at vertex v , and ℓ(v) is the dual
length (i.e., half the length of the two incident edges).

7.3.5 Willmore Energy. One can also add surface fairing energies
such as the Willmore energy. For example, we use the following
discrete variant of the squared mean curvature integral:

EWillmore(f) = f TAM−1A f .

Here A is the stiffness matrix of the cotan Laplacian and M is the
lumped mass matrix. Up to mass lumping, this is the discrete Will-
more energy from [Dziuk 2008]. As suggested in [Eckstein et al.
2007; Schumacher 2017], we add an H2 inner product term AM−1 A
to the matrix that we invert in Sec. 5.

8 EVALUATION AND COMPARISONS

8.1 Consistency
Evaluating convergence of our discretization and approximation
schemes is not straightforward, since to date there are only conjec-
tures about what minimizers might look like (Sec. 9.1.1). Instead,
we numerically study the consistency of our discretization: we gen-
erate several smooth surfaces, compute their true tangent-point
energies, and compare to our discrete energy and its Barnes-Hut
approximation.

The exact energy can be computed directly only for very simple
shapes, like a sphere or torus of revolution. To get a more generic
picture, we took the parameterized torus of revolution f0(ϕ, θ) =(
(1+ 1

3 cos(ϕ)) cos(ϕ), (1+ 1
3 cos(θ)) sin(ϕ), 1

3 sin(θ)
)
and perturbed

it by a random trigonometric polynomial Φ : R3 → R3 of small
magnitude (to ensure embeddedness) and small order (to obtain
moderate curvature), obtaining a final smooth surface f := f0 + Φ ◦
f0. We computed Ep (f) up to 6 digits of precision via numerical
integration with Mathematica’s NIntegrate command using the
"LocalAdaptive" strategy. We then computed an affinely squeezed
Delaunay triangulation of [0, 2π] × [0, 2 π] and used it to sample
the surface f . Nonuniformities in triangle shape and size were
repaired by our remeshing routine (Sec. 6) followed by projection
back onto the surface f . Using the resulting discrete surface fh
we computed the Barnes-Hut energy Ẽp (fh) (Eq. 17) for varying

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

Repulsive Surfaces • 268:11

-

-

error relative to true energy vs. h, θ
test surface

=

=

=

=

=

=

=

=

=

=

error relative to true energy vs. h error relative to discrete energy vs. θ

Fig. 10. Empirically, our discrete tangent-point energy appears to converge
to the true smooth energy at a rate somewhere between O (h) and O (h2);
as expected, our Barnes-Hut approximation also converges to the discrete
energy as θ → 0. Reference values are obtained by applying highly accurate
numerical integration to the tangent-point energy on a smooth parame-
terized surface (triangulated in top right). See supplemental for additional
examples.

separation parameter θ ; for θ = 0, this gives the all-pairs energy
E(fh) from Eq. 10. The resulting relative errors are shown in Fig. 10.

The discrete energy Ep (fh) uses face normals, which are known
to exhibitO(h) error, where h > 0 is the longest edge length. So it is
expected that the discretization error eh := |Ep (fh) − Ep (f)| is no
better than O(h). Surprisingly, our experiments show a numerical
rate that is considerably better (Fig. 10, bottom left and for θ = 0).
Moreover, we use center of mass data on BVHnodes; so the deviation
eh,θ := |Ẽp (fh) − Ep (fh)| of the Barnes-Hut approximation from
the discrete energy should be dominated by the midpoint rule’s
consistency error which is O(θ2). Indeed our experiments seem to
confirm this (see Fig. 10, bottom right).

8.2 Comparisons
We next compare to other accelerated descent strategies from geo-
metric computing. Overall, our fractional Sobolev scheme converges
to local minimizers much faster than past schemes (dramatically so,
in the case of highly knotted configurations). This outcome should
not come as a surprise: the all-pairs energy we seek to minimize
behaves very differently from those arising in, e.g., curvature flows
or elasticity, which are based on discrete differential operators with
small local stencils.

8.2.1 Comparison Methods. Our comparisons are guided by the
extensive comparisons from Yu et al. [2021, Section 7]; we compare
with the best of those methods. As a baseline we consider ordinary
L2 gradient descent, which replaces A in Eq. 14 with the mass ma-
trix. Likewise, replacing A with the weak Laplacian ∆ (encoded by
the cotan matrix) yields standard H1 Sobolev preconditioning; H2

Sobolev preconditioning is achieved by solving Eq. 14 with the weak
bi-Laplacian ∆2 in place of A. (This latter preconditioner is essen-
tially an ideal choice for Willmore flow [Schumacher 2017].) Like
H1 preconditioning, the accelerated quadratic proxy (AQP) method
uses the weak Laplacian ∆ as the inner product, but also computes
a Nesterov acceleration step from the previous two configurations;
this strategy is compatible only with linear constraints [Kovalsky
et al. 2016, Section 2]. Another common strategy, which we refer
to as H1 L-BFGS, is to initialize L-BFGS with the weak Laplacian
rather than the identity matrix, and likewise use the Laplacian to
evaluate inner products. Finally, Blended cured quasi-Newton (BCQN)
essentially interpolates between ordinary H1 Sobolev precondition-
ing and H1 L-BFGS, and uses barrier penalties to prevent triangle
inversion. Since our flow is almost H s orthogonal with tangential
motions (and since we remesh) we do not experience inversions,
and hence omit inversion barriers/inversion-aware line search.

0 100 200 time

150

250

en
er

gy no remeshing

H
1
 L-BFGS

H
s
 (ours)

To make a fair comparison, all
methods use identical code for en-
ergy/differential evaluations (Sec. 4)
and remeshing (Sec. 6). Since edge
splits and collapses invalidate the his-
tory of BFGS-based methods, we re-
set memory vectors whenever such
operations occur. However, even
without remeshing H1 L-BFGS is not
competitive—e.g., it takes about 4x as
long as our method just to reach the state in Fig. 7, center (see inset).
All comparisons use barycenter and total area constraints. Since
AQP and L-BFGS do not support nonlinear constraints, we instead
use a penalty function for area (Sec. 7.3.1). Augmenting AQP with a
Schur complement would simply H1 projected gradient descent mi-
nus Nesterov acceleration—which empirically does not significantly
improve performance for our problem.
See Yu et al. [2021] and its supplement for further discussion

and comparison of other popular schemes (such as implicit time
stepping) with our fractional Sobolev approach.

8.3 Time Step Restriction
Fig. 5 verifies that matching the order of the inner product to that of
the energy differential essentially lifts the mesh-dependent time step
restriction. Here, we sampled the same surface at three resolutions,
and ran each method for the same number of iterations. Our H s

scheme makes more progress for an equal number of iterations—
but more importantly, the per-iteration progress of H s is largely
unaffected by mesh resolution, whereas all other methods slow
down as resolution increases. Hence, even if some of these methods
could be further accelerated by a constant factor (e.g., via code-level
optimization), asymptotic behavior would ultimately dominate.

8.4 Wall-Clock Performance
We timed real-world performance of each method on several chal-
lenge meshes, using an AMD Ryzen Threadripper 3990X with 32
GB of RAM. Though our solver benefits from multiple threads (see
Sec. 1), we ran this benchmark single-threaded to ensure fair compar-
ison. Fig. 12 plots energy as a function of time; we ran each method

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

268:12 • Chris Yu and Caleb Brakensiek and Henrik Schumacher and Keenan Crane

linked
handcu�s

doubly-wound
handcu�s

trefoil
tunnel

�gure-8
tunnel

6x-wound
handcu�s

Fig. 11. Gallery of isotopies obtained by minimizing tangent-point energy—notice that highly knotted surfaces, as well as surfaces with thin sheets and
handles, successfully flow to their canonical embeddings. Surfaces are grouped by their isotopy equivalence classes, which are extremely difficult to determine
via visual inspection (and also not simply determined by Euler characteristic—see Fig. 16). Labeled meshes are used for performance comparisons in Fig. 12.

H1 projected gradient H2 projected gradient Hs projected gradient (ours) H1 L-BFGSL2 projected gradient BCQNAQP

en
er

gy

wall clock time (seconds)
3000200010000

101

102

103

figure-8 tunnel
(45,198 faces)

100

101

102

wall clock time (seconds)
3000200010000

trefoil tunnel
(23,206 faces)

102

103

104

105

wall clock time (seconds)
2000150010005000

linked handcu�s
(25,098 faces)

102

103

104

wall clock time (seconds)
2000150010005000

doubly-wound handcu�s
(26,306 faces)

102

103

104

wall clock time (seconds)
2000150010005000

6x-wound handcu�s
(21,712 faces)

Fig. 12. Energy plots showing the effectiveness of a suite of methods at minimizing the tangent-point energy. Our H s method (in green) reaches minimizers
more quickly and consistently than the alternatives. Iterations where energy blows up (above 1010) causing the AQP method to fail are marked with an X.
Renderings of the meshes used and their minimizers can be seen in Fig. 11.

for 3600 seconds on the figure-8 and trefoil tunnels, and 2400 seconds
on all others. Reference energy values were computed by evaluating
the exact energy, without Barnes-Hut. Our H s projected gradient
method gave the best performance in all cases, reliably reaching a
minimum within the allotted time. In some cases the initial decrease

1. triple torus (Sec. 9.1) 8. nested cages (Fig. 22)
2. moving bars (Sec. 9.2) 9. walnut (Fig. 23)
3. broken figure-8 (Fig. 12) 10. trefoil tunnel (Fig. 12)
4. punctured torus (Fig. 19) 11. 6x-wound handcuffs (Fig. 12)
5. handcuffs (Fig. 17) 12. double torus (Fig. 7)
6. 2x-wound handcuffs (Fig. 12) 13. keys (Fig. 8)
7. point cloud (Fig. 21) 14. figure-8 tunnel (Fig. 12)

10k 20k 30k 40k faces
0.0

0.5

1.0

1.5

2.0

2.5

seconds

4

Fig. 13. Per-step timings for a representative set of examples—notice scaling
is roughly linear with mesh size.

is faster for other methods, likely because there are initially many
small local features to be smoothed out. Subsequently, however,
these methods make much slower progress at evolving the global
shape. Though AQP and BQN are also based on H1 precondition-
ing, they do not do as well here as the “vanilla” H1 preconditioner.
One possible reason is that they do not support hard nonlinear
constraints—hence penalties may fight with the main objective. See
Yu et al. [2021] for a much more extensive discussion and analysis
of fractional methods versus a similar set of alternatives.

Fig. 13 gives timings for a variety of models using four threads—
note the roughly linear scaling with mesh size. Here, the larger
meshes are in a sense over-tessellated: for interactive design explo-
ration one can typically start with a much coarser mesh (say, 10k
faces or less), then refine and optimize the final geometry if desired.

9 EXAMPLES AND APPLICATIONS
Wehere explore a variety of applications that help to further evaluate
our method, show how it can be used in context, and also identify
issues that might be improved in future work. These applications are
also illustrated in the accompanying video—note that for many of
these examples we take time steps far smaller than the optimal step
determined by line search, in order to produce smooth animation.

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

Repulsive Surfaces • 268:13

Fig. 14. Top: even careful illustrations of topological phenomena (here drawn
by mathematician Peter Lynch) can be difficult to understand without a
good visual imagination. Bottom: our method automatically generates con-
tinuous motions that are easier to interpret (see video), enabling exploration
by students and researchers who do not have significant artistic training.

9.1 Mathematical Visualization and Exploration
A basic question in geometric topology is whether two embedded
manifolds are the same up to ambient isotopy—intuitively, whether
one surface can be deformed into another by smoothly warping the
space around it. More formally, an ambient isotopy between two
embeddings f0, f1 : M → R3 is a continuous map F : R3 × [0, 1] →
R3 such that for all x ∈ M , F (x, 0) = x , F (f0(x), 1) = f1(x), and
F (x, t) is a homeomorphism from R3 to R3 for every time 0 ≤ t ≤ 1.

In general this equivalence question can be quite hard to answer—
for instance, even detecting whether a given embedding of the
circle in R3 is equivalent to the unit circle (or “unknot”) has not
yet admitted a polynomial time algorithm [Lackenby 2016]. Hence,
computational tools are used to explore such questions experimen-
tally; a notable example for curves is KnotPlot [Scharein 1998]. The
software developed for our project effectively provides the first
“KnotPlot for surfaces.” Especially the fact that our solver exhibits
rapid convergence and excellent scaling enables us to investigate
questions that would be impossible with naïve numerical methods.

9.1.1 Canonical Embeddings. Global minimizers of geometric en-
ergies provide the “simplest” possible geometric representative of
a given topological space. Such minimizers also play a critical role
in geometric algorithms since they provide a canonical domain for,
e.g., surface correspondence and data transfer—see for instance re-
cent algorithms in both the intrinsic [Schmidt et al. 2020; Gillespie
et al. 2021] and extrinsic [Kazhdan et al. 2012; Ye et al. 2018] set-
tings. Formally proving that a given surface is a global minimizer is
quite challenging. For instance, even the classic Willmore conjecture
(which says that the Clifford torus minimizes Willmore energy for
genus-1 surfaces) was resolved only very recently, after about 50
years of sustained effort [Marques and Neves 2014]. Hence, numeri-
cal tools are essential for formulating hypotheses about the behavior
of minimizers and other critical points. To date, there are no clear
conjectures about tangent-point minimizers for surfaces of genus
д ≥ 2. For reasons discussed in Sec. 1, these minimizers likely exhibit
symmetries in R3 rather than S3, making them potentially useful as
a base domain for algorithms in extrinsic shape processing. To do so,
one would simply need to track the parametric correspondence (e.g.,
via UV-coordinates), and perhaps minimize tangential distortion
after flowing to a geometric minimizer (à la Schmidt et al. [2020]).

input surface (genus g)

g=1g=0 g=2

…

g=3 g=4 g=5

g=6 g=7 g=8

g=9 g=10 g=11

Fig. 15. Global minimizers of geometric energies provide canonical domains
that can be used to map between surfaces of the same topology, or simply
help visualize a topological space. Here we show conjectured minimizers
of the tangent-point energy for unknotted surfaces of genus д; adjacent
figures illustrate symmetries (when present).

Unknotted Minimizers. Fig. 15 shows a numerical study of unknot-
ted surfaces of increasing genusд, initialized by a linear arrangement
of handles. For д = 0, 1, and 2 we get a round sphere, a torus of
revolution, and a surface with symmetries of a triangular prism,
respectively. Other surfaces appear to exhibit symmetries of a highly
regular polyhedron—for instance, forд = 3, 4, 5, 6, 8, 9, and 11 we get
symmetries of the tetrahedron, triangular prism, cube, pentagonal
prism, truncated bipyramid, rectangular prism, and dodecahedron,
respectively. Symmetries (if any) for д = 7 and 10 are less clear—or
we may have simply failed to reach a global minimum. Interestingly,
an octahedral configuration appears not to be a minimizer for genus
7, even if we start with a symmetric configuration (and similarly for
the icosahedron, not shown). In general it seems triangular “faces”
are not preferred in higher-genus configurations due to the small
angle between “edges”—much as electron repulsion maximizes bond
angles in molecular geometries (e.g., stable compounds like graphite
prefer bond angles near 120◦, whereas only unstable compounds
like white phosphorus exhibit tetrahedral symmetry).

Knotted Minimizers. A key feature of tangent-
point energy (versus, say, Willmore energy) is
that it enables us to find minimizers within a
given isotopy class. Hence, just as it is quite
common to make tables of canonical knot em-
beddings, we can now make tables of canonical
embeddings for knotted surfaces. For instance,
Fig. 16 shows the first-ever visualization of the
different ways a genus-2 surface can be embed-
ded in space. In the past, these isotopy classes
have been depicted only as trivalent graphs—we take each such

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

268:14 • Chris Yu and Caleb Brakensiek and Henrik Schumacher and Keenan Crane

41

51 52 53 54 61

62 63 64 65 66

67 68 69 610 611

612 613 614 615 616

Fig. 16. Geometric functionals provide a bridge between topology and ge-
ometry by enabling one to construct canonical geometric representatives
of a given topological space. Here, minimizers of tangent point energy are
used to visualize nontrivial isotopy classes of a genus-2 surface. (Numbers
indicate number of crossings; subscripts index trivalent graphs from [Ishii
et al. 2012, Table 1]).

Fig. 17. Top: minimizers of tangent-point energy often exhibit three-
dimensional symmetries which can be difficult to understand from a single
view—by adding an attracting plane, we get embeddings that can be nicely
displayed in two-dimensional illustrations. Bottom: constrained minimizers
for genus 2 through 6.

graph from [Ishii et al. 2012, Table 1], and construct a topologically
equivalent initial mesh that is optimized by our approach (see inset).
As with knots most of these minimizers do not exhibit much extrin-
sic symmetry, except for, e.g., 67 and 53 which exhibit bilateral and
3-fold symmetry, resp.

Planar Representatives. Although minimizers exhibit a high de-
gree of symmetry in R3, it can be hard to determine even the genus

Fig. 18. Surprisingly, one can remove a handle of a double torus from a loop
or pole without cutting or pinching the surface. Top: hand-drawn illustration
by Wells [1997]. Bottom: isotopy computed automatically by our method
(see video); no keyframing or boundary conditions were used.

of aminimizer when viewed from just a single viewpoint. In contrast,
topological figures depicted by expert illustrators tend to be
somewhat “2.5-dimensional” so that
they can be better understood when
projected onto the image plane. We
can replicate this behavior by adding
a simple attractive plane potential, as
depicted in Fig. 17, yielding minimiz-
ers that are much easier to recognize (contrast with Fig. 15). An
additional plane constraint yields a linear arrangement of handles,
as commonly drawn by hand (see inset).

9.1.2 Illustrating Isotopies. Our
method also provides significant
utility for mathematical visual-
ization and illustration. Tradi-
tionally, interesting homotopies
and isotopies are depicted by a
sequence of drawings (or per-
haps physical models) highlighting key moments of transition—a
practice that has developed over time into a true art form [Francis
and Francis 1987]. However, even the best drawings can be difficult
to understand without significant thought and visual imagination.
To obtain continuous motions (that are more easily understood),
a small number of carefully “hand-crafted” computer animations
have been produced over the years by either artist keyframing, or
explicit programming of meticulously derived parametric formu-
las [Levy and Thurston 1995; Bednorz and Bednorz 2019]. More
recently, automatic optimization-based tools have been used to pro-
duce animations, such as the minimax sphere eversion [Francis et al.
1997], as well as recent work in computer graphics on metric em-
bedding [Chern et al. 2018] and conformally-constrained Willmore
surfaces [Soliman et al. 2021]. Since these optimization-based tools
are largely automatic, they help to democratize the creation of topo-
logical animations—our scheme extends such tools to the important
and difficult case of ambient isotopies.

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

Repulsive Surfaces • 268:15

midsurface
(zero volume)

positive signed volume

negative signed volume

Fig. 20. Minimizing the tangent-point energy of a punctured torus while
pushing signed volume toward zero yields a surface with reflection symme-
try. Applying a reflection and reversing the flow hence yields an eversion
that turns the surface “inside-out” while avoiding self-intersections.

One classic example is “unlinking” a pair of handcuffs (as shown
in the inset above), though mathematically speaking these handcuffs
are not actually linked: surprisingly, they belong to the same isotopy
class. Fig. 14 compares a hand drawing of this isotopywith a different
isotopy automatically computed via our method—andwhich is much
better depicted in the accompanying video. To create this animation
we simply minimize tangent-point energy from both start and end
configurations, together with a potential that encourages the surface
to lay parallel to the view plane. Since we reach the same minimizer
in both cases (seen in Fig. 1, far right), we can compose these two
sequences (one in reverse) to depict the complete motion. Other
similar examples are shown in Fig. 11, and in the video.

Fig. 18 shows another classic example: removing one handle of a
pair of handcuffs from a rigid pole or ring. The hand-drawn illus-
tration helps to indicate several stages of this isotopy, which are
also captured in our animation. However, the remarkable fact about
our version is that it is driven purely by energy minimization—we
did not perform any keyframing, nor impose any boundary condi-
tions, yet it still constructs an isotopy in several “stages”: flatten

Fig. 19. An IH-move.

out the two handles, perform a so-called IH-
move (see Fig. 19 and [Ishii 2008]), and then
optimize the geometry of the untangled sur-
face. Our specific setup here is to minimize
tangent-point energywhile fixing surface area,
and incorporating an infinite repulsive cylin-
der (modeled by an implicit surface). As in the previous example
we use an attractive plane orthogonal to the pole to obtain a more
canonical-looking minimizer. The only hand-tuning was reducing
the repulsive strength of the cylinder near the end of the animation,
to give the handles of the final surface a similar size. Importantly,
allowing the barycenter to float freely (à la Sec. 7.1.1) is essential
here, since the center of mass must ultimately move away from the
pole.

Punctured Torus Eversion. Our discrete tangent-point energy can
also be evaluated on surfaces with boundary, since we simply take
a sum over pairs of triangles. Since we did not develop a careful
treatment of boundary conditions, we simply penalize the total
length and total squared curvature to ensure the boundary at least
remains regular. In Fig. 20 we use this setup to compute an isotopic

eversion between the two orientations of a punctured torus. Un-
like the classical sphere eversion, where one typically starts with
a symmetric midsurface and flows toward the round sphere, we
start with the punctured torus and use our flow to find the mid-
surface. The key observation is that the oriented volume of the
surface

∫
M ⟨f (x),Nf (x)⟩ dxf will be zero for a symmetric configura-

tion; fixing the area ensures that our zero-volume penalty does not
cause the surface to collapse to a point. Once we reach zero volume
we transform the midsurface by a reflection and 90-degree rotation,
and run the same flow in reverse (with opposite colors) to obtain
the eversion.

9.2 Geometry Processing and Shape Modeling

Fig. 21. Modeling with
long-range influence.

The no-collision condition is also natural in
geometry processing and shape modeling,
especially when a surface is meant to repre-
sent the boundary of a solid object (e.g., for
computational fabrication). Tangent-point
energy can be used to augment existing geo-
metric modeling and processing tasks with
short- and long-range collision avoidance—
we here explore several aspirational exam-
ples. In general, there has been relatively lit-
tle work on collision-aware geometric mod-
eling. For instance, Harmon et al. [2011]
and Fang et al. [2021] explore modeling sys-
tems based on local collision penalties [Li
et al. 2020], similar in spirit to classic log
barrier methods [Boyd et al. 2004, Section
11.2]. However, since these penalties do not
discretize a smooth energy, their behavior will depend on surface tes-
sellation; moreover, descent strategies developed for these methods
are tailored to local collisions, rather than long-range interactions
and global untangling (à la Sec. 9.1). Other methods explicitly mesh
the free space between objects [Müller et al. 2015; Jiang et al. 2017],
which is costly for 3D problems, and cumbersome for problems with
large deformations.

Proximity-Aware Variational Modeling. As a basic example, Fig. 21
shows a simple example of interactive surface editing, where surface
geometry is guided by point constraints, and nearby geometry is
moved out of the way by the tangent-point energy. To better pre-
serve the details of an initial mesh one might also combine tangent-
point energy with a discrete shell energy [Grinspun et al. 2003],
which would entail transferring the material configuration across
meshing operations (a question which is beyond the scope of this
work). Fig. 22 shows another example where pinned points and
edges are interpolated while optimizing the rest of the geometry.
(Here we disable remeshing, but could easily modify remeshing to
ignore pinned vertices). Unlike harmonic interpolation or area min-
imization, for which point constraints are ill-posed, we get nice cur-
vature behavior even near the pins; unlikeWillmore flow (which pro-
vides good curvature behavior), we avoid self-intersection. Tangent-
point energy could also in principle be used as a regularizer to
discourage collision in other common modeling paradigms, such as
as rigid as possible (ARAP) modeling [Sorkine and Alexa 2007].

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

268:16 • Chris Yu and Caleb Brakensiek and Henrik Schumacher and Keenan Crane

input increase volume
(sparse pins)

increase volume
(Willmore)

increase volume
(dense pins)

increase volume
(no pins)

constant area
(sparse pins)

Fig. 22. The tangent-point energy can be used to make variational surface
modeling responsive to proximity, rather than just collisions. Here for in-
stance we pin a sparse or dense set of points and modify volume and surface
area to adjust the appearance of some text (in some cases enclosed in a
box). Like Willmore energy (top right), we get smooth behavior near point
constraints (see magnified portion), but avoid overlap.

Fig. 23. Here we perform a simple “shrink wrapping” to obtain a manifold,
intersection-free reconstruction (top), which works well even for points or
polygon soup with severe holes and missing data.

9.2.1 Shrink Wrapping. One class of methods for reconstructing a
surface from a collection of points is to “shrink-wrap” them with
a triangle mesh [Kobbelt et al. 1999; Hanocka et al. 2020]; such
methods are especially suitable in problems where one wishes to fit
a high-quality template mesh to a known class of shapes (e.g., head
or body scans). A basic problem, however, is that the mesh can get
“tangled” during wrapping, inhibiting progress or requiring intricate
remeshing to resolve self-intersections. Tangent-point energy may
prove useful as a regularizer for such methods—Fig. 23 shows a basic
shrink wrapping example on a point cloud, and on a polygon soup
with severe holes. Here we minimize tangent-point energy with a
gradually decreasing volume constraint.

9.2.2 Nested Envelopes. In a similar vein, nested sequences of solids
U1 ⊂ · · · ⊂ Uk ⊂ R

n represented by progressively coarser meshes
have applications in multiresolution solvers, cage-based editing,

Fig. 24. We can also “shrink wrap” amodel to get a sequence of progressively
coarser approximating envelopes that exhibit a strict containment property,
and are free of self-intersection. Here we aim for a 1.15x increase in volume
at each level.

Fig. 25. We can also use tangent-point energy for generative modeling by
“growing” a surface subject to constraints. Top: confining to a sphere while
increasing area leads to a wrinkled shape reminiscent of a walnut. Bottom:
growing many small spheres inside a slab yields a tileable cobblestone
pattern.

and physical simulation [Sacht et al. 2015]. In Fig. 24 we construct
each surface ∂Uk by minimizing tangent point energy plus a vol-
ume constraint, and gradually adjusting the constrained volume to
achieve a fixed constant factor (here, 1.15x) of the volume of ∂Uk−1.
This variational approach may offer interesting generalizations of
ordinary nested cages, since it can easily incorporate constraints
and objectives beyond just collision avoidance.

9.2.3 Generative Modeling. Rather than using the tangent-point
energy to edit or process existing data, we can also use it to generate
new geometry. In nature, the growth of organic shapes is often gov-
erned by simple combinations of objectives, e.g., a balance between
area and volume while avoiding self-collision. We can likewise use
such forces to drive the growth of organic-looking objects, such as
the “walnut” depicted in Fig. 25, top. The same technique is used in

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

Repulsive Surfaces • 268:17

Fig. 26. For exponents p < 4, the tangent-point energy Ep is no longer
infinite for self-intersecting surfaces, but still discourages overlap. Here we
try using this “subcritical” energy to resolve intersections, which works for
small intersections (top), but fails for an unembeddable surface like the
Klein bottle (bottom).

Fig. 25, bottom, where multiple objects are packed into a volume to
create a repeating organic pattern.

9.2.4 Resolving Intersections. In many geometry processing tasks,
input data is not free of self-intersections. For exponents p > 4,
the tangent-point energy Ep of a non-embedded surface is infinite;
to resolve intersections in the input, we can try reducing the expo-
nent to a value p < 4, at which point Ep becomes finite but still
discourages collision. Here we find that it also helps to disable the
low-order term from Eq. 8. Empirically, the same system framework
now appears capable of eliminating small self-intersections (Fig. 26,
top), though struggles in more difficult scenarios like the Klein bot-
tle depicted in Fig. 26, bottom, which cannot be globally embedded
without self-intersection. Further analysis of the energy for these
“subcritical” values may help to provide more robust tools for global
collision resolution.

10 LIMITATIONS AND FUTURE WORK
The experiments from Sec. 9 suggest many opportunities for im-
provement. For instance, major performance gains could be achieved

Fig. 27. When using a coarse mesh for our surface (far left) and/or obstacles
(center left) small intersections can occur (center right), since our energy dis-
cretization approximates each surface by a collection of quadrature points
(far right). Such artifacts could easily be avoided by, e.g., checking for colli-
sions during line search.

purely through better software engineering, e.g., better parallel im-
plementation of hierarchical matrix multiplication (which is cur-
rently bottlenecked around 4–8 threads), or curvature-adapted remesh-
ing (à la [Dunyach et al. 2013]) to reduce mesh size. It would also be
useful to track attributes across remeshing operations, to enable (for
instance) mapping of data from one shape to another through the
canonical minimizer. Since we discretize the tangent-point energy,
we provide no hard guarantee that collisions will not occur (Fig. 27).
One pragmatic solution is to simply perform continuous collision
detection to limit the time step, as done for many years in computer
animation [Moore and Wilhelms 1988] and knot drawing [Scharein
1998] (and more recently in geometry processing [Smith and Schae-
fer 2015; Jiang et al. 2017; Li et al. 2020]). Better might be to ap-
proximate tangent-point energy via a hard upper bound on each
element pair, akin to theMD energy in Scharein [1998, Section 3.5.1],
or element-element penalties from Li et al. [2020].

Several issues require deeper investigation. For one, unlike Yu et al.
[2021], our preconditioner cannot accommodate dense constraints
(e.g., preservation of each triangle area), which would requireO(|F |)
iterative solves. Here one can instead use a stiff penalty; revisit-
ing the multigrid approach via hierarchical coarsening [Botsch and
Kobbelt 2004; Shi et al. 2006] may also prove fruitful. Our energy
approximation becomes inaccurate in situations of very tight con-
tact (à la Sections 9.2.1 and 9.2.2), since we have few quadrature
points per unit surface area; adding additional quadrature points (or
adaptive refinement) in regions of near-contact may yield tighter
fits. A related issue is that some amount of bending regularization
is inherent in the energy itself, making it hard to approximate, e.g.,
sharp edges.

For shape interpolation and mathematical visualization, it would
be quite useful to find trajectories that minimize total tangent-point
energy (over time), rather than just flowing to a commonminimizer—
here work on shell-space geodesics may prove valuable [Heeren
et al. 2012]. Likewise, integrating repulsive regularization into a
thin shell model may help retain a “memory” of the initial shape.
Finally, we do not treat Neumann boundary conditions, nor more
general arrangements of repulsive curves and surfaces that may
have interesting modeling applications.

ACKNOWLEDGMENTS
The authors thank Saul Schleimer and Henry Segerman for helpful
discussions about topological examples, and Nick Stadie for per-
spective on molecular symmetries. This work was supported by a
Packard Fellowship, NSF Award 1943123, and gifts from Autodesk,
Activision Blizzard, Adobe, Disney, and Facebook. The third au-
thor was supported by DFG-Project 282535003: Geometric curvature
functionals: energy landscape and discrete methods.

REFERENCES
J. Barnes and P. Hut. 1986. A hierarchical O(N log N) force-calculation algorithm.

Nature 324, 6096 (1986), 446–449.
Adam Bednorz andWitold Bednorz. 2019. Analytic sphere eversion using ruled surfaces.

Differential Geometry and its Applications 64 (2019), 59–79.
S. Blatt. 2013. The Energy Spaces of the Tangent Point Energies. Journal of Topology

and Analysis 5, 3 (2013), 261–270.
Simon Blatt and Philipp Reiter. 2015. Regularity theory for tangent-point energies: the

non-degenerate sub-critical case. Adv. Calc. Var. 8, 2 (2015), 93–116.

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

268:18 • Chris Yu and Caleb Brakensiek and Henrik Schumacher and Keenan Crane

Alexander I. Bobenko and Peter Schröder. 2005. Discrete Willmore Flow. In Proceedings
of the Third Eurographics Symposium on Geometry Processing (Vienna, Austria) (SGP
’05). Eurographics Association, Goslar, DEU, 101–es.

Mario Botsch and Leif Kobbelt. 2004. A Remeshing Approach to Multiresolution
Modeling. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing (Nice, France) (SGP ’04). Association for Computing Machinery,
New York, NY, USA, 185–192.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex optimization.
Cambridge university press.

Robert Bridson, Ronald Fedkiw, and JohnAnderson. 2002. Robust treatment of collisions,
contact and friction for cloth animation. In Proceedings of the 29th annual conference
on Computer graphics and interactive techniques. 594–603.

G. Buck and J. Orloff. 1995. A simple energy function for knots. Top. Appl. 61, 3 (1995).
Dorin Bucur and Giuseppe Butazzo. 2006. VARIATIONAL METHODS IN SHAPE

OPTIMIZATION PROBLEMS.
Long Chen and Michael Holst. 2011. Efficient mesh optimization schemes based on

Optimal Delaunay Triangulations. Computer Methods in Applied Mechanics and
Engineering 200, 9 (2011), 967 – 984.

Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2018. Shape from
metric. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–17.

Sebastian Claici, Mikhail Bessmeltsev, Scott Schaefer, and Justin Solomon. 2017.
Isometry-aware preconditioning for mesh parameterization. In Computer Graphics
Forum, Vol. 36. Wiley Online Library, 37–47.

Ulrich Clarenz, Udo Diewald, Gerhard Dziuk, Martin Rumpf, and R Rusu. 2004. A
finite element method for surface restoration with smooth boundary conditions.
Computer Aided Geometric Design 21, 5 (2004), 427–445.

Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schröder. 2013a. Digital
Geometry Processing with Discrete Exterior Calculus. In ACM SIGGRAPH 2013
courses (Anaheim, California) (SIGGRAPH ’13). ACM, New York, NY, USA, 126.

Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013b. Robust Fairing via Conformal
Curvature Flow. ACM Trans. Graph. 32, 4 (2013).

Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H Barr. 1999. Implicit fairing
of irregular meshes using diffusion and curvature flow. In Proceedings of the 26th
annual conference on Computer graphics and interactive techniques. 317–324.

Marc Droske and Martin Rumpf. 2004. A level set formulation for Willmore flow.
Interfaces and free boundaries 6, 3 (2004), 361–378.

Marion Dunyach, David Vanderhaeghe, Loïc Barthe, and Mario Botsch. 2013. Adaptive
remeshing for real-time mesh deformation. In Eurographics 2013. The Eurographics
Association.

Gerhard Dziuk. 2008. Computational parametric Willmore flow. Numer. Math. 111, 1
(2008), 55–80.

Ilya Eckstein, Jean-Philippe Pons, Yiying Tong, C.-C. Jay Kuo, and Mathieu Desbrun.
2007. Generalized Surface Flows for Mesh Processing. In Proceedings of the Fifth
Eurographics Symposium on Geometry Processing (Barcelona, Spain) (SGP ’07). Euro-
graphics Association, 183–192.

Matthew Elsey and Selim Esedoḡlu. 2009. Analogue of the total variation denoising
model in the context of geometry processing. Multiscale Modeling & Simulation 7, 4
(2009), 1549–1573.

Yu Fang, Minchen Li, Chenfanfu Jiang, and Danny M. Kaufman. 2021. Guaranteed
Globally Injective 3D Deformation Processing. ACM Trans. Graph. (SIGGRAPH) 40,
4, Article 75 (2021).

George Francis, John M Sullivan, Rob B Kusner, Ken A Brakke, Chris Hartman, and
Glenn Chappell. 1997. The minimax sphere eversion. In Visualization and mathe-
matics. Springer, 3–20.

George K Francis and GK Francis. 1987. A topological picturebook. Vol. 2. Springer.
M. Freedman, Z. He, and Z. Wang. 1994. Mobius Energy of Knots and Unknots. Annals

of Mathematics 139, 1 (1994), 1–50.
Mark Gillespie, Boris Springborn, and Keenan Crane. 2021. Discrete Conformal Equiv-

alence of Polyhedral Surfaces. ACM Trans. Graph. 40, 4 (2021).
E. Giusti. 1973. Minimal Surfaces with Obstacles. Springer Berlin Heidelberg, Berlin,

Heidelberg, 121–153.
Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete

shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation. Citeseer, 62–67.

W. Hackbusch. 2015. Hierarchical matrices: algorithms and analysis. Vol. 49. Springer.
Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. 2020. Point2Mesh: A

Self-Prior for Deformable Meshes. ACM Trans. Graph. 39, 4, Article 126 (July 2020),
12 pages.

David Harmon, Daniele Panozzo, Olga Sorkine, and Denis Zorin. 2011. Interference-
aware geometric modeling. ACM Transactions on Graphics (TOG) 30, 6 (2011), 1–10.

David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and Eitan Grinspun.
2009. Asynchronous contact mechanics. In ACM SIGGRAPH 2009 papers. 1–12.

Behrend Heeren, Martin Rumpf, Max Wardetzky, and Benedikt Wirth. 2012. Time-
discrete geodesics in the space of shells. In Computer Graphics Forum, Vol. 31. Wiley
Online Library, 1755–1764.

Atsushi Ishii. 2008. Moves and invariants for knotted handlebodies. Algebraic &
Geometric Topology 8, 3 (2008), 1403–1418.

Atsushi Ishii, Kengo Kishimoto, Hiromasa Moriuchi, and Masaaki Suzuki. 2012. A table
of genus two handlebody-knots up to six crossings. Journal of Knot Theory and Its
Ramifications 21, 04 (2012), 1250035.

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial complex aug-
mentation framework for bijective maps. ACM Transactions on Graphics 36, 6
(2017).

Pushkar Joshi and Carlo Séquin. 2007. Energy minimizers for curvature-based surface
functionals. Computer-Aided Design and Applications 4, 5 (2007), 607–617.

Michael Kazhdan, Jake Solomon, and Mirela Ben-Chen. 2012. Can mean-curvature flow
be modified to be non-singular?. In Computer Graphics Forum, Vol. 31. Wiley Online
Library, 1745–1754.

Leif P. Kobbelt, Jens Vorsatz, and Ulf Labsik. 1999. A Shrink Wrapping Approach to
Remeshing Polygonal Surfaces. Computer Graphics Forum 18, 3 (1999), 119–130.

Sławomir Kolasiński, Paweł Strzelecki, andHeiko von derMosel. 2015. Compactness and
isotopy finiteness for submanifolds with uniformly bounded geometric curvature
energies. arXiv:arXiv:1504.04538

Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated Quadratic
Proxy for Geometric Optimization. ACM Trans. Graph. 35, 4, Article 134 (July 2016),
11 pages.

Robert B Kusner and John M Sullivan. 1998. Möbius-invariant knot energies. Ideal
knots 19 (1998), 315–352.

Mateusz Kwaśnicki. 2017. Ten equivalent definitions of the fractional laplace operator.
Fractional Calculus and Applied Analysis 20, 1 (Jan 2017).

Marc Lackenby. 2016. Elementary knot theory. arXiv preprint arXiv:1604.03778 (2016).
Silvio Levy and William P Thurston. 1995. Making waves: A guide to the ideas behind

Outside In. Geometry Center.
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele

Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential
Contact: Intersection- and Inversion-free Large Deformation Dynamics. ACM Trans.
Graph. (SIGGRAPH) 39, 4, Article 49 (2020).

Fernando C Marques and André Neves. 2014. Min-max theory and the Willmore
conjecture. Annals of mathematics (2014), 683–782.

Tobias Martin, Pushkar Joshi, Miklós Bergou, and Nathan Carr. 2013. Efficient Non-
linear Optimization via Multi-scale Gradient Filtering. In Computer Graphics Forum,
Vol. 32. Wiley Online Library, 89–100.

MatthewMoore and JaneWilhelms. 1988. Collision detection and response for computer
animation. In Proceedings of the 15th annual conference on Computer graphics and
interactive techniques. 289–298.

Henry P Moreton and Carlo H Séquin. 1992. Functional optimization for fair surface
design. ACM SIGGRAPH Computer Graphics 26, 2 (1992), 167–176.

Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015. Air
meshes for robust collision handling. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1–9.

Jun O’Hara. 1991. Energy of a knot. Topology 30, 2 (1991), 241–247.
Stanley Osher and Ronald Fedkiw. 2006. Level set methods and dynamic implicit surfaces.

Vol. 153. Springer Science & Business Media.
U. Pinkall and K. Polthier. 1993. Computing discrete minimal surfaces and their conju-

gates. Experimental mathematics 2, 1 (1993), 15–36.
Robert J Renka and JW Neuberger. 1995. Minimal surfaces and Sobolev gradients. SIAM

Journal on Scientific Computing 16, 6 (1995), 1412–1427.
Leonardo Sacht, Etienne Vouga, and Alec Jacobson. 2015. Nested cages. ACM Transac-

tions on Graphics (TOG) 34, 6 (2015), 1–14.
Robert Glenn Scharein. 1998. Interactive topological drawing. Ph.D. Dissertation.

University of British Columbia.
Patrick Schmidt, Marcel Campen, Janis Born, and Leif Kobbelt. 2020. Inter-surface

maps via constant-curvature metrics. ACM Transactions on Graphics (TOG) 39, 4
(2020), 119–1.

Henrik Schumacher. 2017. On H 2-gradient Flows for the Willmore Energy. arXiv
preprint arXiv:1703.06469 (2017).

Lin Shi, Yizhou Yu, Nathan Bell, and Wei-Wen Feng. 2006. A Fast Multigrid Algorithm
for Mesh Deformation. ACM Trans. Graph. 25, 3 (2006), 1108–1117.

Jason Smith and Scott Schaefer. 2015. Bijective parameterization with free boundaries.
ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–9.

Yousuf Soliman, Albert Chern, Olga Diamanti, Felix Knöppel, Ulrich Pinkall, and Peter
Schröder. 2021. Constrained Willmore Surfaces. ACM Trans. Graph. 40, 4 (2021).

Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Sympo-
sium on Geometry processing, Vol. 4. 109–116.

Paweł Strzelecki and Heiko von der Mosel. 2013. Tangent-point repulsive potentials
for a class of non-smoothm-dimensional sets in Rn . Part I: Smoothing and self-
avoidance effects. J. Geom. Anal. 23, 3 (2013), 1085–1139.

Paweł Strzelecki and Heiko von der Mosel. 2018. Geometric curvature energies: facts,
trends, and open problems. In New directions in geometric and applied knot theory.
De Gruyter, Berlin, 8–35.

David Wells. 1997. The Penguin dictionary of curious and interesting numbers. Penguin.

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

http://arxiv.org/abs/arXiv:1504.04538

Repulsive Surfaces • 268:19

Peter Wriggers and Giorgio Zavarise. 2004. Computational contact mechanics. Ency-
clopedia of computational mechanics (2004).

Zi Ye, Olga Diamanti, Chengcheng Tang, Leonidas Guibas, and Tim Hoffmann. 2018. A
unified discrete framework for intrinsic and extrinsic Dirac operators for geometry
processing. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 93–106.

Chris Yu, Henrik Schumacher, and Keenan Crane. 2021. Repulsive Curves. ACM Trans.
Graph. 40, 2, Article 10 (May 2021), 21 pages.

Fuzhen Zhang. 2005. The Schur Complement and its Applications. Numerical Methods
and Algorithms, Vol. 4. Springer, New York.

Yufeng Zhu, Robert Bridson, and Danny M. Kaufman. 2018. Blended Cured Quasi-
Newton for Distortion Optimization. ACM Trans. Graph. 37, 4, Article 40 (2018),
14 pages.

A ACTION OF THE FRACTIONAL OPERATORS
In section Sec. 5.1 we claimed that the actions of the fractional
operators Lσ , B, and B0 can be expressed by suitable kernel matrices
that we then compress by hierarchical methods. This is not obvious,
so we include a brief derivation here. Consider the kernel matrix

HST := (1 − δST) |Xf (S) − Xf (T)|
−(2σ+2).

Rewriting Eq. 11 for general u and v ∈ R |V | in terms of this kernel
yields

uTLσ v =
∑
S ∈F

∑
T ∈F (ū(S) − ū(T)) (v̄(S) − v̄(T))af (S)HST af (T).

Multiplying the product inside the sum gives(
ū(S) v̄(S) + ū(T) v̄(T) − ū(T) v̄(S) − ū(S) v̄(T)

)
af (S)HST af (T)

for the pair (S,T). Because HST = HTS , we can move some terms
between the summands for (S,T) and (T , S), and thus reorganize
the sum into

uTLσ v = 2
∑
S ∈F

∑
T ∈F

(
ū(S) v̄(S) − ū(S) v̄(T)

)
af (S)HST af (T)

= 2
∑
S ∈F ū(S)af (S)

(
af (S)

−1 ∑
T ∈F HST af (T)

)
af (S)v̄(S)

− 2
∑
S ∈F

∑
T ∈F ū(S)af (S)HST af (T) v̄(T).

Recall that U ∈ Hom(R |V | ;R |F |) is defined by (Uu)(S) = af (S)ū(S).
Thus the above collapses to

uTLσ v = 2 uTUT diag(af)−1 diag(H af)U v − 2 uTUTH U v

= 2 uTUT [diag
(
diag(af)−1H af

)
− H

]
U v.

The derivation follows analogously for the high- and low-order ma-
tricesB andB0, with the substitution of the operatorV = diag(af)Df
for U in the case of B.

B FAST MATRIX-VECTOR MULTIPLICATION
Step 1 of Sec. 5.1.5 corresponds to thinning out the matrix shown
in Fig. 6 by removing all the green parts. The remainder is a sparse
block matrix with variable block size. We store this sparse matrix in
CSR format and evaluate products using sparse BLAS routines.
In Step 2 the kernel matrix HIJ is compressed into the rank-

one-matrix 1I h(XI, PI ;XJ, PJ) 1TJ . In this step, we are cautious
not to move the input data xJ and output data yI directly to and
from the clusters I and J . Instead, as is common for multipole-type
methods, we store data on BVH clusters. For each cluster I, J , we
allocate scalars x̃J and ỹI . Starting with leaf clusters, we set

x̃J ←
∑
T ∈J x(T) for each leaf cluster J .

Then, during a parallel traversal of the BVH in post-order, for each
cluster J , we add the x̃-values of its children into x̃J . After this
upward pass is finished, we loop over all clusters I and set

ỹI ←
∑
J h(XI, PI ;XJ, PJ) x̃J, (22)

with the sum over all J such that (I,J) is admissible. This can be
evaluated via sparse matrix multiplication: first, we fix an ordering
of the BVH clusters, e.g., depth-first ordering. Then we assemble
a sparse matrix H̃ with the nonzero value h(XI, PI ;XJ, PJ) at
the position that correspond to the admissible block cluster (I,J).
Storing x̃ and ỹ as vectors, Eq. 22 amounts to

ỹ ← H̃ x̃ .

Afterwards, we use a downward pass through the BVH to distribute
the ỹ-values back into the vector y: We traverse the BVH in pre-
order and let each cluster I add its ỹ-value into each of its children’s
ỹ-values. Finally each leaf cluster adds its value into each of its
member’s y-entry, i.e.,

y(S) ← y(S) + ỹI for each leaf I and each S ∈ I.

The structure of the kernel matrices of Lσ , B, and B0 is very simi-
lar. This allows us to use a single block cluster tree to compress all
of them. Moreover, the sparsity patterns for the two sparse matrices
used to perform Steps 1 and 2 can be shared and the corresponding
nonzero values can be computed in a single parallelized loop over
the admissible and inadmissible blocks, resp.

For the application ofA3 to a vector v of size 3|V |, we could apply
A = B + B0 separately on three vectors v1, v2, and v3 of size |V |
that each store only one spatial component of the vertex positions.
However, it turns out to be more efficient to store v1, v2, and v3
as columns of a matrix of size |V | × 3 and to replace the sparse
matrix-vector products by sparse matrix-dense matrix products.

ACM Trans. Graph., Vol. 40, No. 6, Article 268. Publication date: December 2021.

	Abstract
	1 Introduction and Related Work
	1.1 Contributions

	2 Smooth Formulation
	2.1 Energy
	2.2 Gradient Flow
	2.3 Order of the Differential
	2.4 Inner Product

	3 Discretization
	3.1 Discrete Energy
	3.2 Discrete Inner Product
	3.3 Constraints

	4 Energy and Derivative Evaluation
	4.1 Approximate Energy
	4.2 Approximate Derivative

	5 Iterative Linear Solver
	5.1 Hierarchical Matrices
	5.2 Preconditioner
	5.3 Schur Complement
	5.4 Accelerated Algorithm Overview

	6 Dynamic Remeshing
	7 Constraints and Penalties
	7.1 Constraints
	7.2 Fast Positional Constraints
	7.3 Penalties

	8 Evaluation and Comparisons
	8.1 Consistency
	8.2 Comparisons
	8.3 Time Step Restriction
	8.4 Wall-Clock Performance

	9 Examples and Applications
	9.1 Mathematical Visualization and Exploration
	9.2 Geometry Processing and Shape Modeling

	10 Limitations and Future Work
	References
	A Action of the Fractional Operators
	B Fast Matrix-Vector Multiplication

