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Abstract. Speaker authentication systems require access to the voice
of the user. A person’s voice carries information about their gender, na-
tionality etc., all of which become accessible to the system, which could
abuse this knowledge. The system also stores users’ voice prints – these
may be stolen and used to impersonate the users elsewhere. It is therefore
important to develop privacy preserving voice authentication techniques
that enable a system to authenticate users by their voice, while simulta-
neously obscuring the user’s voice and voice patterns from the system.
Prior work in this area has employed expensive cryptographic tools, or
has cast authentication as a problem of exact match with compromised
accuracy. In this paper we present a new technique that employs secure
binary embeddings of feature vectors, to perform voice authentication in
a privacy preserving manner with minimal computational overhead and
little loss of classification accuracy.

1 Introduction

The number of services provided to users over the network grows daily. Many of
these services require users to authenticate themselves, typically through pass-
words. Increasingly, these services are accessed through small, voice-enabled client
devices such as smartphones and cellphones. In these cases, authenticating a user
by voice is often more convenient than typing in passwords or passphrases. Even
in cases where passwords may be typed conveniently, they may be combined with
voice-based authentication as an added form of security. As a result, voice-based
authentication systems, also often referred to as speaker authentication systems or
speaker verification systems are becoming increasingly popular.

In a speaker authentication system, a user enrolls with the system by pro-
viding some “enrollment” recordings of themselves from which the system may
form a voice print or model for the user. Subsequently, during operation the user
announces their identity and provides an “authentication” recording to the sys-
tem. The system compares this recording to the stored model for the announced
identity and determines if the the user is indeed who they claim to be.

However, in the process of using speaker authentication systems, the user
currently places a lot of faith in the system. A person’s voice, in addition to being
a biometric, carries information regarding the person’s gender, their emotional
state, their nationality, etc. The implicit trust is that the system will not extract
this information from the signal and use it for other undesired purposes, such as
to generate advertisements aimed at the user, or to sell it to third parties.
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There are other risks as well. In the discussion that follows, we will not distin-
guish between the system and a malicious hacker who may have compromised
the system and has access to all data and information it possesses. The system
may manipulate and edit the recordings provided by the speaker to create fake
recordings that the user never spoke. It could also use the recordings to break
into other systems where the user has authenticated themselves by voice.

In addition to the privacy and security violations listed above which result
from unintended use of the speaker’s data, there is scope for direct privacy
violation through usage of the authentication system in intended ways. The
system could use the model it possesses for a user to uncover other recordings
by the user, such as on services like YouTube, or even from recordings of audio
in public places, where the user may have assumed anonymity.

Clearly then, in order to ensure the user’s privacy the following conditions
must ideally be satisfied: First, the system should not have clear access to the
audio recorded by the user. Second, the system should also not possess a model
of the user’s speech that it could use to identify the speaker elsewhere. These
are not entirely unreasonable requirements; similar criteria are in fact stated as
being desirable for other forms of secure biometrics as well [1].

In this paper we describe two recently-developed privacy-preserving frame-
works for speaker authentication that address these problems by enabling a user
to perform authentication without revealing their actual voice patterns to the
system, either during enrollment or during authentication phases.

The first framework [2] employs secure function evaluation (SFE) protocols
[13] to implement a conventional state-of-art voice authentication algorithm [14]
in a manner that enables the user and system to interact only on encrypted
data which the system cannot decrypt and observe in plaintext. Both the audio
transmitted by the user to the system and the models stored by it are encrypted
in this manner. Thus the system (or an adversary who breaks into it) can neither
manipulate the incoming audio for nefarious purposes, nor make any undesired
inferences from the audio or the models it possesses.

The second approach [3] takes a different tack – it modifies the basic pattern
matching algorithms employed for speaker authentication to enable them to be
performed through exact and inexact match of hash strings derived from the
audio obtained through stochastic locality-sensitive-hashing functions. Here too,
the data transmitted by the user to the system, including both enrollment and
authentication data, are transformed in a manner that does not permit the
system to make undesired inferences from it, thereby protecting the user.

The SFE-based approach provides the same accuracy as the state-of-the-art
in voice authentication systems, since it essentially only embeds the same com-
putation into a privacy-preserving framework. It also generalizes to other prob-
lems in speech processing, such as the training of Gaussian mixture densities or
HMMs from private speech data [15] and inference over HMMs from private
data [16], both of which are component problems in many speech applications.
On the other hand, it requires repeated encryption and decryption of the data,
imposing high computational overhead on the process. Moreover, it remains
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vulnerable to imposters who may take over the user’s client device, and while
these can also be protected against, such protection would impose additional
computational expense. The hashing-based methods, on the other hand, are rel-
atively lightweight and fast; however by modifying the fundamental classification
algorithms themselves they may compromise classification accuracy. Also, they
are specific to the problem at hand – speaker authentication, and do not gener-
alize beyond it in their current format.

In all cases we envision a client-server model, where a user employs a
computation-capable client device such as a smartphone or computer, which
can perform the operations necessary to protect the data. For completeness,
we must also consider the possibility of an imposter who gains access to the
user’s client device and can manipulate the data its transmits. The proposed
frameworks must ideally ensure that such an imposter cannot break into the
system and pretend to be the user. We do not address the issue of fraudulent
voice input, such as by imposters who may attempt to mimic the user’s voice
or criminals who may force the user to speak; these do not fall under the scope
of the presented work. We will also generally assume that all communication
between the user and the system is over an appropriately secured channel and
hence impervious to man-in-the-middle or replay attacks by eavesdroppers.

In closing this introductory section, we note that while there has been a
substantial body of work on general techniques for data processing with pri-
vacy constraints, concerns about the privacy of voice-based biometric systems,
and speech applications in general have largely been ignored until recent times
[17], and literature addressing the topic is sparse. Smaragdis and Shashanka
[15] propose SFE protocols for training and evaluating Gaussian mixtures and
hidden Markov models on speech data, with privacy constraints. Pathak, et al.
[16] develop and implement an efficient protocol for privacy preserving HMM
inference applied to isolated word recognition. The work reported in this ar-
ticle and the related citations are the only extant publications that address
the issue of privacy-preserving speech biometrics, to the best of our knowl-
edge.

In the following sections we first describe the problem of speaker authentica-
tion and common state-of-art methods for the task (Section 2). Subsequently, we
describe the SFE-based procedure in Section 3 and the hashing-based approach
in Section 4, followed by conclusions and discussion in Section 5.

2 Speaker Authentication

We begin by briefly outlining the actual algorithms used for speaker authentica-
tion, as a prelude to describing our privacy-preserving frameworks. Recall that
a user enrolls with a speaker authentication system by providing it enrollment
voice samples. The system builds a “model” for the user from these samples.
Later, to authenticate himself the user announces his identity to the system and
provides it with a voice sample. The system compares the sample to the model
it has for the user to authenticate him. In the outline we will discuss both how
the model is learned, and how it is used for authentication.
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Before we proceed, it must be noted that the system does not actually work
on the digitized speech signal directly. Instead, speech signals are parameterized
into a sequence of feature vectors, typically mel-frequency cepstral coefficients
(MFCC) vectors [6] augmented by their temporal derivatives and double deriva-
tives, which characterize the variation in the frequency content of the signal as
a function of time. Thus, when we refer to the audio signal, we are in fact only
referring to the sequence of feature vectors derived from it.

Note that our discussion assumes text-independent speaker authentication,
where the user is not required to say a specific passphrase. However the tech-
niques are easily extended to text-dependent authentication also.

2.1 Speaker Authentication Using Likelihood Ratios from GMMs

The most common and successful technique for text-independent speaker au-
thentication treats the problem as one of hypothesis testing [18], performed
using a likelihood ratio test. To authenticate a recording X given by a speaker,
the system computes the probability of X using a model λs for the speaker and
compares it to the probability computed from a Universal Background Model
(UBM) λU representing generic speech. Authentication uses the following rule:

P (X|λs)

P (X|λU )

{
≥ θ accept speaker,

< θ reject speaker.
(1)

Each recording X actually comprises a sequence of feature vectors, i.e. X =
[x1,x2, · · · ,xT ]. The individual vectors xt are assumed to be independent and
identically distributed. The probability distribution of the individual vectors is
assumed to be a Gaussian mixture [19] with the form

P (xt|λC) =
∑
k

wC
k N (xt;μ

C
k , Σ

C
k ) (2)

where C is either s or U , wC
k represents the mixture weight of the kth Gaussian

in the Gaussian mixture density for C, N () represents a Gaussian, and μC
k and

ΣC
k represent the mean and variance of the kth Gaussian for C.
To effectively represent the characteristics of a generic speaker, the parame-

ters of the UBM λU are usually learned from a collection of speech recordings
from a large number of speakers, typically using the expectation-maximization
(EM) algorithm. The parameters λs of the model for a speaker s are obtained
by adapting the UBM to the enrollmentp data from the speaker as follows.

Model Adaptation
The UBM parameters are adapted to individual speakers using maximum a
posteriori (MAP) estimation. It has been empirically established that speaker
models obtained by MAP estimation signicantly outperform the models trained
directly on the enrollment data [20][18].

The MAP estimation procedure comprises estimation of a sample estimate
of the parameters of the distribution for the speaker, followed by interpolation
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with the UBM. Given set of feature vectors x1, · · · ,xT obtained from enrollment
samples, we first compute the a posteriori probabilities of the individual Gaus-
sians in the UBM. For the ith mixture component of the UBM, the a posteriori
probability conditioned on xt is given by

P (i|xt) =
wU

i N (xt;μ
U
i , Σ

U
i )∑

k w
U
k N (xt;μU

k , Σ
U
k )

. (3)

Similarly to the M-step of EM, the a posterior probabilities are then used to
compute the updated sample estimates of mixture weights, means, and variances.

w′
i =

1

T

∑
t

P (i|xt), μ′
i =

∑
t P (i|xt)xt∑
t P (i|xt)

,

Σ′
i =

∑
t P (i|xt)diag(xtx

T
t )∑

t P (i|xt)
. (4)

Finally, the parameters of the adapted model λs = {ws
i , μ

s
i , Σ

s
i } are given by the

convex combination of these new parameters and the UBM parameters:

ws
i = αiw

′
i + (1− αi)w

U
i , μs

i = αiμ
′
i + (1− αi)μ

U
i ,

Σs
i = αiΣ

′
i + (1 − αi)

[
ΣU

i + μU
i μ

U
i

T
]
− μs

iμ
s
i
T . (5)

The adaptation coefficients αi for the mixture components control the contribu-
tion of the enrollment data to the estimate, relative to the UBM.

A number of variations on the above scheme have also been proposed, primar-
ily aimed at accounting for the fact the amount of “registration” data may be
limited, and that the recording conditions for the registration and authentication
recordings may differ. These variants typically employ various flavors of factor
analysis [8][9] to assign a priori probabilities to the parameters of λs. However,
the fundamental structure remains what has been described above, and we shall
remain with it for the presentation in this article.

2.2 Speaker Authentication Using GMM Supervectors

An alternate equally-successful approach to likelihood ratio tests obtains a sep-
arate Gaussian mixture for each of multiple enrollment recordings from the
speaker through MAP adaptation of the UBM. Thus, instead of having a sin-
gle Gaussian mixture repesenting the speaker, we now have multiple Gaussian
mixtures, each representing one of the enrollment recordings. For each record-
ing, the parameters of Gaussian mixture, namely the means, covariances (which
are usually assumed to be diagonal matrices) and mixture weights, are concate-
nated into a “supervector” representing the recording. Similar supervectors are
obtained for a number of recordings from each of a large number putative im-
posters. The collection of supervectors from the target speaker and the imposters
are used as positive and negative exemplars to train a binary classifier.
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For authentication, a supervector is similarly obtained from the test recording
and classified by the binary classifier.

Note that once again a priori probability distributions may be assigned to
the parameters of the Gaussian mixtures through factor analysis as in [21]. In
this case the vectors of factors may be used instead of the actual supervectors
to represent the recordings.

2.3 A SVM Based Authentication System

The most common binary classifiers used in this framework are kernel-based sup-
port vector machines [10]. A number of differnt kernels may be used; however we

consider only RBF kernels. Here the kernel is given by k(vi,vj) = e−γ·d2(vi,vj),
where d(vi,vj) refers to the Euclidean distance between vectors vi and vj , and
γ is a scaling factor. RBF kernels are observed to result in good classification
accuracies for the speaker authetication task. Moreover, they are easily adapted
to the hashing-based privacy-preserving speaker authentication schemes we will
describe later.

2.4 k-Nearest-Neighbor Based Classification

As an alternative, we also consider a k-NN based classifier. k-NN classifiers
are not normally employed in speaker authentication systems; however they are
easily adapted to the hashing-based privacy-preserving authentication system
we will describe later. Here, for each speaker S, the system retains a set of
“exemplar” vectors VS derived from registration recordings by the speaker. In
addition, for each of a large number of imposters I from an imposter set I, it
retains a set of exemplar vectors VI . The procedure for classification is given by
Algorithm 1.

Note that although we have referred to the algorithm as k-NN, we do not
restrict ourselves to the k closest neighbors, but consider all exemplars. Also,
the weights assigned to exemplars are based on mean reciprocal rank (MRR),
rather than the distance to y.

3 Privacy-Preserving Authentication as Secure Function
Evaluation

Secure Function Evaluation is a formalism under which two parties with private
inputs can jointly compute a function of both their inputs without exposing
them to one another [13]. Under the SFE framework we treat speaker authen-
tication as a problem where the system and user must compute the likelihood-
ratio test described in Section 2.1 from their private inputs, namely the users
audio and the models retained by the system, without exposing them to one
another.

The general principle behind the SFE framework employed is illustrated in
Figures 1 and 2. The key is to decompose the overall operation into a sequence
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Algorithm 1. MRR algorithm for authentication

Training:
• Store the exemplar set of vectors VS from the training instances for the target
speaker S.
• For each imposter I in imposter set I, store a set of exemplar vectors VI . Let
V = VS ∪I∈I VI be the set of all exemplars for all speakers, including target and
imposters.
Testing:
• Given “test” vector y from claimed speaker S
• Rank order all exemplars v ∈ V as follows:

rank(v) = |V| −
∑

u∈V\v
I(d(u,y) > d(v,y))

where I() is an indicator function.
for each speaker C ∈ S

⋃
I do

Score(C) =
∑

v∈VC

1
rank(v)

end for
If Score(S) > maxC∈I Score(C) accept S else reject S

Fig. 1. In a regular computation, user “Al-
ice” sends her data a to system “Bob”, who
combines it with his data b to compute the
function. The output c is returned to Alice.

Fig. 2. In an SFE, the computation of
the function is decomposed into several
intermediate steps. Each step requires
inputs from both parties. The output of
each step is distributed to both parties
as random additive shares.

of intermediate steps. Each step requires inputs from both the user and the
system, and the output of each step is also distributed across both as random
additive shares that individually do not reveal anything about the outcome of
the step. The final outcome is received by the system. The manner in which the
computation is broken down and performed in this manner is specified through
detailed protocols.

We now briefly present a preliminary discussion of some of the tools we employ
that enable us to decompose the computation in this manner, and subsequently
outline the protocols we employ for various aspects of speaker verification, fol-
lowed by the performance, security and computation caveats to consider.
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3.1 Preliminaries

Homomorphic Encryption. The entire framework is predicated on the use
of homomorphic encryption techniques that allow for arithmetic and logical op-
erations to be performed directly on encrypted data to obtain encrypted results.
If · and + are two operators and x and y are two plaintexts, a homomorphic
encryption function E satisfies E[x] · E[y] = E[x + y]. Thus, a party who only
possesses the encrypted values E[x] and E[y] can obtain E[x+y], the encryption
of the outcome of the operation x + y, without actually ever knowing the true
values of x and y.

In this work, we use the Paillier cryptosystem [22] which is a public-key cryp-
tosystem that satisfies additive homomorphism. Given two numbers x and y,
the Paillier cryptosystem satisfies E[x] ·E[y] = E[x+ y], and as a consequence,
E[x]y = E[x·y]. We refer the reader to [22] for more details on the crypto system.

Using the homomorphic encryption scheme, we can now also define a set of
“primitive” protocols that enable the user and system to perform some opera-
tions. We will present these primitives as they are required by our operations.
Given space constraints, we will not explain exactly how the primitives are im-
plemented, and refer the reader to [2] [15] for details.

Gaussian Computation as a Dot Product. We make extensive use of the
fact that the computation of the log of a Gaussian can be expressed as a dot
product. We use the following construction from [15]. The logarithm of a multi-
variate Gaussian density N (x;μ,Σ) computed on a d-dimensional vector x can
be represented as the quadratic product logN (x;μ,Σ) = x̃T W̃ x̃, where x̃ is an
extended vector obtained by concatenating 1 to x, and W̃ is a (d+ 1)× (d+ 1)
matrix given by.

W̃ =

⎡
⎢⎢⎣
− 1

2Σ
−1 Σ−1μ

0 w∗

⎤
⎥⎥⎦ , (6)

where w∗ = − 1
2μ

TΣ−1μ− 1
2 log |Σ|.

We can reduce this computation further to a single inner product x̄TW , where
x̄ is a quadratically extended feature vector derived from x̃ which consists of all
pairwise product terms x̃ix̃j of all components x̃i ∈ x̃, and W is obtained by

unrolling W̃ into a vector. In this representation logN (x;μ,Σ)=x̄TW .
We can now describe the SFE protocols for the following operations: user

enrollment including model adaptation to the user’s data, and authentication.
In all of the description below, we assume only the user has the private key

to the homomorphic encryption scheme which can be used to decrypt encrypted
data, but both the user and the system possess the public encryption key and can
encrypt data. Thus the user can perform both encryption E[·] and decryption
E−1[·], while the system can only preform E[·].
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We assume that the user computes MFCC feature vectors from the audio on
his client device. We also assume that the user has computed both the feature
vectors xt and their quadratic extensions x̄t. All communication of data from
the user to the system are encrypted with his private key. All references to
Gaussians actually refer to the unrolled vector W derived from the W̃ matrices
for the Gaussians.

3.2 Private Enrollment Protocol

We assume that the system has access to the UBM, λU trained on a collection
of speech data. We propose the following protocol to adapt the system’s UBM
to the user’s enrollment samples. We refer to individual Gaussian components
in a mixture as P (x|i) for conciseness.
Inputs:

1. User has feature vectors x1, . . . ,xT and their quadratic extensions x̄1, . . . , x̄T

derived from enrollment samples.
2. System has the UBM λU = WU

i for i = 1, . . . , N , and mixing weight α.

Output: System obtains encrypted adapted model E[λs] = {E[ws
i ], E[μs

i ],
E[Σs

i ]}.

Computing the posterior probabilities:
For each t:

1. The user sends the encrypted vector E[x̄t] to the system.
2. The system computes the encrypted log probabilities for each Gaussian in

the UBM: E
[
logwU

i P (xt|i)
]
=
∑

j E[x̄t,j ]
WU

i,j+E[logwU
i ].

3. The logsum protocol [15] enables a party holding E[log x] and E[log y] to
collaborate with another party who holds the private encryption key to ob-
tain E[log(x + y)] without revealing x or y. The system participates with
the user’s client in the logsum protocol to obtain E

[
log

∑
i w

U
i P (xt|i)

]
.

4. The system computes encrypted log posteriors:E[P (i|xt)]=E
[
logwU

i P (xt|i)
]

- E
[
log

∑
i w

U
i P (xt|i)

]
.

5. The private exponentiation protocol [2] enables a party holding E[log x] to
collaborate with the party who holds the encryption key to obtain E[x]
without revealing x. The system then executes the private exponentiation
protocol with the user to obtain E [P (i|xt)].

Learning ws
i .

6. The system E[w′
i] as E [

∑
t P (i|xt)] =

∏
t E [P (i|xt)].

7. The system then computes the encrypted updated mixture weights as

E[ws
i ] = E[w′

i]
α/TE[wU

i ]
1−α.
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Learning μs
i .

8. The system generates subtracts a random number r homomorphically from
E[P (i|xt)] to obtain E[P (i|xt)− r] and sends it to the user.

9. The user decrypts this value and multiplies it by feature vectors to obtain
P (i|xt)xt − rxt. He encyrpts it and sends E[P (i|xt)xt − rxt] and E[xt] to
the system.

10. The system computes E[P (i|xt)xt] = E[P (i|xt)xt] = E[xt]
r + E[P (i|xt)xt−

rxt]. It then computes E[
∑

t P (i|xt)xt] =
∏

t E[P (i|xt)xt].
11. The private division protocol [2] enables a party holding E[x] and E[y] to col-

laborate with the party holding the encryption key to obtain E[x/y] without
revealing x or y.The system engages the user in a private division protocol
with E[

∑
t P (i|xt)xt] and E[w′] as inputs to obtain E[μ′].

12. The system then computes the encrypted adapted mean as.

E[μ̂s
i ] = E[μ′

i]
αE[μU

i ]
1−α.

Learning Σ̂s
i .

This is similar to learning μ̂s
i and continues from Step 9 of the protocol.

13. The user multiplies P (i|xt) − r by xtx
T
t to obtain1. P (i|xt)xtx

T
t − rxtx

T
t .

He sends E[P (i|xt)xtx
T
t − rxtx

T
t ] and E[xtx

T
t ] to the system.

14. The system, which knows r, computesE[P (i|xt)xtx
T
t −rxtx

T
t ]E[xtx

T
t ]

r to ob-
tainE[P (i|xt)xtx

T
t ] for each t. The system then computes

∏
t E[P (i|xt)xtx

T
t ]

to obtain E[
∑

t P (i|xt)xtx
T
t ].

15. The system engages the user in the private division protocol with E[w′] and
E[

∑
t P (i|xt)xtx

T
t ] as inputs to obtain E[Σ′

i].
16. The private vector product protocol [2] permits a user with encrypted vectors

E[x] and E[y] to engage with a user who has the private decryption key to
compute E[x � y], where � represents a Schur (component-wise) product.
The system and user participate in the private vector product protocol with
input E[μs

i ] to obtain E[μs
iμ

sT
i ]. The system then computes the encrypted

updated covariance as

E[Σs
i ] = E[Σ′

i]
αE[ΣU

i + μU
i μ

UT
i ]1−α − E[μs

iμ
sT
i ].

The above protocol only represents the first iteration of the iterative MAP adap-
tation algorithm. In practice many iterations are required. The primary variation
in subsequent iterations is that the user now only possesses the encrypted model
learned in the previous iteration, and Step 1. of the above protocol cannot be
performed. Instead this must be replaced by the protocol followed for authentica-
tion, which computes encrypted Gaussian log likelihoods from encrypted models
and data.

At each iteraion (and finally) the encrypted model parameters obtained by
the system cannot be directly used, since it only obtains the encrypted values of

1 For efficiency purposes, only the diagonal terms of the product xtx
T
t can be included

without having a significant impact on accuracy.
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the means, mixture weights and variances; the product and logarithmic terms
in W s

i must be computed from it. This can be done through a rather simple
protocol in which the system adds (or multiplies) random terms to the individual
parameters of the model homomorphically to mask their true value and ships the
masked values to the user. The user decrypts the data, performs the necessary
operations, re-encrypts the values and returns them to the system. The system
thereafter proceeds to eliminate the random maskers from the encrypted result,
also homomorphically. The details of the protocol can be found in [2].

3.3 Private Verification Protocol

Once enrolment is complete, the system possesses encrypted models for the user,
as well as the UBM. These are used to authenticate the user as follows:

Inputs:

1. User has extended feature vectors x̄1, . . . , x̄T for a test sample.
2. System has E[λs] = E[W s

i ], for all Gaussians i = 1, . . . , N .

Output: System obtains the score E[logP (x1, . . . , xT |λs)].

1. The system generates a random vector p and computes E[W s
i ] · E[−p] to

obtain E[Ŵ s
i − p]. This is sent to the user.

2. The user decrypts it and obtains W s
i − p. He computes the inner product

x̄T
t (W

s
i − p) ∀t, and sends E[x̄T

t (W
s
i − p)] and E[x̄t] ∀t to the system.

3. The system computes the inner product E[x̄T
t p] =

∏
k E[xt,k]

pk ∀t. It then
computes E[x̄T

t W
s
i ] = E[x̄T

t (W
s
i − p)] ·E[x̄T

t p] ∀i. The system and the user
then participate in the logsum protocol to obtain E[logP (xt|λs)]. The system
finally computes E[logP (x1, . . . ,xT |λs)] =

∏
t E[logP (xt|λs)].

The above protocol can be used to compute scores for both the speaker model
and the UBM (although the system has access to the UBM in plain text, it is
actually more efficient to simply encrypt it and compute the encrypted UBM
score in this manner).

Once both the encrypted “user” score E[logP (x1, . . . ,xT |λs)] and the UBM
score E[logP (x1, . . . ,xT |λU )] are available, the system can engage a secure com-
parison protocol [23] to determine which is greater.

3.4 The Efficacy of the SFE Approach

Since the SFE protocols described above essentially enable a direct privacy-
preserving implementation of the likelihood-ratio test, actual authentication per-
formance is not significantly different from that obtained with the original “un-
secured” method. The only degradation comes from the fact that the encryption
works over finite integer fields, and to utilize it all numbers must be converted
to finite-precision integers. However, even with only 16-bit precision the perfor-
mance of the algorithm is largely comparable to that obtained with floating-point
valued features and models.
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The larger issue arises from the computational overhead. The computations
require repeated exchange of information between the user and the system, as
well as repeated encryption and decryption. Table 1 shows execution times for
the verification phase of the protocol using different encryption schemes – enroll-
ment times would be several factors higher. All Gaussian mixtures employed in
this experiment were mixtures of 32Gaussians. The table only evaluates the com-
putation time, most of which is dominated by the time required for encryption
and decryption. Communication overhead is negligible compared to these times.
For comparison, the conventional “insecure” version of the algorithm took 14 sec-
onds to run on the same computer, on the same utterance. Clearly the feasibility
of this approach in practical terms is questionable within current computational
infrastructures.

Table 1. Execution time of the verification protocol for a single 4.4second utterance

Steps Time (256-bit) Time (1024-bit)

Encrypting x̄t ∀t 576.81 s 35747.82 s
Evaluating Adapted 407.21 s 7597.57 s
Evaluating UBM same as adapted same as adapted
Comparison 0.3 s 16.88 s

Total =E[x̄t] + adapted 1391.53 s 50959.84 s
+ UBM + compare ∼ 23 min ∼ 14 hr, 9 min

A second factor to be considered is security. The SMC protocols described
above ensure that if they are correctly followed, no information is leaked what-
soever. The system learns nothing about the user’s data, and the user in turn
does not learn anything about the models stored by the system. The original
objectives of privacy we set forth are satisfied.

However, the framework described above assumes “honest but curious” users
and system. The user and the system are assumed to correctly perform the
operations required of them, although they may inspect the output. Such an
assumption is clearly naive. For instance, an imposter who has broken into the
user’s client device could modify the numbers sent out by the user’s client device
in only the last step of the protocol, i.e. the secure comparison protocol; this
would result in incorrect results being obtained by the system, which result
in the imposter obtaining a much-higher-than-random probability of breaking
into the system. These too can be protected against, by including a stage of
verification after each operation, e.g. using zero-knowledge proofs [24]; however
such verification can increase the communication and computation overhead
manifold over the current values.

On the other hand, the SMC framework not only has the benefit of being
exact; it can also be generalized to incorporate other models, and perform ad-
ditional tasks such as actual recognition of speech. Moreover, with appropriate
verification, the procedures can be made arbitrarily secure.
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4 Privacy Preserving Speaker Authentication through
Hashing

The computational overhead from the SFE framework arises from two reasons.
First, homomorphic encryption is expensive, as are homomorphic operations on
data. Secondly, the processing is interactive, requiring repeated exchange of large
amounts of data between the user and system.

By comparison, text-password based systems are blindingly fast, and yet
highly secure. The reasons for this are not difficult to identify. Firstly, authenti-
cation requires an exact match between the password stored by the system and
the string typed in by the user. This means that fast one-way hashing functions
(e.g. DES) may be employed to encrypt the password. Since the stored password
and the password transmitted by the user encrypt to the same cryptostring, com-
parison can be performed in the encrypted domain: a perfect match results in
authentication; a mismatch provides no information about the original (unen-
crypted) text strings. A consequence of this is that the exchange need not be
interactive: the user transmits a password, and the system determines whether
the user must be authenticated in a single comparison operation; in the entire
process the user’s password remains secure.

On the other hand, the conventional password-based authentication scheme
cannot be applied to speaker authentication for an obvious reason: speech record-
ings are not deterministic, and features derived from enrollment and test record-
ings are highly unlikely to be identical. Moreover, speech recordings tend to vary
in length, making such direct exact comparisons impossible in most cases.

In the Hashing-based framework we attempt to map the authentication prob-
lem to a process similar to password matching. To do so, we employ the
supervector-based mechanisms for authentication described in Section 2.2. Re-
call that in this formalism each recording, both from the enrollment data and
the test data, is converted to a single “supervector” by adapting a UBM to the
recording, and concatenating the parameters of the resultant distribution into
a single vector. The length of the supervector only depends on the number of
Gaussians in the UBM and is independent of the length of the recording, thereby
resulting in a fixed-length parameterization of the audio. Nevertheless the su-
pervectors are not determinsitic and will vary from recording to recording, and
cannot be matched to one another.

In [3] a technique was proposed to convert these supervectors to password-
like strings by hashing them using a locality sensitive hashing (LSH) scheme
[25]. Once hashed in this manner, the supervectors of different recordings from
a speaker could map onto the same hash with high probability. The problem
here was that recordings from imposters too could map onto the same hashes.
To reduce the incidence of such collisions, enrollment recordings were hashed
multiple times using several hashes, and the collection of hash values was used as
a password set for the speaker. Test recordings were hashed in the same manner,
and the set of test hashes were compared to the hashes from the enrollment set.
If a sufficient number of exact matches were found between the two sets, the
user was authenticated.
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By converting the problem of authentication to a password matching prob-
lem, privacy issues were effectively eliminated. Computation of supervectors and
hashes was performed on the user’s client device. The server only obtained hashes
that had been encrypted by a one-way function such as SHA-256, both from the
enrollment data and during authentication. Speaker authentication in this man-
ner was as secure as text-based password matching. The problem however, was
one of accuracy – by requiring only exact matches between hashes of test and
enrollment data, the accuracy of the system was compromised.

The hashing-based mechanism we employ approaches the problem of conver-
sion of audio into hashes differently – we employ a hashing mechanism based
on the principle of secure binary embeddings (SBE) [5][4]. SBEs have an inter-
esting property – they convert the audio into hashes that can be compared to
one another in a manner that permits a small degree of mismatch between the
hashes. At the same time, they provide information theoretic guarantees that
the distance between hashes of vectors provides no information about the true
relationship between the vectors, if the vectors are sufficiently far apart. Fur-
thermore, they cannot be inverted to recover supervectors from their hashes, if
the key to the hashing function is kept private.

In the following sections we will describe the SBE and its properties, and how
we apply it to the problem of speaker authentication. Since the actual mechanism
employed to authenticate users is no longer identical to existing techniques,
which are based on the ability to estimate the actual distances between vectors,
we also include a section with experiments demonstrating the effectiveness of
the approach.

4.1 Secure Binary Embeddings

Secure binary embeddings (SBE) [5] convert vectors to bit sequences through ran-
dom projections followed by band quantization. The resulting bit strings, which
we will refer to as “hashes”, have the following property: if the Euclidean dis-
tance between two vectors is below a threshold, the Hamming distance between
their hashes is proportional to the Euclidean distance; above the threshold the
Hamming distance provides no information regarding the true distance between
the two vectors. Given an L-dimensional vector x ∈ R

L, the M -bit SBE of x is
defined as

q(x) = Q
(
Δ−1(Ax +w)

)
(7)

whereΔ is a precision parameter,A ∈ R
M×L is a random matrix whose elements

are drawn from a normal distribution with zero mean and unit variance, and
w ∈ R

M is a vector composed of random numbers drawn uniformly from [0, Δ].
Q() is a quantization function given by Q(y) = �y%2�, where the floor and
modulus operations are performed component wise.

The binary hash q(x) generated by Equation 7 has the following properties [4]:
given two vectors x and x′ that have a Euclidean distance d(x,x′) = ‖x−x′‖, the
probability that the ith bits, qi(x) and qi(x

′) respectively of the hashes q(x) and
q(x′) are identical depends only on the distance d(x,x′) between the vectors and
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not on x and x′ themselves. The following relationship results as a consequence
[4]: with probability at most e−2t2M the normalized (per-bit) Hamming distance
dH(q(x),q(x′)) between q(x) and q(x′) is bounded by:

1

2
− 1

2
e
−
(

πσd(q(x)√
2Δ

)2

− t ≤ dH(q(x),q(x′)) ≤ 1

2
− 4

π2
e
−
(

πσd(q(x)√
2Δ

)2

+ t

where t is a control factor. The import of the above bound is that the Ham-
ming distance dH(q(x),q(x′)) is correlated to the Euclidean distance d(x,x′)
if d(x,x′) is less than a threshold (which depends on Δ). Specifically, for small
d(x,x′), E[dH(q(x),q(x′))], the expected Hamming distance, can be shown to be

bounded from above by
√
2π−1σΔ−1d(x,x′), which is linear in d(x,x′). However,

if the distance between x and x′ is greater than this threshold, dH(q(x),q(x′))
is bounded by 0.5 − 4π−2exp

(−0.5π2σ2Δ−2d(x,x′)2
)
, which rapidly converges

to 0.5 and effectively gives us no information whatsoever about the true distance
between x and x′.

Figure 3 illustrates this relation through a simulation. For the simulation we
randomly generated samples in a high-dimensional space (L = 1024) and com-
puted their hashes. Figure 3 shows the scatter of the normalized per-dimension
Euclidean distance between pairs of these vectors, and the normalized per-bit
Hamming distance between their hashes. The number of bits in the hashes is
also shown in the figures. We note that in all cases, once the normalized Eu-

Fig. 3. Embedding behaviour for different values of Δ and different amounts of mea-
surements M

clidean distance between two vectors exceeds Δ, the Hamming distance between
their hashes no longer provides any information about the Euclidean distance.
We also see that changing the value of the precision parameter Δ allows us to
adjust the distance threshold until which the Hamming distance is informative.
Increasing the number of bits M in the hashes also leads to a reduction of the
variance of the Hamming distance.

A converse property of the embeddings is that for all x′ except those that
lie within a small radius of any x, dH(q(x),q(x′)) provides little information
about how close x′ is to x as evident from Figure 3. In fact, it can be shown
that beyond this radius the embedding provides information theoretic security
if the embedding parameters A and w remain unknown to a potential adversary
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who may try to deduce the data from their hashes. Any algorithm attempting
to recover a signal x from its embedding q(x) or to infer anything about the re-
lationship between two signals sufficiently far apart using only their embeddings
will fail to do so. Furthermore, even in the case where A and w are known, it
seems computationally intractable to derive x from q(x) unless one can guess a
starting point very close to x. In effect, it is infeasible to invert the SBE without
strong a priori assumptions about x.

4.2 Speaker Verification with Secure Embeddings

SBE hashes thus enable us to compare data that are close together, without
actually being able to observe the data. This immediately enables us to apply
them to the problem of privacy-preserving speaker authentication, through a
rather direct modification of the algorithms described in Section 2.2. The manner
in which we modify the algorithms is predicated on the fact that dH(q(x),q(x′))
is more-or-less linearly related to d(x,x′) for nearby vectors. We explain the
actual modifications below.

In all cases we assume that the speaker possesses the embedding parameters
A and w. The supervectors for the speaker’s recordings are computed on the
user’s client device. The SBE hashes of the supervectors are also computed on
the user’s client device using A and w. For both the enrollment data and for
subsequent authentication data only the hashes are transmitted to the system
over a secure channel.

During the enrolment phase the system also requires hashes derived from a
large collection of recordings from imposters.

We and defer the discussion of the provenance ofA and w and the consequent
implications on user privacy, as well as the source of the imposter recordings, to
Section 4.6

SVM-Based Classifier: The SVM based classifier used for speaker authen-
tication systems utilizes an RBF kernel defined by k(x,x′) = e−γ·d2(x,x′). We
modify this by replacing the Euclidean distance d(x,x′) between vectors by the
hamming distance between their hashes dH(q(x),q(x′)). The resulting SVM uti-

lizes the modified pseudo-kernel: kq(x,x
′) = e−γ·d2

H(q(x),q(x′)). Note that for a
given A and w, the modified kernel kq(x,x

′) closely approximates the conven-
tional RBF for small d(x,x′), but varies significantly from it at larger d(x,x′).
Although it does not satisfy Mercer’s conditions and cannot be considered a true
kernel, in practice it is effective as we shall see in the experiments described in
Section 4.3.

During enrollment, the SVM classifier is now trained using hashes of (super-
vectors derived from) enrollment recordings provided by the user, in conjunction
with the hashes of a collection of imposter recordings. During operation, hashes
of supervectors derived from test recordings are classified by the SVM.



Privacy-Preserving Speaker Authentication 17

k-NN Classifier: The k-NN classifier of Section 2.4 can also be similarly mod-
ified. Here we replace the Euclidean distance d(x,x′) used to rank order the
neighbors of a vector by the Hamming distance between their SBE hashes,
dH(q(x),q(x′)). The motivation behind the design of the algorithm in Section
2.4, which was designed with the hashing-based classifiers in mind, can now be
explained. Since the expected Hamming distance dH(q(x),q(x′)) between any
the hashes of any two vectors x and x′ with Euclidean distance d(x,x′) > MΔ is
0.5M , dH(q(x),q(x′)) cannot reliably be used to choose the k closest neighbors
to any x correctly except for small k. Hence we simply consider all exemplars to
compute the score for any vector. Secondly, since the actual Hamming distance
between the hashes of two vectors is a random variable and does not fall signifi-
cantly above 0.5M , particularly for larger M , weights are assigned to exemplars
based on reciprocal rank, rather than the distance itself.

The actual implementation of the authentication is straight-forward. In the
enrollment phase the system obtains the hashes of a set of enrolment recordings
from the user, as well as those for a collection of recordings from several im-
posters. The k-NN algorithm is used thereafter to classify hashes derived from
test recordings of the user.

4.3 Experiments in Speaker Authentication

Unlike the SFE-based framework which merely embedded a conventional algo-
rithm within a privacy-preserving framework, the SBE-based mechanisms de-
scribed above modify the actual classifier by changing the distance functions
they use. Therefore, before we proceed, we first demonstrate the accuracy of the
SBE-based speaker authentication.

Experiments were run on the YOHO Speaker Verification corpus [11]. It com-
prises of a collection of short utterances produced by 138 different speakers,
108 male and 30 female. Each utterance contains a sequence of three two-digit
numbers (e.g. “26-81-57”). The recordings were sampled at 8kHz and digitized
as 16-bit words. The corpus is divided into an enrollment set and a verifica-
tion set. The enrollment set contains 96 utterances from each speaker, totaling
14.54 hours of audio. The verification set, which is the “test” set, contains 40
utterances from each speaker, totaling 6.24 hours of audio. We did not explicitly
record imposters; instead for each of the 138 speakers in the corpus, the remain-
ing 137 were used as imposters. All speech signals were parameterized into a
sequence of MFCC feature vectors, each computed from an analysis frame of
25ms, at the rate of 100 vectors per second. The 13-dimensional MFCC vectors
were augmented with the temporal differences and double-differences to result
in a total of 39 features per frame.

A UBM (which, we recall is a Gaussian mixture) was trained from the data
for all the speakers. The UBM was adapted to each recording from each speaker
to obtain a single Gaussian supervector for each recording. The length of the
supervectors depends on the number of Gaussians in the UBM: a UBM with
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N Gaussians results in supervectors with L = 39N dimensions. We evaluated
UBMs of different sizes, with the number of Gaussian components ranging from
4 to 128 Gaussians, to find the optimal settings.

4.4 Experiments Using Supervectors

In the first experiment we directly employed the supervectors in the classifiers de-
scribed in Section 2.2, to obtain reference speaker authentication results against
which we could compare the performance of SBE-based authentication. We re-
port results obtained from supervectors obtained with GMMs of different sizes.
Results are reported using both the SVM and k-NN classifiers. In a binary classi-
fication task such as speaker authentication, the two key performance metrics are
“precision”, which records the percentage of all recordings that were “accepted”
by the system that actually belonged to the target speaker, and “recall”, which
records the fraction of all recordings by a speaker that were correctly accepted.
Ideally, both precision and recall must be close to 100%. We report performances
in terms of “F-measure”, which is the harmonic mean of precision and recall and
encapsulates both. If either of them is low, the F-measure will be low. Note that
for the k-NN classifier which actually obtains separate scores for each speaker
in the corpus, the F-measure is also identical to the accuracy of a multi-class
classifier that attempts to identify the speaker in each recording.

The obtained results averaged over all the speakers and are presented in Tables
2 and 3 respectively. In both cases the classifier achieves a close to optimal

Table 2. Speaker authentication F-measure (%age) using SVMs

#Gaussians 4 8 16 32 64 128

F-measure 76.8 89.2 92.8 94.0 94.1 94.4

Table 3. Speaker authentication F-measure (%age) using k-NN

#Gaussians 4 8 16 32 64 128

F-measure 71.8 86.7 92.4 94.8 91.5 85.4

performance with supervectors derived from mixtures of 32 Gaussians – for the
k-NN classifier the performance falls off with increasing Gaussians; for the SVMs,
although further increase in suprevector size results in improved performance,
the improvements are marginal. Consequently, for experiments with the SBE
we will consider only SBE hashes of supervectors obtained from mixtures of 32
Gaussians.

4.5 Experiments Using SBE Hashes

The secure binary embeddings have two parameters that can be varied: the
quantization step size Δ and the number of bits M . The value of M by itself is
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not informative, since increasing L (dimensionality of the supervector) requires
increasing values of M to retain the same resolution. Hence we report our results
as a function of bits per coefficient (bpc), computed asM/L. The results obtained
for the SVM and k-NN classifiers are presented in Tables 5 and 4 respectively.

Table 4. Speaker authentication F-measure (%age) using k-NN + SBE

Δ 13.5 14.0 14.5 15.0 15.5

bpc=4 72.4 78.9 82.8 85.6 87.3
bpc=8 85.0 88.6 89.9 90.8 91.6
bpc=16 90.2 91.8 92.7 93.1 93.2

Table 5. Speaker authentication F-measure (%age) using SVMs + SBE

Δ 13.5 14.0 14.5 15.0 15.5

bpc=4 85.4 87.9 89.0 90.9 91.6
bpc=8 90.7 92.1 93.0 93.7 93.9
bpc=16 94.0 94.0 94.6 94.6 94.9

From Figure 3 and the discussion in Section 4.1 we can infer that smaller Δ
values result in smaller neighborhoods over which the distances between adjacent
vectors can be deduced from their hashes. Thus, smallerΔ values result in hashes
q(x) that better obscure the value of the vectors x. By the same token, however,
they are also likely to result in poorer classification accuracy since x cannot
reliably be compared to a model.

Tables 5 and 4 report performance as a function of Δ and bpc. As expected,
increasing Δ generally improves classification performance, but then so does
increasing bpc. For small bpc small Δ values result in unacceptably poor clas-
sification. However increasing bpc improves the classification performance in all
cases, and at bpc=16, the performance stabilizes quickly and is thereafter largely
independent of Δ. At these settings we notice little, if any degradation when we
work from SBE hashes instead of the original supervectors.

4.6 Privacy and Other Practical Issues

Let us now analyze the actual privacy afforded by the SBE-based authentication.

When the User Possesses A and w as Private Keys: In the most secure
case, the user generates (A,w) and retains it as his private key. Since the system
only obtains the hashes and does not know A or w, it provably has no means of
recovering vectors from their hashes. Moreover, it also has no way of computing
hashes given a vector. As a result, the process is totally secure from abuse by the
system. Moreover, this also protects the user from imposters: the user’s private
key is tied to her client device(s), and if these are secured, e.g. by a password,
the system cannot be broken into by an imposter who poses as the user.
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The problem here is that since the system has no means of computing hashes,
the user is in charge of downloading imposter data and generating hashes from
them for the system to train its classifiers from, an onerous responsibility. One
alternative is to use a “single-class” classifier, which only requires positive in-
stances from the user; however the performance of such classifiers tends to be
poor [3]. A more practical solution is for the user to generate his set of negative
samples from the positive samples. This can be achieved by using the method
proposed in [12], in which the user iteratively estimates SVM classifiers and gen-
erates negative instances that lie on the wrong side of the decision boundary.
The authors of this technique state that after a few iterations the classifica-
tion results are comparable to the ones obtained using sets of genuine positive
and negative samples; however whether this is true for supervectors of speech
recordings remains to be seen.

The System Provides A and w: Recall that the SBE is essentially not invert-
ible without strong a priori assumptions about the data. Under the assumption
of non-invertibility, we can propose the following: the system generates (A,w)
once, and transmits it to the speaker. The system is now in charge of generating
imposter hashes. Users only send the SBE hashes of their enrollment data to the
system. Even if the hashes are not invertible, this process is not secure: since
the system can generate hashes on its own, it does not prevent the system from
searching public sources such as YouTube for instances of the speaker’s voice.
This may not be an unacceptable compromise in many situations; however, it
is still unknown whether the system can recover a vector from its hash given a
priori information that it can obtain.

Finally, we note that one of the key advantages of the SFE approach was
its generalizability – the same framework could also be employed for a variety
of other tasks such as speaker identification, speech recognition, etc. Since the
hashing-based approach can only be guaranteed to be secure if the user retains
the hashing parameters, it does not lend itself to such generalization.

5 Discussion and Conclusions

With increasing use of speech-based services, the issue of the privacy of the
users and their speech data is only just beginning to be considered. These issues
go beyond the mere problem of biometrics. Even for speech-based biometrics,
the proposed frameworks are not complete – while they enable some operations,
specifically speaker authentication, to be performed securely, they cannot provide
the same security to closely related tasks such as speaker identification. In the
larger scenario, users who use speech recognition and speech mining services,
social media sites etc. remain exposed.

The presented work can thus only be considered a first step towards estab-
lishing a truly secure framework for speech processing applications in general.
We continue to investigate these issues and hope researchers around the world
recognize the importance of the problem and take it up as well.
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