Finding Domain Specific Polar Words for Sentiment Classification

Mehrbod Sharifi

Outline

- Introduction
- Data & Previous Work
- Approach & Results
 - Prior Polarity Lexicons
 - Feature Extraction (Boosting)
 - Sequence Modeling (CRF)

Sentiment Classification

- Negative: "a lousy movie that's not merely unwatchable, but also unlistenable."
- Positive: "one of the greatest romantic comedies of the past decade."
- Negative: "these guys seem great to knock back a beer with but they're simply not funny performers."
- Negative: totally overwrought, deeply biased, and wholly designed to make you feel guilty about ignoring what the filmmakers clearly believe are the greatest musicians of all time."

Word Polarity

- Hatzivassiloglou & McKewon '97: Consider adjectives and extend by conjunctions (82%)
 - ... simple and well-received ...
 - ... simplistic but well-received ...
- Turney '02: $PMI(x,y) = \log_2 \frac{p(x,y)}{p(x)p(y)}$
 - SO(phrase) = PMI(phrase,"excellent")-PMI(phrase,"poor")
 - Estimate by web hits (74%)
- Liu '04: Start with seed sets and expand with WordNet

From Word to Sentences

- Minqing Hu and Bing Liu '04: majority
- Kim & Hovy '04: product of sign, arithmetic or geometric mean (first and second was most useful)
- Popescu and Etzioni '05: Relaxation Labeling (optimization problem in three stages: word, phrase, sentence

Prior Polarity Lexicon

General Inquirer '00

Manual

Entry	Source	Positiv	Negativ	Pstv	Affil	Ngtv	Hostile	Strong	Power
A	H4Lvd								
ABANDON	H4Lvd		Negativ			Ngt∨			
ABANDONMENT	H4		Negativ						
ABATE	H4Lvd		Negativ						
ABATEMENT	Lvd								
ABDICATE	H4		Negativ						
ABHOR	H4		Negativ				Hostile		
ABIDE	H4	Positiv			Affil				
ABILITY	H4Lvd	Positiv						Strong	
ABJECT	H4		Negativ						
ABLE	H4Lvd	Positiv		Pstv				Strong	
ABNORMAL	H4Lvd		Negativ			Ngt∨			
ABOARD	H4Lvd								
ABOLISH	H4Lvd		Negativ			Ngt∨	Hostile	Strong	Power

http://www.wjh.harvard.edu/~inquirer/

Prior Polarity Lexicon

Subjectivity Clues (Riloff & Wiebe '03,'05)

Automatically selected syntactic pattern

type=weaksubj len=1 word1=abandoned pos1=adj stemmed1=n priorpolarity=negative type=weaksubj len=1 word1=abandonment pos1=noun stemmed1=n priorpolarity=negative type=weaksubj len=1 word1=abandon pos1=verb stemmed1=y priorpolarity=negative type=strongsubj len=1 word1=abase pos1=verb stemmed1=y priorpolarity=negative type=strongsubj len=1 word1=abasement pos1=anypos stemmed1=y priorpolarity=negative type=strongsubj len=1 word1=abash pos1=verb stemmed1=y priorpolarity=negative type=weaksubj len=1 word1=abate pos1=verb stemmed1=y priorpolarity=negative type=weaksubjlen=1word1=abdicatepos1=verb stemmed1=ypriorpolarity=negative type=strongsubj len=1 word1=aberration pos1=adj stemmed1=n priorpolarity=negative type=strongsubj len=1 word1=aberration pos1=noun stemmed1=n priorpolarity=negative type=strongsubj len=1 word1=abhor pos1=anypos stemmed1=y priorpolarity=negative type=strongsubj len=1 word1=abhor pos1=verb stemmed1=y priorpolarity=negative type=strongsubj len=1 word1=abhorred pos1=adj stemmed1=n priorpolarity=negative type=strongsubj len=1 word1=abhorrence pos1=noun stemmed1=n priorpolarity=negative type=strongsubj len=1 word1=abhorrent pos1=adj stemmed1=n priorpolarity=negative type=strongsubj len=1 word1=abhorrently pos1=anypos stemmed1=n priorpolarity=negative type=strongsubj len=1 word1=abhors pos1=adj stemmed1=n priorpolarity=negative tyne=strongsuhi len=1 word1=abbors nos1=noun stemmed1=n priorpolarity=negative

http://www.cs.pitt.edu/mpqa/

Prior Polarity Lexicon

SentiWordNet (Esuli & Sebastiani '06)

Classification of word gloss in dictionary

```
offset PosScoreNegScoreSynsetTerms
                 0.125 form-only#a#1
  1000003 0.0
  1000159 0.25
                 0.0
                         dress#a#1 full-dress#a#1
                 0.0
0.0
0.25
  1000307 0.0
                         titular#a#5 nominal#a#6
                         prescribed#a#4 positive#a#5
  1000440 0.0
                         perfunctory#a#2 pro_forma#a#1
  1000554 0.0
1000681 0.0
                 0.5
                         semiformal#a#1 black-tie#a#1 semi-forma
  10007 0.0
                 0.625
                         abstentious#a#1 abstinent#a#1
  1000859 0.0
                         starchy#a#2 buckram#a#1 stiff#a#4
                 0.0
  1001035 0.125
                 0.375
                         white-tie#a#1
  1001157 0.0
                         informal#a#1
                  0.0
  100126 0.5
                  0.0
                         viable#a#2
                         casual#a#3 everyday#a#2
  1001456 0.375
                 0.125
  1001581 0.0
                         free-and-easy#a#1 casual#a#8
                  0.0
  1001755 0.0
                  0.375
                         folksy#a#2
1001882 0.0
1002013 0.0
                 0.625
                         unceremonious#a#1 unceremonial#a#1
                 0.25
                         formal#a#3
  1002315 0.0
                  0.0
                         literary#a#3
  1002508 0.0
                         informal#a#3
                 0.0
                  0.125
 100261 0.0
                         vital#a#4
1002760 0.0
                          conversational#a#1 colloquial#a#1
                  0.0
1003005 0.0
                  0.0
                         vulgar#a#3 vernacular#a#1 common#a#5
                         epištolary#a#1 epistolatory#a#1
  1003296 0.0
                  0.0
  1003509 0.375 0.125
                         slangy#a#1
                 0.5
                          subliterary#a#1
  1003665 0.125
                         unliterary#a#1 nonliterary#a#1
  1003815 0.25
                  0.375
                 0.75
```

http://sentiwordnet.isti.cnr.it/

Datasets

- Pang & Lee ('02,'04)
 - Polarity Dataset—Long reviews: IK+, IK- (avg. 780 words)
 - ▶ Subjectivity Dataset Short review: 5K+, 5K- (avg. 21 words)
- Restaurant Reviews (50K+, I-5 rating, avg. 34 words)

To use later:

- Wiebe '06 (MPQA)
- ▶ Liu '04
- ▶ TREC Blog '06

Pang '02

	Proposed word lists	Accuracy	Ties
Human 1	positive: dazzling, brilliant, phenomenal, excellent, fantastic negative: suck, terrible, awful, unwatchable, hideous	58%	75%
Human 2	positive: gripping, mesmerizing, riveting, spectacular, cool, awesome, thrilling, badass, excellent, moving, exciting negative: bad, cliched, sucks, boring, stupid, slow	64%	39%

Figure 1: Baseline results for human word lists. Data: 700 positive and 700 negative reviews.

	Proposed word lists			
Human 3 + stats	positive: love, wonderful, best, great, superb, still, beautiful negative: bad, worst, stupid, waste, boring, ?, !	69%	16%	

	Features	# of	frequency or	NB	$^{\mathrm{ME}}$	SVM
		features	presence?			
(1)	unigrams	16165	freq.	78.7	N/A	72.8
(2)	unigrams	"	pres.	81.0	80.4	82.9
(3)	unigrams+bigrams	32330	pres.	80.6	80.8	82.7
(4)	bigrams	16165	pres.	77.3	77.4	77.1
(5)	unigrams+POS	16695	pres.	81.5	80.4	81.9
(6)	adjectives	2633	pres.	77.0	77.7	75.1
(7)	top 2633 unigrams	2633	pres.	80.3	81.0	81.4
(8)	unigrams+position	22430	pres.	81.0	80.1	81.6

Experiment (Accuracy reported)

- ▶ SVM: Short reviews: 74% Long reviews: 81%
 - Boolean feature vector (tf or tfidf is worse)
 - Only selected feature with tf ≥ 4 (50% accuracy using all features)
 - Encoding negation was not helpful
- ▶ Boosting: 76%
 - ▶ Same for 1000-5000 rounds of training
 - Almost the same for long and short reviews
 - 5-gram lowered 3%

SVM Error Analysis

- ▶ Sequence Issues (e.g., ... but ...)
 - interesting, but not compelling.
 - the effort is sincere and the results are honest, but the film is so bleak that it's hardly watchable.
- Neg: not once does it come close to being exciting.
- Pos: while not all that bad of a movie, it's nowhere near as good as the original.

Selecting Polar Words - Example

Positive score, Negative score[,mutiplicity]:

- ▶ GI the story is far-flung , illogical[0,1,1] , and plain[4,0,4] stupid[0,3,3] . =Total=> 4 4
- SW the story is far-flung , illogical[0.625,0.375,2] ,
 and plain[2.625,3.125,13] stupid[0.25,0.5,4] . =Total=>
 3.5 4
- \blacktriangleright SC the story is far-flung , illogical[0,1,1] , and plain[1,0,1] stupid[0,1,1] . =Total=> 1 2

Accuracy

- ▶ Baseline: Random or all in one class: 50%
- Short reviews
 - > SC 70.9% (18.5% tie)
 - GI 70.4% (23.2% tie)
 - > SW 59.9% (2.4% tie)
- ▶ Long reviews (tie <1%)
 - > SC: 61.0%
 - GI: 56.6%
 - > SW: 56.2%
 - 6-10 times more error for negatives than positives

Feature Selection - Boosting

$$H(x) = sign\left(\sum_{t} \alpha_{t} h_{t}(x)\right) \qquad \alpha_{t} = \frac{1}{2} \ln\left(\frac{1 - \epsilon_{t}}{\epsilon_{t}}\right) > 0$$

Unigram - Short reviews						
Neg		Pos				
bore	6.1	outlandish	5.7			
dogs_	4.7	moodiness	5.5			
blank	4.7	liberating	4.9			
stunt	4.7	combine	4.6			
disappointment	4.6	<u>shrek</u>	4.5			
benigni	4.6	screams	4.5			
brawny	4.6	fulfill	4.4			
whiny	4.5	eyerolling	4.4			
gotten	4.5	tape	4.3			
stumble	4.5	priceless	4.2			
dimwitted	4.4	groantoguffaw	4.2			
demmes	4.4	mesmerizing	3.8			
limitations	4.3	concern	3.8			
claim	4.3	vividly	3.7			
mud	4.3	<u>bourne</u>	3.7			
routine	4.3	glorious	3.7			
paint	4.2	sly	3.7			
disguise	4.0	ingenious	3.7			
erratic		refreshingly	3.7			
pointless	3.8	bride	3.7			

Unigram - Short reviews (after pruning)					
Neg		Pos			
blank	4.7	moodiness	5.5		
stunt	4.7	combine	4.6		
disappointment	4.6	fulfill	4.4		
brawny	4.6	priceless	4.2		
whiny	4.5	mesmerizing	3.8		
stumble	4.4	concern	3.8		
claim	4.3	vividly	3.7		
mud	4.3	glorious	3.7		
routine	4.3	sly	3.7		
disguise	3.9	ingenious	3.7		
erratic	3.9	refreshingly	3.7		
pointless	3.8	engrossing	3.6		
incoherent	3.8	happily	3.6		
horrible	3.7	accurate	3.6		
uninspired	3.7	harrowing	3.5		
choppy	3.6	gently	3.5		
bother	3.6	image	3.5		
exhausting	3.6	wash	3.4		
strained	3.6	soulful	3.4		
soggy	3.6	higher	3.4		

Prune = overlap with prior priority

Feature Selection - Boosting

the story is far-flung , illogical , and plain[0,1.73,1] stupid[0,2.56,1] . =Total=> 0 4.30

Number of Features by Threshold

- >3: will grab your children by the imagination and amaze them and amuse them . $\mathbf{0}$ $\mathbf{0}$
- >2: will grab your children by the imagination and amaze [2.14, 0.00] them and amuse them . **2.14 0**
- >1: will grab your children by the imagination and amaze[2.14,0.00] them and amuse[1.01,0.00] them . **3.15 0**
- >0: will grab your children by[0.00,0.11] the imagination and[0.23,0.00] amaze[2.14,0.00] them and[0.23,0.00] amuse[1.01,0.00] them . **3.60 0.11**

Feature Selection - Boosting

Sequence Model - CRF

Setup

- Boosting features threshold at I and pruned
- 6 gram for CRF
- Only subjective sentences
- Trained on 2/3 and tested on 1/3
 - repeated but not cross validation yet
 - Total tokens 59446 in test set
- Result
 - ▶ 56 + and 97 more than training
 - ▶ 38 + and 29 completely new
- Incorrect:
 - True -: missed 251 times and as +:5
 - ▶ True + : missed 205 times and as : I
 - Correct: 3787 and 3275 +
- ▶ However, classification improvement is small (added with weight 3)

fascinated
superlative
amazingly
workmanlike
inventively
resent
superstitious
funny/gritty
densely
ethereal

sorrowful uninhibited irreverent unfree deserved minkoff dispossessed discomfort woodland missive

References

- ▶ Bo Pang and Lilian Lee, L., and Shivakumar Vaithyanathan. 2002 Thumbs up? Sentiment Classification using Machine Learning Techniques, Proceedings of Empirical Methods in Natural Language Processing
- Peter D. Turney and Michael L. Littman. 2002. Unsupervised learning of semantic orientation from a hundred-billion-word corpus. Technical Report EGB-1094, National Research Council Canada.
- Ellen Riloff, Janyce Wiebe, and Theresa Wilson. 2003 Learning Subjective Nouns Using Extraction Pattern Bootstrapping. Seventh Conference on Natural Language Learning (CoNLL-03). ACL SIGNLL. Pages 25-32.
- Ellen Riloff and Janyce Wiebe. 2003 Learning Extraction Patterns for Subjective Expressions. Conference on Empirical Methods in Natural Language Processing (EMNLP-03). ACL SIGDAT. Pages 105-112. Here are presentation slides.
- Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. 2005. Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis. HLT-EMNLP-2005. Here are presentation slides.
- V.Hatzivassiloglou, K.McKeown. 1997. Predicting semantic orientation of adjectives. In ACL/EACL, pages 174–181.
- M.Hu and B.Liu 2004. Mining and Summarizing Customer Reviews. In KDD, pages 168–177, Seattle, WA.
- Soo-Min Kim and Eduard Hovy. 2004. Determining the Sentiment of Opinions. Proceedings of the COLING conference, Geneva, 2004
- Andrea Esuli and Fabrizio Sebastiani. SentiWordNet: A Publicly Available Lexical Resource for Opinion Mining. In Proceedings of LREC-06, 5th Conference on Language Resources and Evaluation, Genova, IT, 2006
- Ana-Maria Popescu and Oren Etzioni. 2005. Extracting Product Features and Opinions from Reviews, Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing 2005