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Abstract. We address the problem of automatically generating concise
factual questions from linguistically complex sentences in reading ma-
terials. We discuss semantic and pragmatic issues that appear in com-
plex sentences, and then we present an algorithm for extracting simpli-
fied sentences from appositives, subordinate clauses, and other construc-
tions. We conjecture that our method is useful as a preliminary step in
a larger question generation process. Experimental results indicate that
our method is more suitable for factual question generation applications
than an alternative text compression algorithm.

1 Introduction

This paper addresses question generation (QG) for the purpose of creating read-
ing assessments about the factual information that is present in expository texts
such as encyclopedia articles and textbooks. We believe that QG has the po-
tential to help teachers efficiently assess students’ acquisition of basic factual
knowledge from reading materials, thereby enabling teachers to focus on more
complex questions and learning activities. We also believe that research on fac-
tual QG can inform research on the generation of more complex reading questions
as well as questions for other applications, some of which are described in [17].

Factual questions about reading materials, either from teachers or students,
are usually short and targeted at a single piece of information. For example, in
the Microsoft Research Question-Answering Corpus,1 which consists of questions
generated by students and excerpts from encyclopedia articles that answer them,
the average length of questions is 7.2 words. However, sentences in texts are typi-
cally much longer on average because various constructions such as conjunctions,
subordinate clauses, and appositives enable writers to convey multiple pieces of
information in a single sentence. Consider Ex. 1, which contains a non-restrictive
appositive (the country’s paramount leader), a participial phrase (returning ...),
and two clauses conjoined by so.2 An important issue in QG is how to generate
concise questions from these sorts of complex sentences.

1 Available at http://research.microsoft.com.
2 “Subway Blasts Kill Dozens in Moscow” by C. Levy, New York Times, downloaded

March 29, 2010.



(1) Prime Minister Vladimir V. Putin, the country’s paramount leader, cut
short a trip to Siberia, returning to Moscow to oversee the federal response.
Mr. Putin built his reputation in part on his success at suppressing
terrorism, so the attacks could be considered a challenge to his stature.

One possible solution is to use techniques from text compression [11, 6]. The
goal of compression is to take as input a possibly long and complex sentence,
and produce as output a single shortened version that conveys the main piece
of information in the input. However, as noted above, sentences often convey
multiple pieces of information. In QG, we may want to generate questions not
just about the information in the main clause, but also about the information
embedded in various nested constructions. For example, from the two sentences
in Ex. 1, we might produce the following sentences to allow a QG system to
generate a more comprehensive set of questions:3

(2) Prime Minister Vladimir V. Putin is the country’s paramount leader.
(3) Prime Minister Vladimir V. Putin cut short a trip to Siberia.
(4) Prime Minister Vladimir V. Putin returned to Moscow to oversee the

federal response.
(5) Mr. Putin built his reputation in part on his success at suppressing

terrorism.
(6) The attacks could be considered a challenge to his stature.

In this paper, we present a method for extracting multiple, simple, syn-
tactically and semantically correct factual statements from complex sentences.
These simple sentences can be readily transformed into questions. There already
exist frameworks where questions are generated through transformations of ex-
tracted declarative sentences, notably [8, 9]. Our method fits particularly well
into sentence-extraction stage of that approach, but could also serve as a pre-
processing step for other QG systems.4 Our method is linguistically motivated
by research on semantic and pragmatic phenomena. We present the results of a
small-scale study of the quality of the output of our system and compare to a
text compression approach [6].

2 Extraction of Textual Entailments

The task of extracting simple sentences from a complex input sentence is essen-
tially the task of generating a particular subset of the possible sentences that
a reader would assume to be true after reading the input. That is, we aim to
generate a restricted set of textual entailments, using the informal definition of

3 Ideally, we would also like to resolve anaphora such as his. Due to the difficulties of
coreference resolution, we leave that to future work.

4 We consider the set of simplification rules described in [8, 9] to be an early prototype
of the more complete system described here. We did not expect a formal experimental
comparison to that prototype to be informative.



entailment from the recognizing textual entailment task [7, 1]. While it is im-
portant to generate outputs that are true given an input sentence, we are not
satisfied with outputs that merely preserve meaning. Rather, we seek short sen-
tences such as Exs. 2–6 that are likely to lead to concise questions.

Our method for extracting meaning-preserving, simplified sentences depends
on two linguistic phenomena: semantic entailment and presupposition (both of
which we subsume into the informal notion of textual entailment).

3 Extraction and Simplification by Semantic Entailment

Semantic entailment is defined as follows: A semantically entails B if and only
if for every situation in which A is true, B is also true [12].

This section describes how we extract simplifications from complex sentences
by removing adjunct modifiers and discourse connectives and by splitting con-
junctions of clauses and verb phrases. These transformations preserve the truth
conditions of the original input sentence, while producing more concise sentences
from which questions can be generated.

3.1 Removing Discourse Markers and Adjunct Modifiers

Many sentences can be simplified by removing certain adjunct modifiers from
clauses, verb phrases, and noun phrases. For example, from Ex. 7, we can extract
Ex. 8 by removing the discourse marker however and the relative clause which
restricted trade with Europe.

(7) However, Jefferson did not believe the Embargo Act, which restricted trade
with Europe, would hurt the American economy.

(8) Jefferson did not believe the Embargo Act would hurt the American
economy.

Ex. 8 is true in all situations where Ex. 7 is true, and is therefore semanti-
cally entailed. Discourse markers such as however do not affect truth conditions
in and of themselves, but rather serve to inform a reader about how the cur-
rent sentence relates to the preceding discourse. Adjunct modifiers do convey
meaning, but again do not affect semantic entailment. Of course, many adjuncts
provide useful information that we should preserve for later QG steps. For exam-
ple, prepositional phrases that identify the locations and times at which events
occurred can be the target of where and when questions, respectively.

Our algorithm (presented in §5) extracts simplified, entailed statements by
removing the following adjuncts and discourse markers:



– non-restrictive appositives (e.g., Jefferson, the third U.S. President, . . . )5

– non-restrictive relative clauses (e.g., Jefferson, who was the third U.S. Presi-
dent, . . . )

– parentheticals (e.g., Jefferson (1743–1826) . . . )
– participial modifiers of noun phrases (e.g., Jefferson, being the third U.S. Pres-

ident, . . . )
– verb phrase modifiers offset by commas (e.g., Jefferson studied many subjects,

like the artist Da Vinci. . . . )
– modifiers that precede the subject (e.g., Being the third U.S. President, Jef-

ferson. . . )

We only remove verb phrase modifiers that are offset by commas (e.g., we
simplify When I talked to him, John was busy. but not John was busy when I
talked to him.) Whether or not to remove other adjunct verbal modifiers is a
challenging question. It may be useful for QG to drop other adjunct modifiers
from very long sentences, but deciding which to drop and which to keep is left
to future work.

3.2 Splitting Conjunctions

We also split conjunctions of clauses and verb phrases, as in Ex. 5 and Ex. 6
above. In most cases, the conjuncts in these conjunctions are entailed by the
original sentence. For example, given John studied on Monday but went to the
park on Tuesday, both John studied on Monday and John went to the park on
Tuesday are entailed. Exceptions where conjuncts are not entailed include the
following: conjunctions with or and nor, which we do not split; and conjunctions
within downward monotone contexts such as negations or non-factive verbs (see
[14, Chapter 6] for a discussion of this phenomenon), which we do split (we leave
proper handling of this relatively rare case to future work).6

4 Extraction by Presupposition

In addition to the strict notion of semantic entailment, the pragmatic phe-
nomenon of presupposition plays an important role in conveying information.
The semantically entailed information in complex sentences often covers only a
fraction of what readers understand. Consider again Ex. 7 about the Embargo
Act. If our algorithm were to only extract semantic entailments as in §3, then it

5 Appositives and relative clauses can be restrictive or non-restrictive. Restrictive ver-
sions resolve referential ambiguities and are not typically offset by commas (e.g., the
man who was tall. . . ). The non-restrictive ones provide additional information and
are offset by commas (e.g., John, who was tall,. . . ).

6 We do not split conjunctions other than those conjoining clauses and verb phrases. In
particular, we do not split noun phrases. Leaving conjoined noun phrases is probably
advisable for factual QG applications, in particular because of difficult semantic and
pragmatic issues involving nouns (e.g., as in John and Susan were friends).



would miss possibly useful questions about facts such as Ex. 9 because they are
not semantically entailed by Ex. 7 (note how the Embargo Act would hurt the
American economy is also not entailed).

On the other hand, if an algorithm were to extract from all nested construc-
tions and näıvely copy features such as negation from the main clause, then
it would output many false sentences, such as Ex. 10 (from the clause which
restricted trade with Europe).

(9) The Embargo Act restricted trade with Europe.
(10) The Embargo Act did not restrict trade with Europe.

As the examples show, information in certain syntactic constructions is not
semantically entailed but rather presupposed, or assumed to be true, by the
reader [12, Chapter 4]. The meaning conveyed by these constructions is not af-
fected by non-factive verbs like believe and doubt, negation, modal operators, and
other constructions that affect the meaning of the main clause of the sentence.

The phenomenon of presupposition, often subsumed by the term “conven-
tional implicature” [12], can be formally defined as follows: A presupposes B if
and only if: (a) if A is true, then B is true, and (b) if A is false, then B is true.7

Many presuppositions have clear syntactic or lexical associations, or “trig-
gers.” These triggers facilitate the extraction of simple statements such as Ex. 2
and Ex. 4 above, which can lead to useful questions. A list of presupposition
triggers is provided by [12].8 The algorithm we present in §5 uses presupposition
triggers to extract simplified sentences from the following constructions (in each
example provided below, our method will extract Jefferson was the third U.S.
President):

– non-restrictive appositives (e.g., Jefferson, the third U.S. President,. . . )
– non-restrictive relative clauses (e.g., Jefferson, who was the third U.S. Presi-

dent,. . . )
– participial modifiers (e.g., Jefferson, being the third U.S. President,. . . )
– temporal subordinate clauses (e.g., Before Jefferson was the third U.S. Pres-

ident. . . )

This set of presupposition triggers is a subset of the adjunct modifiers that
our method removes when simplifying sentences (§3.1). They cover only subset
of the adjunct modifiers because it was not clear how to create reliable and
concise extraction rules for all of them. For example, extracting from certain
parenthetical phrases, such as in Jefferson (1743–1826), would likely require
components to identify time expressions and to generate appropriately formatted
output. We leave such extensions to future work.

7 There are cases where A is neither true nor false, such as The King of France is tall.
Such instances are often accounted for by abandoning the assumption of bivalence
and allowing a third truth value: “neither-true-nor-false.” [12, Section 4.2].

8 The constructions discussed in §3 can be viewed as triggers for semantic entailment.



Algorithm 1 extractSimplifiedSentences(t)

Tresult ← ∅
Textracted ← {t} ∪ extract new sentence trees from t for the following: non-restrictive
appositives; non-restrictive relative clauses; subordinate clauses with a subject and
finite verb; and participial phrases that modify noun phrases, verb phrases, or clauses.
for all t′ ∈ Textracted do

Tresult ← Tresult ∪ extractHelper(t′)
end for
return Tresult

Algorithm 2 extractHelper(t)

Tresult ← ∅
move any leading prepositional phrases and quotations in t to be the last children
of the main verb phrase.
remove the following from t: noun modifiers offset by commas (non-restrictive ap-
positives, non-restrictive relative clauses, parenthetical phrases, participial phrases),
verb modifiers offset by commas (subordinate clauses, participial phrases, preposi-
tional phrases), leading modifiers of the main clause (nodes that precede the subject).
if t has S, SBAR, or VP nodes conjoined with a conjunction c /∈ {or, nor} then

Tconjuncts ← extract new sentence trees for each conjunct in the leftmost, topmost
set of conjoined S, SBAR, or VP nodes in t.
for all tconjunct ∈ Tconjuncts do

Tresult ← Tresult∪ extractHelper(tconjunct)
end for

else if t has a subject and finite main verb then
Tresult ← Tresult ∪ {t}

end if
return Tresult

5 Extraction Algorithm

This section presents our algorithm for extracting simplified factual statements
from complex input sentences. The algorithm operates on standard simplified
Penn Treebank [15] phrase structure trees (i.e., without traces, etc.). The pri-
mary method extractSimplifiedSentences, shown in high-level pseudo-code
in Algorithm 1, takes a tree t as input and returns a set of trees Tresult as output.
A helper function, shown in Algorithm 2, recursively splits conjunctions.

As an optional step (enabled for our experiments), the algorithm moves lead-
ing prepositional phrase and quote modifiers to the end of the main verb phrase.
This transformation does not affect meaning, but it may lead to slightly more
natural questions (e.g., Who was elected President in 1796? instead of In 1796,
who was elected President? ).

In our implementation, we use the Stanford Parser [10] to find sentence
boundaries, tokenize, and parse. We use the Tregex tree searching language



[13] to identify the various constructions (e.g., non-restrictive appositives) that
our algorithm operates on. After identifying the key nodes with Tregex, we ma-
nipulate trees using the Stanford Parser’s API, which allows for inserting and
deleting children, changing labels on tree nodes, etc.9

Due to space limitations, we do not include the extraction rules here; they
will be listed in a future publication.10

6 Evaluation

To evaluate our implementation, we randomly sampled 25 articles from a set of
Encyclopedia Britannica11 articles about cities in the world (provided by [2]).

6.1 Baselines

We compare to two baselines. The first baseline is the Hedge Trimmer (here-
after, HT) algorithm [6], a rule-based text compression algorithm that itera-
tively performs various simplification operations until an input is shorter than
a user-specified target length. We decided to use HT rather than a statistical
sentence compression system because [6] found that HT produces more fluent
output (that paper compared HT to a hidden Markov model for compression).
We implemented HT using Tregex rules, and made two modifications to adapt
HT for QG: We set the target length to 15, rather than 10. With the target
length at 10 in preliminary experiments, HT often led to ungrammatical output
and seemed to drop useful information for a QG application. Also, our imple-
mentation did not include the rules described in [6] for dropping determiners and
temporal clauses (called “low-content units”) because these rules are tailored to
the headline generation application in [6].

The second baseline (MC-only), is to use our algorithm (§5) but only extract
from the main clause (taking left most conjunct when conjunctions are present).
This is an intermediate case between HT and our full system: like HT, it only
produces only one output per input. Also, note that the outputs will be a subset
of those from the full system.

6.2 Experimental Setup

We ran our system and HT on the 25 encyclopedia articles. All systems used
the same parser [10]. We set the maximum sentence length for the parser to be

9 For example, the following rule matches appositive constructions (see [13] for de-
tails on the rule syntax): NP < (NP=noun !$-- NP $+ (/,/ $++ NP|PP=appositive

!$CC|CONJP)) >> (ROOT << /^VB.*/=mainverb). For each match, the system cre-
ates a new sentence of the form, “noun be appositive.” The form of be depends on
the part of speech of the main verb, mainverb, and the number and person of noun.

10 Our system, which is coded in Java and includes the extraction rules, is available at
http://www.ark.cs.cmu.edu/mheilman/qg-2010-workshop.

11 Available at http://www.britannica.com.



60 word or punctuation tokens. For the 5.1% of sentences that exceeded this
maximum, all systems simply returned the input sentence as output.

We also conducted a small-scale manual evaluation of the quality of the
output. We randomly sampled 150 sentences from the encyclopedia articles. For
50 of these, we extracted using HT; for the remaining 100, we extracted using our
method (which subsumes MC-only).12 When the full system generated multiple
outputs from an input, we randomly sampled one of them.

We then asked two people not involved with this research to evaluate the 150
outputs for fluency and correctness, on 1–5 scales, following evaluation setups for
paraphrase generation [4] and sentence compression [11]. We defined a correct
output sentence as one where at least part of the meaning of the input sentence
was preserved (i.e., whether the output was true, given the input). The outputs
were mixed together, and the raters were blind to which system produced each
of them. The Pearson correlation coefficients between the raters’ judgments were
r = 0.92 for fluency and r = 0.82 for correctness. For our analyses, we used the
averages of the two raters’ judgments.

For a rough estimate of how much of the information in the input sentences
was included in the outputs, we computed the percentages of input word types
(lemmatized with WordNet [16]) included in at least one output, for each system.

6.3 Results

The results of our experiments, presented in Table 1, show that the full system
extracts more outputs per input than the two baselines (average 1.63 compared
to 1.0). While the main clause baseline constitutes a majority of the output
of the full system (58.1%), the other extraction rules contribute a substantial
number of additional outputs. For example, 26.5% of outputs involved splitting
conjunctions, and 13% were extracted from appositives. Also, the systems do
not unnecessarily extract from already simple sentences: 27.9% of the inputs
for the full system were unchanged (e.g., Brussels lies in the central plateaus of
Belgium.).

The outputs from all systems were substantially shorter than the input sen-
tences, which were 23.5 words long on average (not including punctuation). HT
outputs were 12.4 words long on average, while outputs from the full system
were 13.4 words long on average.13

The manual evaluation showed that our system extracts sentences that are,
on average, more fluent and correct than those from HT. The mean fluency
rating for the full system was 4.75 compared to 3.53 for HT, a difference which
is statistically significant (t-test, p < 0.001). The mean correctness rating for the
full system was 4.67 compared to 3.75 for HT (p < 0.001).

12 We used 2 disjoint sets of sentences so the rater would not compare extractions for
the same sentence. We included 100 for the full system rather than 50 in order to
get accurate estimates for main clause baseline.

13 The sentence length values assume the sentence splitting by the Stanford Parser
works perfectly. In practice, we observed very few mistakes, mostly on abbreviations
ending in periods.



Input HT MC-only Full

Number of sentences extracted 2952 2952 2952 4820

Sentences per input 1.00 1.00 1.00 1.63

Sentence length 23.5 12.4 15.4 13.4

Input word coverage (%) 100.0 61.4 69.1 87.9

Inputs unchanged (%) 100.0 33.8 27.9 27.9

Fluency – 3.53 4.72 4.75

Correctness – 3.75 4.71 4.67

Rated 5 for both Fluency and Correctness (%) – 44.0 78.7 75.0
Table 1. Various statistics comparing the full system to the baselines and the unmod-
ified input sentences. All statistics are averaged across input sentences.

The full system appears to provide better coverage of the information in the
input. 87.9% of input words appeared in at least one output from the full system,
compared to 61.4% for HT and 69.1% for the main clause baseline.

In an informal analysis of the errors made by the systems, we observed that
the HT baseline is often overly aggressive when compressing sentences: it fre-
quently drops key function words and informative modifiers. For example, from
Ex 1, it produces the ungrammatical sentence Prime Minister Vladimir V. Putin
cut short a trip returning oversee the federal response, and the grammatical but
terse sentence Mr. Putin built his reputation. In contrast, the mistakes from the
MC-only baseline and the full system were mostly the result of parser errors.

7 Related Work on Text Simplification

Numerous approaches to text compression and simplification have been pro-
posed; see [6, 5] for reviews of various techniques. One particularly closely re-
lated method is discussed in [3]. That method extracts simple sentences from
each verb in the syntactic dependency trees of complex sentences. However, the
authors do not provide code or evaluate their system on realistic texts, so it is
unclear how robust and effective their approach is (in a small evaluation with
one text, 55% of the simplifications extracted by their system were acceptable).

8 Conclusion

In this paper, we presented an algorithm for extracting simplified declarative
sentences from syntactially complex sentences. We motivated our extraction ap-
proach by identifying semantic and pragmatic issues that are relevant for QG.
We evaluated our approach and showed that it is more suitable for extraction of
well-formed entailments than a standard text compression baseline.

Our system can be integrated into existing QG frameworks. While we leave
formal, extrinsic evaluations within a QG system to future work, we end by re-
porting that we have incorporated our approach with the QG system described
by [8, 9]. The integrated QG system successfully simplifies sentences and trans-
forms them into questions. For example, from Ex. 1 in the introduction, it pro-
duces concise questions such as the following:



(11) What did Prime Minister Vladimir V. Putin return to Moscow to oversee?
(12) Who cut short a trip to Siberia?
(13) Who was the country’s paramount leader?
(14) Who built his reputation in part on his success at suppressing terrorism?
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