A family of schemes for multiplying 3×3 matrices with 23 coefficient multiplications

Marijn Heule (UT Austin) · Manuel Kauers (JKU Linz) · Martina Seidl (JKU Linz)

Let R be a ring and S be a subring of the centralizer of R. Let $x_1, \ldots, x_{17} \in S$ be arbitrary, set $x_{i,j} = x_i x_j + 1$ for $i, j = 1, \ldots, 17$ and

$$p_{1} = x_{2,3} + x_{3}$$

$$p_{2} = x_{7} x_{5,6} + x_{5}$$

$$p_{3} = x_{4} x_{2,3} + x_{2}$$

$$p_{4} = x_{14} x_{12,13} + x_{12}$$

$$p_{5} = x_{16} x_{10,15} + x_{10}$$

$$p_{6} = x_{4} x_{2,3} + x_{3,4} + x_{2}$$

$$p_{7} = x_{8} x_{11} x_{5,6} + x_{8} x_{9} x_{5,6} - x_{6} x_{11}$$

$$p_{8} = x_{7} x_{8} x_{9} x_{5,6} + x_{7} x_{8} x_{11} x_{5,6} - x_{11} x_{6,7} + x_{5} x_{8} x_{9} + x_{5} x_{8} x_{11}.$$

Let

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathbb{R}^{3 \times 3}, \qquad B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \in \mathbb{R}^{3 \times 3}, \qquad \text{and} \qquad C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix} = AB.$$

Then the entries of C can be computed from the entries of A and B as follows:

$m_1 = ($	$a_{11} + x_1 a_{12} + a_{13}$				$) \times ($							b_{33}
$m_2 = ($	a ₁₁	$+ a_{21} -$	\mathfrak{a}_{22}		$) \times ($			b ₂₁	— t) ₂₃		
$m_3 = ($	a_{11}	$+ \alpha_{21}$		$+ a_{31}$	$+ a_{33} \times ($	b ₁₁	$+ b_{12} - b_{13}$					
$m_4 = ($	a_{11}	$+ \alpha_{21}$		$+ \alpha_{32}$	$) \times ($		b ₁₂	$- b_{21}$	+ t	23		
$m_5 = ($	a_{11}	$+ \alpha_{21}$			$) \times ($	b ₁₁	$-b_{13}$	$+ b_{21}$	_ t	23		
$m_6 = ($	a ₁₁		$- \alpha_{23}$		$) \times ($	b ₁₁						$-b_{33}$
$m_7 = ($	a ₁₁			$- a_{31} + a_{32}$	$) \times ($		$-b_{12}$					
$m_8 = ($	a ₁₁				$+ a_{33} \times ($		$b_{12} - b_{13}$					$+ b_{33}$
$m_9 = ($	a_{11}				$) \times ($		b ₁₃					$- b_{33}$
$m_{10} = ($	$a_{12} + a_{13}$	+	$a_{22} + a_{23}$	$+ \alpha_{32}$	$) \times ($			b ₂₁	$+ b_{22} - b_{23}$	9 23		
$m_{11} = ($	$a_{12} + a_{13}$		$+ a_{23}$		$) \times ($			b_{21}	$+ b_{22} - b_{23}$) ₂₃	$- b_{32}$	
$m_{12} = ($	$a_{12} + a_{13}$				$-\mathfrak{a}_{33})\times($						b_{32}	,
$m_{13} = ($	a_{12}				$) \times ($				$x_{3,4} b_{22} - p_6 b$)23	$-x_{3,4} b_{32}$	
$m_{14} = ($	a_{12}				$) \times ($				$x_3 b_{22} - p_1 b_{12}$)23	$-x_3 b_{32}$	$+ p_1 x_1 b_{33}$
$m_{15} = ($	a_{13}		$+ a_{23}$		$) \times ($			$- b_{21}$	$-b_{22} + b_{33}$	$b_{23} + b_3$	$+ b_{32}$	$- b_{33}$
$m_{16} = ($		$-p_2 a_{21} + p_2 x_9$	$a_{22} - p_2 a_{23} -$	$-x_{6,7} a_{31} + p_8 a_{32}$	$-\mathbf{x}_{6,7} \mathbf{a}_{33}) \times ($	b ₁₁						
$m_{17} = ($		$x_{5,6} a_{21} - x_9 x_{5,6}$	$a_{22} + x_{5,6} a_{23}$	$+ x_6 a_{31} - p_7 a_{32}$	$+ \mathbf{x}_6 \mathbf{a}_{33}) \times ($	b ₁₁						
$m_{18} = ($			\mathfrak{a}_{22}	$+ x_8 a_{32}$	$) \times ($	x9 b11		$+ b_{21}$				
$m_{19} = ($			x _{15,16} a ₂₃		$+ \mathfrak{p}_5 \mathfrak{a}_{33}) \times ($	b ₁₁				$-b_3$	1	
$m_{20} = ($				\mathfrak{a}_{32}	$) \times ($	$x_{11} x_{13,14} b_{11}$	$+ p_4 b_{12}$	$-x_{13,14} b_{21}$	$+ p_4 b_{22}$			
$m_{21} = ($				$- \alpha_{32}$	$) \times ($	x ₁₁ x ₁₃ b ₁₁ -	$+x_{12,13}b_{12}$	$-x_{13}b_{21}$	$+ x_{12,13} b_{22}$			
$m_{22} = ($			x ₁₅ a ₂₃		$+ \chi_{10,15} \alpha_{33} \times ($	- b ₁₁				$+ b_3$	1	
$m_{23} = \hat{(}$					$a_{33}) \times ($	x ₁₇ b ₁₁	$-b_{12}+b_{13}$			$-x_{17} b_3$	$+ b_{32}$	$- b_{33}$

 $c_{11} = m_1 + m_6 + m_{11} - x_{2,3} \ m_{13} + p_3 \ m_{14} + m_{15} + x_{10,15} \ m_{19} + p_5 \ m_{22} \\ c_{12} = m_8 + m_9 + m_{12} + p_1 \ m_{13} - p_6 \ m_{14} + x_{15} \ x_{17} \ m_{19} + x_{17} \ x_{15,16} \ m_{22} + m_{23} \\ c_{13} = m_1 + m_9 + x_3 \ m_{13} - x_{3,4} \ m_{14} \\ c_{21} = x_6 \ m_{16} + x_{6,7} \ m_{17} + m_{18} - x_{10,15} \ m_{19} + x_8 \ x_{12,13} \ m_{20} + p_4 \ x_8 \ m_{21} - p_5 \ m_{22} \\ c_{21} = x_6 \ m_{16} + x_{6,7} \ m_{17} + m_{18} - x_{10,15} \ m_{19} + x_8 \ x_{12,13} \ m_{20} + p_4 \ x_8 \ m_{21} - p_5 \ m_{22} \\ c_{22} = m_2 + m_4 - m_8 - m_9 + m_{10} - m_{11} - m_{12} - x_{15} \ x_{17} \ m_{19} + x_{13} \ m_{20} + x_{13,14} \ m_{21} - x_{17} \ x_{15,16} \ m_{22} - m_{23}$

- It is easy (but tedious) to confirm the correctness of the above scheme by expanding all definitions and observing that we have $c_{i,j} = \sum_k \alpha_{i,k} b_{k,j} \text{ for all } i,j.$
- The scheme performs only 23 multiplications of two elements of R, one for each m_k (plus some additions and some multiplications of elements of S with elements of R).
- Other schemes with 23 multiplications are known since 1976 [5], but no scheme with only 22 multiplications is known. To beat Strassen [8], we would need a scheme with 21.
- There is no way to instantiate the parameters x_1, \ldots, x_{17} such that the scheme can be simplified to a scheme with only 22 multiplications in R.

- The polynomials in x_1, \ldots, x_{17} appearing in the scheme describe variety of dimension 17. In this sense, there is no redundancy among the parameters.
- Compared to the families of Johnson and McLoughlin [4], our scheme has more parameters, and it requires no assumption on the coefficient ring R.
- Our family is unrelated to the family of [4] and to other known schemes [5, 1, 6, 7] for multiplying 3×3 matrices with 23 coefficient multiplications.
- Our scheme was found by a combination of SAT solving, described in more detail in [2], and computer algebra methods, described in more detail in [3].

Some more schemes with 17 parameters, dozens with fewer parameters, and thousands

of new isolated solutions are available here:

References

[1] N. Courtois, G. V. Bard, and D. Hulme. A new general-purpose method to multiply

 3×3 matrices using only 23 multiplications. ArXiv 1108.2830, 2011.

二年 光二十

[2] M.J.H. Heule, M. Kauers, and M. Seidl. Local search for fast matrix multiplication. In *Proceedings of SAT'19*, 2019. to appear.

[3] M.J.H. Heule, M. Kauers, and M. Seidl. New ways to multiply 3×3 matrices ArXiv 1905.10192, 2019.

[4] R.W. Johnson and A.M. McLoughlin. Noncommutative bilinear algorithms for 3×3 matrix multiplication. *SIAM J. Comput.*, 15(2):595–603, 1986.

[5] J.D. Laderman. A noncommutative algorithm for multiplying 3×3 matrices using 23 multiplications. *Bulletin of the AMS*, 82(1):126–128, 1976.

[6] J. Oh, J. Kim, and B.-R. Moon. On the inequivalence of bilinear algorithms for 3×3 matrix multiplication. *Inform. Proc. Letters*, 113(17):640–645, 2013.

[7] A.V. Smirnov. The bilinear complexity and practical algorithms for matrix multiplication. *Comput. Math. and Math. Phys.*, 53(12):1781–1795, 2013.

[8] V. Strassen. Gaussian elimination is not optimal. *Numerische Mathematik*, 13(4):354–356, 1969.