From Cliques to Colorings and Back Again

Marijn J.H. Heule =
Carnegie Mellon University, United States

Anthony Karahalios &
Carnegie Mellon University, United States

Willem-Jan van Hoeve &
Carnegie Mellon University, United States

—— Abstract

We present an exact algorithm for graph coloring and maximum clique problems based on SAT

technology. It relies on four sub-algorithms that alternatingly compute cliques of larger size and
colorings with fewer colors. We show how these techniques can mutually help each other: larger
cliques facilitate finding smaller colorings, which in turn can boost finding larger cliques. We evaluate
our approach on the DIMACS graph coloring suite. For finding maximum cliques, we show that our
algorithm can improve the state-of-the-art MaxSAT-based solver IncMaxCLQ, and for the graph
coloring problem, we close two open instances, decrease two upper bounds, and increase one lower
bound.

2012 ACM Subject Classification Mathematics of computing — Discrete mathematics; Theory of
computation — Logic

Keywords and phrases Graph coloring, maximum clique, Boolean satisfiability

Funding Marijn J.H. Heule: Partially supported by NSF under grant CCF-2006363.

Anthony Karahalios: Partially supported by Office of Naval Research Grant No. N00014-21-1-2240
Willem-Jan van Hoeve: Partially supported by Office of Naval Research Grant No. N00014-21-1-2240
and National Science Foundation Award #1918102.

1 Introduction

Given a graph, the vertex coloring problem asks to label each vertex of the graph with a
color such that adjacent vertices have different labels, using the minimum number of colors
(the coloring number). A closely related problem is the mazimum clique problem, which asks
to find a subset of vertices that are pairwise adjacent, of maximum size (the clique number).
Both are NP-hard combinatorial optimization problems at the heart of practical applications
including scheduling, timetabling, and network analysis [11, 36].

Many different algorithms have been proposed to solve vertex coloring and maximum
clique problems in practice. One stream of research focuses on dedicated exact and heuristic
algorithms (e.g., Cliquer [19] and DSATUR [1]), while another stream uses generic meth-
odologies, such as integer programming and column generation (e.g., [7,17,18]), constraint
programming (e.g., [4,21]), or Boolean satisfiability (e.g., [6,13,32]). An important milestone
for these developments was the second DIMACS challenge on cliques, coloring, and satis-
fiability that was launched in 1993 [11]. To our knowledge, for the DIMACS graph coloring
challenge, several instances remain unsolved and in the past eight years only a few instances
were closed: wapOla in 2021 [26], 5-Fulllns 4 in 2021 [31], and 4-Fulllns_5 in 2014 [14, 38].
Our method solves these instances as well (and quickly). Similarly, only a few improved
bounds have been found that do not close instances: C2000.9 in 2021 [33] and DSJC250.1 in
2020 [20]. Before this, many instances were closed around 2012 [4,8,15,27-29, 35] and earlier.

In this work, we first revisit the performance of Boolean satisfiability (SAT) solvers on
graph coloring and maximum clique problems. The best known maximum clique solver
called IncMaxCLQ [13] is based on MaxSAT technology, which is able to close all but four

mailto:marijn@cmu.edu
https://orcid.org/0000-0002-1825-0097
mailto:akarahal@andrew.cmu.edu
https://orcid.org/0000-0001-9479-4080
mailto:vanhoeve@andrew.cmu.edu
https://orcid.org/0000-0002-0023-753X

From Cliques to Colorings and Back Again

input maximum clique minimum
graph coloring
coloring
T maximum

find initial clique: k-clique find smaller find larger clique find minimum
IncMaxCLQ [13] coloring: SAT-I clique: SAT-II coloring: SAT-III
~_
clique

Figure 1 Illustration of the CliColCom algorithm to find a maximum clique and a minimum
vertex coloring. The solver IncMaxCLQ is based on MaxSAT. The SAT-I encoding uses a given
clique to quickly find colorings. The SAT-II encoding uses these colorings to find a larger clique.
Once the maximum clique is found, encoding SAT-III is used to find the minimum coloring.

instances of the DIMACS Clique benchmark suite and find maximum cliques for all but eight
instances of the DIMACS Coloring benchmark suite. For graph coloring, the best known
solver is the branch-and-bound hybrid CP/SAT solver ge-cdel [6]. We show that a direct
encoding coupled with either the local search SAT solver DDFW [9] or CaDiCalL [3] provides
surprisingly strong results. For the 69 DIMACS coloring instances where the coloring number
equals the clique number, combining IncMaxCLQ and one of DDFW or CaDiCalL solves 54
instances in under ten minutes.

We therefore concentrate on two cases - finding stronger colorings for instances where
we quickly have a maximum clique, and improving both cliques and colorings for instances
where we do not quickly find a maximum clique, which are often those where the coloring
number does not equal the clique number. We propose an algorithm, named CliColCom,
(derived from ‘cliques, colorings, and communication’) that consists of four sub-algorithms
with an inner loop that alternates between finding cliques of larger size and colorings with
fewer colors (see Fig. 1). Specifically, we use cliques to define a symmetry-breaking predicate
based on a variable ordering for the coloring problem (using encoding SAT-I), similar to
ones used by Van Gelder [32] and Velev [34]. Conversely, we use colorings to formulate
the maximum clique problem (using encoding SAT-II), similar to the MaxSAT encoding
by Li [13]. We continue this alternating process until a maximum clique is found, which
serves as input to the final sub-algorithm that finds a minimum coloring (using encoding
SAT-III). This approach can be viewed as a new form of communication between SAT solvers.
While one way that SAT solvers communicate is through exchanging learned clauses like in
portfolio-based parallel SAT [5], we demonstrate how SAT solvers can also pass solutions
back and forth, using the other solver’s solution in its problem’s clauses.

We show that CliColCom can find larger cliques than IncMaxCLQ for two of the eight
DIMACS Coloring instances that IncMaxCLQ cannot solve, and for the vertex coloring
problem closes two open instances (wap02a, wap08a), improves one lower bound (r1000.1c),
and improves two upper bounds (wap03a, wap04a).

The rest of this paper is organized as follows. In Section 2 we provide formal definitions
and notation for graph coloring and maximum clique problems. Section 3 presents the details
of our algorithm. In Section 4 we provide an overview of the used tools. The experimental
evaluation is presented in Section 5, and we conclude in Section 6.

2 Graph Coloring and Maximum Clique Problems

We first recall the definitions of cliques and colorings [22]. Let G = (V, E) be an undirected
graph with vertex set V' and edge set E. A k-clique is a subset of k vertices that are pairwise

M.J.H. Heule, A. Karahalios, and W.-J. van Hoeve

adjacent. A mazimum clique of G is a clique in G of maximum size. The size of a maximum
clique is called the clique number of G.

An independent set is a subset of vertices that are pairwise non-adjacent. A k-coloring of
G is a partition of V into k independent sets Vi, Vs, ..., Vi. The independent sets represent
the color classes of the coloring. The coloring number of G is the size of a coloring that uses
the minimum number of colors.

The existence of a k-clique proves a lower bound of k£ on the clique number, and a
k-coloring proves an upper bound of k£ on the coloring number. To prove the dual bounds,
one must show that a k + 1-clique and k — 1-coloring do not exist. The existence of a k-clique
proves a lower bound of k for the coloring number. Both the vertex coloring and max clique
problems are NP-hard, so computational results of algorithms are of interest [12,16, 36].

3 CliColCom Algorithm

In this section we present an exact algorithm for graph coloring that also contains an exact
algorithm for the maximum clique problem. It consists of four sub-algorithms as shown in
Fig. 1. The algorithm for the maximum clique problem is obtained by omitting sub-problem
SAT-III. We next describe each of the sub-algorithms below.

3.1 IncMaxCLQ: Find an Initial Clique

The input to the first sub-algorithm is a graph G = (V, E'). To obtain an initial clique, we
run an exact MaxSAT solver called IncMaxCLQ [13] with a time limit; we use one second in
our experiments. If IncMaxCLQ finds a maximum clique and proves optimality, then we
immediately go to step SAT-III using this maximum clique. Otherwise the clique returned
by IncMaxCLQ will be used for the SAT-I encoding.

3.2 SAT-I: Find a Coloring

The next sub-algorithm called SAT-I takes as input a graph G = (V, E), a k-clique C, and
an upper bound b > k. Its purpose is to find a coloring of good quality. When we first enter
this sub-algorithm, we determine b by running the DSATUR graph coloring heuristic. In
subsequent calls, b will be the best known coloring number.

The SAT-I encoding is optimized for local search solvers and asks for the existence of
a b-coloring of G. It has two sets of constraints: 1) each vertex has at least one color; and
2) adjacent vertices are colored differently. The direct encoding uses color variables x, ;
which denote that vertex v € V has color i € {1,...,b}. The first constraint consists simply
of a single clause of b literals per vertex:

(Tp1 V- V) forveV.

Note that this only enforces that there is at least one color per vertex instead of exactly one
color per vertex. The latter would include clauses of the form (%, ; V@, ;) for 1 <i < j <b.
These clauses however are known to be “blocked” and top-tier SAT solvers eliminate them [10].

The second constraint uses the following clauses:

(Tuyi V Tyy) for (u,v) € Ejie{1,...,b}.

To break the color symmetry, we add unit clauses that assign a different color to each
vertex in the given clique C, which is a common practice [32].

From Cliques to Colorings and Back Again

The encoding is used as follows. We start with bound b — 1 and run a local search solver
for a limited time (or number of flips). If no coloring is found within the limit, we report
the previously found b-coloring. Otherwise, we decrease b by one unit and repeat. We thus
return the best coloring we can find within a limited time. Note that if the encoding for
b = |C| is satisfiable, then we have found the coloring number of G.

3.3 SAT-Ill: Find a Larger Clique

The third sub-algorithm uses the fact that a vertex coloring is a partition of the graph into
independent sets. The coloring from SAT-I is used to define these independent sets. For a
graph G = (V, E) and a p-partition {V,...,V,} of V into independent sets, the encoding
SAT-II asks whether there exists a clique of size ¢, where ¢ < p.

This encoding uses clique variables v; 5, which denote that the s-th vertex in V; is part of
the clique. Apart from the clique variables, the encoding uses relaxation variables r; denoting
that no vertex from partition V; is used in the clique. The clauses have the following form:

(re Vo V-V y,) fori e {1,...,p}.

Additionally we have constraints between partitions enforcing that two vertices from
different partitions cannot be in a clique if there is no edge between them in the graph:

(Tis VU) for 1 <i<j<pse{l... |Vihte{l,...,|V;|},(vis,vj) ¢ E.

We could have included similar clauses for pairs of vertices within a partition. However,
these clauses are blocked as well and top-tier solvers would remove them.

Finally, we have a constraint stating that at most k£ = p — ¢ of the relaxation variables
can be assigned to true. We use the sequential counter encoding proposed by Sinz to enforce
the ‘at most p — ¢’ constraint [25]. This encoding introduces O(pk) auxiliary variables and
O(pk) additional clauses.

The sub-algorithm starts with ¢ = |C| + 1 where C is the largest clique found so far by
either IncMaxCLQ or SAT-IT itself. We solve the encoding with an exact CDCL solver (see
Section 4). If the formula is unsatisfiable, then the largest clique has size ¢ — 1. Otherwise, we
have found a clique C’ of size ¢ and continue by increasing the bound ¢ += 1 and repeating
this sub-algorithm. If the SAT-IT encoding cannot be solved within a certain time limit, we
return to sub-algorithm SAT-I to find a smaller vertex coloring, using the improved clique
C’. Due the time limits imposed on SAT-I and SAT-II, we could in theory repeatedly solve
them with the same clique and the same coloring. For that reason, we increase the time limit
for SAT-II with a multiplicative factor when the coloring and the clique have not changed,
so that sub-algorithm SAT-II becomes exact. Therefore, SAT-II will eventually return a
maximum clique, unless a global time limit on the overall algorithm is exceeded.

3.4 SAT-IllI: Find an Optimal Coloring

The final sub-algorithm uses encoding SAT-III, which generalizes SAT-I and is optimized for
CDCL solvers. The sub-algorithm takes as input a graph G = (V, E), a k-clique C, and a
lower bound b. The first part of the encoding is identical to the SAT-I encoding with G, C,
and b as input.

We additionally add clauses to break color symmetries. To this end, we first construct a
vertex ordering O, by starting with the vertices in C' in arbitrary order. We then iteratively
extend the ordering by adding the vertex with the most neighbors in O, breaking ties by

M.J.H. Heule, A. Karahalios, and W.-J. van Hoeve

highest degree. We break the color symmetries for the vertices from k + 1 to |O] in the
ordering. Let v; denote the i-th vertex in ordering O. The encoding enforces that if none of
the first ¢ — 1 vertices in O uses the color ¢, then vertex v; must have a color less or equal to
c. The clauses have the following form:

(Tpy,e VTyy eV VTy, | cVTya) forde{c+1,...,b},ie{k+1,...,]0|}

The sub-algorithm uses this encoding as follows: starting with b = k, we solve the formula
using an exact CDCL solver. If the formula is found to be unsatisfiable, meaning that G
requires more than b colors, the bound is increased b += 1 and we repeat. This is continued
until the formula is satisfiable. The final bound equals the coloring number of G.

3.5 Example Run

We illustrate the flow between the sub-algorithms using graph r1000.1c. This instance has
clique number 92, while the best known lower and upper bound on the coloring number are
96 and 98, respectively [4]. We first run IncMaxCLQ, which returns a clique of size 82 within
one second (which it cannot improve within reasonable time).

We next run the SAT-I encoding with bound b = 110 (from the coloring found by
DSATUR). The local search solver UBCSAT with the WalkSAT algorithm lowers the upper
bound one by one until it reaches b = 102 and times out (i.e., reaching a million flips without
finding a coloring). Each step takes a few seconds. The 103-coloring is used in the SAT-II
encoding. We start with ¢ = 83 (the size of the clique + 1). The solver CaDiCaL finds a
satisfying assignment in a fraction of a second. This also holds for the bounds ¢ € {84, ...,92}.
The bound ¢ = 93 times out (reaches a million conflicts).

We return to SAT-I using the 92-clique. This helps the local search solver and now it can
find a coloring for b = 102 and can even lower it to 98 before timing out on b = 97. The
98-coloring is used in SAT-II. This time CaDiCaL can prove optimality of ¢ = 92 (the ¢ = 93
instance is unsatisfiable). Now that the maximum clique has been determined, we switch
to SAT-III to determine the coloring number. The clique of size 92 is extended to a vertex
ordering. The solver CaDiCalL is used to solve the instances with bounds b € {92,...,97}.
The bounds up to b = 96 are unsatisfiable, while b = 97 times out (24 hours). Therefore, we
report an improved lower bound of 97 on the coloring number for this open instance.

4 SAT Solving Paradigms

The best SAT-solving paradigm differs for each of the encodings proposed in the prior
section. Because some sub-algorithms work by solving a sequence of SAT instances, the use
of MaxSAT solvers could be also be explored. Below we will discuss the ones used during
our experiments.

Conflict-Driven Clause Learning. The most effective and well-known exact SAT-solving
paradigm is conflict-driven clause learning (CDCL) [24]. In the context of maximum clique
and graph coloring, CDCL is mostly effective for unsatisfiability results. In particular, we use
this paradigm to increase the lower bound results after the maximum clique was determined.
Although the default heuristics in CDCL solvers are in general effective on a broad range
of formulas, we observed that using negative branching instead of phase saving improves
performance on graph coloring instances. We will use the CDCL solver CaDiCaL during the
experiments and turn on negative branching (options -forcephase=1 -phase=0).

Local Search. An almost obscure, yet quite effective local search solving paradigm is called
Divide and Distribute Fixed Weights (DDFW) [9]. In DDFW, all clauses have weights. The

From Cliques to Colorings and Back Again

103 |- |
= —— CDCL SAT-IT w/ partition #
] —o— CDCL SAT-II w/o partition X P
£ 101 | [~ meMaxcLq 7% |
E —a— Cliquer ¢
E maximum clique number ‘

QEXRRRERS ©0000006€ :ﬁ?)g{ﬁ%ﬂ%\%ﬂf%@é\‘%é’ N
40 50 60 70 80 90
bound

Figure 2 Performance of different maximum clique techniques to compute a large clique of
r1000.1c. The method SAT-II uses the partition obtained from a 98-coloring obtained by SAT-I.

algorithm flips variable assignments if the weighted sum of the satisfied clauses improves. If
no such variable exists (i.e., a local minimum is reached), then a random falsified clause is
selected which is increased in weight by pulling weight of its neighboring satisfiable clauses.
This is repeated until a satisfying assignment is found. We use the implementation of DDFW
in UBCSAT [30] for the experiments with SAT-IIT.

A well-known local search algorithm is WalkSAT [23]. Given a random assignment, the
algorithm picks a random falsified clause and flips one of its literals to satisfy the clause. This
is repeated until a satisfying assignment is found. WalkSAT is much more greedy compared
to DDFW. This is helpful to reduce upper bounds in SAT-I. However, it is not effective to
find a coloring for graphs when the coloring number equals the clique number. We use the
implementation of WalkSAT in UBCSAT.

5 Experiments

We tested the performance of our method on solving both the maximum clique and vertex
coloring problems on the 137 DIMACS Graph Coloring instances. This benchmark consists
of a variety of instances with different sizes and densities - some random graphs and
some from real world problems. We chose this sets of instances even for maximum clique
performance because the DIMACS Maximum Clique and BHOSLIB [37] instances are almost
all solved. The source code and log files of the experiments are available in the repository
https://github.com/marijnheule/clicolcom. We will note when we run experiments on
one of two different CPUs: Intel Xeon 2.33GHz CPU or AMD EPYC 7742 CPU |[2].

5.1 Maximum Clique Results

As a baseline, we first ran IncMaxCLQ which solved 129 instances to optimality within one
hour on the Intel Xeon 2.33GHz CPU. IncMaxCLQ failed to produce and prove a maximum
clique for only eight graphs: C2000.5, C2000.9, C4000.5, latin_ square_ 10, DSJC500.9,
DSJC1000.9, DSJR500.1¢, and r1000.1c. For the last two instances, the largest found cliques
were of size 78 and 82, respectively. Our method is able to compute the maximum clique of
them in a few minutes: 83 and 92, respectively. We are not aware of any other tool that can
compute (and prove optimality) of the maximum cliques for these two instances.

Figure 2 illustrates the effectiveness of the SAT-II encoding. It shows for the open instance
r1000.1c the runtimes of various techniques to find a large clique. We only find the maximum
clique of size 92 with the SAT-II encoding that uses a 98-coloring obtained via SAT-I using

https://github.com/marijnheule/clicolcom

M.J.H. Heule, A. Karahalios, and W.-J. van Hoeve

T

= 90

2

kD 80 -
Q

g 70 —— CliColCom |
z —— gc-cdcl

gGO\ L L L]
=i 10° 10! 102 103

runtime (s)

Figure 3 Performance profile of the number of DIMACS graph coloring instances gc-cdcl and
CliColCom can prove to optimality over time.

local search. The instance with b = 93 is unsatisfiable, hence the larger runtime. IncMaxCLQ
can compute a clique of size 82, while Cliquer gets only to 58. Without a coloring (i.e., each
vertex is an independent set), SAT-II performance poorly and finds cliques up until size 74.

5.2 Comparison with State-of-the-Art Graph Coloring

We run these experiments on an Intel Xeon 2.33GHz CPU. We use gc-cdcl as a baseline
because it is the SAT-based solver that performs best on this problem domain.!

We ran gce-cdcl for 1 hour and it proved the optimal solution for 83 instances. We compare
this to our method in Fig. 3, which shows that we can solve 88 instances in 1 hour. The
differences are as follows: gc-cdcl solves myciel7, queens9_ 9, and qg.order60 and CliColCom
does not. CliColCom solves 4-Fulllns_ 5, 1-Insertions_ 4, DSJR500.1c, 1e450_15¢, le450 15d,
wap0la, wap02a, wap06a and gc-cdcl does not.

We observed strong performance of our setup on the wap0* graphs. We therefore ran each
instance on a cluster of AMD EPYC 7742 CPUs with 128 seeds. The results are reported in
Table 1. We improve the upper bound on four graphs, which includes closing two instances.
The DDFW algorithm was crucial to obtain these results. The wap01 instance was recently
closed with a method that requires significantly more time [26].

Table 1 DDFW runtimes in seconds for wap0* instances using 128 seeds (no timeout). The
second and third column show the lower and upper bounds. The bold bounds are improvements.

instance LB UB min mean max

wapOla 41 41 291.19 736.01 1855.56
wap02a 40 40 195.45 382.85 883.02
wap03a 40 43 9612.49 15865.50 21963.13
wap0O4a 40 41 29757.11 65609.40 91501.84
wap0ba 50 50 1.37 1.59 2.11
wap06a 40 40 9.21 26.44 92.54
wap07a 40 41 211.26 632.63 2207.33
wap08a 40 40 1016.65 6742.98 12096.61

!The paper “An Incremental SAT-Based Approach to the Graph Colouring Problem” published in
CP 2019 claims strong computational results. Although these are reported in an aggregated form, they
imply that several challenging open instances would have been solved. The GitHub repository linked in
the paper was deleted. We contacted the authors, who were unfortunately unable to share the code or
reproduce the published results. We therefore omit a comparison with that work.

From Cliques to Colorings and Back Again

5.3 Robustness, Variations, and Discussion

Naturally, our algorithm is sensitive to variations in its design. Below we discuss some
extensions and variants to provide additional insights.

Robustness. Replacing the CDCL solver by any modern CDCL solver would hardly change
runtime. The use of negative branching in CDCL slightly improves performance and is
available in most SAT solvers. Increasing the timeout has little to no impact.

For the improved upper bounds of the wap graphs, we tried many local search solvers
and only the implementation of DDFW in UBCSAT seems to be able to obtain them. The
key aspects that impact the performance are: 1) fix only the clique for local search (full
symmetry breaking significantly hurts local search solvers); 2) use full symmetry breaking
for CDCL (otherwise unsatisfiable instances become impossible to solve); and 3) use the
communication (otherwise hard problems cannot be solved).

Multiple colorings for SAT-II. The presented SAT-IT encoding for finding a larger clique
uses one vertex coloring in its clauses. This encoding can be extended to use multiple colorings
by introducing corresponding sets of literals and clauses for each coloring. Taking DSJC250.9
as an example, we show that using multiple colorings can be beneficial to the runtime. We
ran experiments using CaDiCal. for SAT-II that used either 1, 2, or 5 74-colorings to solve
for a 43-clique. Using 40 trials for each number of colorings, the mean runtimes were 450,
62, and 202 respectively. This indicates that using two colorings may improve runtimes
compared to one coloring, but using five colorings can perform worse than two colorings.

Vertex ordering for SAT-III. Encoding SAT-III for finding a minimum coloring uses a
vertex ordering that begins with a maximum clique, assuming that starting with a maximum
clique is effective. Although useful in most cases, we observed that this heuristic does
not always result in the most effective ordering. For example, consider the graph coloring
instances queen9_9, i.e., the n-queens instance of size 9. Its largest clique has size 9 (any
row, column, or diagonal), while its coloring number is 10. Finding a clique of size 9 and a
coloring of size 10 is easy. However, showing the absence of a 9-coloring (unsatisfiable, thus
CaDiCaL was used) is hard: solving the SAT-III encoding starting with a border 9-clique
(e.g., the top row) requires roughly 3 hours solving. Starting with a diagonal 9-clique reduces
the runtime to 400 seconds. But, if one starts with a non-optimal 5-clique in the center (the
+ shaped clique that cannot be extended to a 6-clique), the runtime reduces to 100 seconds.

Heavy cliques for SAT-III. IncMaxCLQ is very effective in finding a maximum clique.
However, we observed that when using a clique to generate a vertex ordering for SAT-III,
performance of SAT-IIT may be enhanced by using the heaviest maximum clique, i.e., the
maximum clique with the maximum sum of the vertex degrees. For example, for the queen
instances the heaviest maximum clique is a diagonal, which we find to generate an ordering
leading to better runtime when solving SAT-IIT compared to using a border row or column.
Enhancing IncMaxCLQ to produce such a clique would further strengthen the results.

6 Conclusion

We were able to achieve state-of-the-art performance on the well-known DIMACS Coloring
benchmark suite by combining off-the-shelf (Max)SAT-solving tools and a combination of
three SAT encodings. Our algorithm, called CliColCom, uses the encodings to alternate
between finding larger cliques and smaller colorings until a maximum clique and minimum
coloring is found. We closed two open instances of the DIMACS benchmark suite and
improved bounds on three others.

M.J.H. Heule, A. Karahalios, and W.-J. van Hoeve

—— References

1

10

11

12

13

14

15

16

17

18

19

D. Brélaz. New methods to color the vertices of a graph. Communications of the ACM,
22(4):251-256, 1979.

Shawn T. Brown, Paola Buitrago, Edward Hanna, Sergiu Sanielevici, Robin Scibek, and
Nicholas A. Nystrom. Bridges-2: A Platform for Rapidly-Evolving and Data Intensive Research,
pages 1-4. Association for Computing Machinery, New York, NY, USA, 2021. URL: https:
//doi.org/10.1145/3437359.3465593.

Armin Biere Katalin Fazekas Mathias Fleury and Maximilian Heisinger. Cadical, kissat,
paracooba, plingeling and treengeling entering the sat competition 2020. SAT COMPETITION,
2020:50, 2020.

Stefano Gualandi and Federico Malucelli. Exact solution of graph coloring problems via
constraint programming and column generation. INFORMS Journal on Computing, 24(1):81—
100, 2012.

Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Manysat: a parallel sat solver. Journal on
Satisfiability, Boolean Modeling and Computation, 6(4):245-262, 2010.

Emmanuel Hébrard and George Katsirelos. Constraint and satisfiability reasoning for graph
coloring. Journal of Artificial Intelligence Research, 69:33-65, 2020.

S. Held, W. Cook, and E. C. Sewell. Maximum-weight stable sets and safe lower bounds for
graph coloring. Mathematical Programming Computation, 4(4):363-381, 2012.

Stephan Held, William Cook, and Edward C Sewell. Safe lower bounds for graph coloring.
In International Conference on Integer Programming and Combinatorial Optimization, pages
261-273. Springer, 2011.

Abdelraouf Ishtaiwi, John Thornton, Abdul Sattar, and Duc Nghia Pham. Neighbourhood
clause weight redistribution in local search for sat. In Peter van Beek, editor, Principles
and Practice of Constraint Programming - CP 2005, pages 772-776, Berlin, Heidelberg, 2005.
Springer.

Matti Jarvisalo, Armin Biere, and Marijn Heule. Blocked clause elimination. In Javier Esparza
and Rupak Majumdar, editors, Tools and Algorithms for the Construction and Analysis of
Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,
2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages 129-144. Springer,
2010.

David S Johnson and Michael A Trick. Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, October 11-13, 1993, volume 26. American Mathematical Soc.,
1996.

Richard M Karp. Reducibility among combinatorial problems. In Complezity of computer
computations, pages 85—103. Springer, 1972.

Chu-Min Li, Zhiwen Fang, and Ke Xu. Combining maxsat reasoning and incremental upper
bound for the maximum clique problem. In 2018 IEEFE 25th International Conference on
Tools with Artificial Intelligence, pages 939-946. IEEE, 2013.

Shadi Mahmoudi and Shahriar Lotfi. Modified cuckoo optimization algorithm (mcoa) to solve
graph coloring problem. Applied soft computing, 33:48-64, 2015.

Enrico Malaguti, Michele Monaci, and Paolo Toth. An exact approach for the vertex coloring
problem. Discrete Optimization, 8(2):174-190, 2011.

Enrico Malaguti and Paolo Toth. A survey on vertex coloring problems. International
transactions in operational research, 17(1):1-34, 2010.

A. Mehrotra and M. A. Trick. A Column Generation Approach for Graph Coloring. INFORMS
Journal on Computing, 8(4):344-354, 1996.

I. Méndez-Diaz and P. Zabala. A Branch-and-Cut algorithm for graph coloring. Discrete
Applied Mathematics, 154:826-847, 2006.

Patric RJ Ostergard. A fast algorithm for the maximum clique problem. Discrete Applied
Mathematics, 120(1-3):197-207, 2002.

https://doi.org/10.1145/3437359.3465593
https://doi.org/10.1145/3437359.3465593

10

From Cliques to Colorings and Back Again

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Daniel Porumbel. Projective cutting-planes. STAM Journal on Optimization, 30(1):1007-1032,
2020.

Jean-Charles Régin. Using Constraint Programming to Solve the Maximum Clique Problem.
In Proceedings of CP, pages 634-648, 2003.

Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for improving local search. In
Barbara Hayes-Roth and Richard E. Korf, editors, Proceedings of the 12th National Conference
on Artificial Intelligence, Seattle, WA, USA, July 31 - August 4, 1994, Volume 1, pages
337-343. AAAI Press / The MIT Press, 1994.

Joao P. Marques Silva, Inés Lynce, and Sharad Malik. Conflict-driven clause learning SAT
solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages
131-153. IOS Press, 2009.

Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality constraints. In
International conference on principles and practice of constraint programming, pages 827-831.
Springer, 2005.

Wen Sun, Jin-Kao Hao, Yuhao Zang, and Xiangjing Lai. A solution-driven multilevel approach
for graph coloring. Applied Soft Computing, 104:107174, 2021.

Olawale Titiloye and Alan Crispin. Graph coloring with a distributed hybrid quantum
annealing algorithm. In KES International Symposium on Agent and Multi-Agent Systems:
Technologies and Applications, pages 553-562. Springer, 2011.

Olawale Titiloye and Alan Crispin. Quantum annealing of the graph coloring problem. Discrete
Optimization, 8(2):376-384, 2011.

Olawale Titiloye and Alan Crispin. Parameter tuning patterns for random graph coloring with
quantum annealing. PloS one, 7(11):e50060, 2012.

Dave A. D. Tompkins and Holger H. Hoos. UBCSAT: an implementation and experimentation
environment for SLS algorithms for SAT and MAX-SAT. In Holger H. Hoos and David G.
Mitchell, editors, Theory and Applications of Satisfiability Testing, 7th International Confer-
ence, SAT 2004, Vancouver, BC, Canada, May 10-13, 2004, Revised Selected Papers, volume
3542 of Lecture Notes in Computer Science, pages 306-320. Springer, 2004.

R. P. van der Hulst. A branch-price-and-cut algorithm for graph coloring. Master’s thesis,
University of Twente, 2021.

Allen Van Gelder. Another look at graph coloring via propositional satisfiability. Discrete
Applied Mathematics, 156(2):230-243, 2008.

Willem-Jan van Hoeve. Graph coloring with decision diagrams. Mathematical Programming,
pages 1-44, 2021.

Miroslav N Velev. Exploiting hierarchy and structure to efficiently solve graph coloring as
sat. In 2007 IEEE/ACM International Conference on Computer-Aided Design, pages 135-142.
IEEE, 2007.

Qinghua Wu and Jin-Kao Hao. Coloring large graphs based on independent set extraction.
Computers € Operations Research, 39(2):283-290, 2012.

Qinghua Wu and Jin-Kao Hao. A review on algorithms for maximum clique problems. European
Journal of Operational Research, 242(3):693-709, 2015.

Ke Xu. Bhoslib: Benchmarks with hidden optimum solutions for graph problems (max-
imum clique, maximum independent set, minimum vertex cover and vertex coloring)-hiding
exact solutions in random graphs. web site. Web site, hitp://www. nlsde. buaa. edu. en/”
kezu/benchmarks/graphbenchmarks. htm, 2004.

Zhaoyang Zhou, Chu-Min Li, Chong Huang, and Ruchu Xu. An exact algorithm with learning
for the graph coloring problem. Computers € operations research, 51:282-301, 2014.

	1 Introduction
	2 Graph Coloring and Maximum Clique Problems
	3 CliColCom Algorithm
	3.1 IncMaxCLQ: Find an Initial Clique
	3.2 SAT-I: Find a Coloring
	3.3 SAT-II: Find a Larger Clique
	3.4 SAT-III: Find an Optimal Coloring
	3.5 Example Run

	4 SAT Solving Paradigms
	5 Experiments
	5.1 Maximum Clique Results
	5.2 Comparison with State-of-the-Art Graph Coloring
	5.3 Robustness, Variations, and Discussion

	6 Conclusion

