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Abstract. Symmetry breaking is a crucial technique to solve many graph problems. However, cur-
rent state-of-the-art techniques break graph symmetries only partially, causing search algorithms
to unnecessarily explore many isomorphic parts of the search space. We study properties of perfect
symmetry breaking for graph problems. One promising and surprising result on small-sized graphs
—up to order five— is that perfect symmetry breaking can be achieved using a compact proposi-
tional formula in which each literal occurs at most twice. At least for small graphs, perfect symmetry
breaking can be expressed more compactly than the existing (partial) symmetry-breaking methods.
We present several techniques to compute and analyze perfect symmetry-breaking formulas.
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1. Introduction

Over the last two decades, the speed and capacity of satisfiability (SAT) solvers has improved by
several orders of magnitude, enabling solutions to some long-standing open problems such as Erdős’
discrepancy problem [1] and the Boolean Pythagorean triples problem [2]. However, a main weakness
of SAT solvers in some applications is their inability to capitalize on symmetries, that is, avoiding
needless exploration of isomorphic sub-problems. Several methods have been proposed to counter this
weakness, in particular by adding symmetry-breaking predicates [3]. Existing methods are not strong
enough to make the SAT approach successful for long-standing open problems in graph theory, such
as computing Ramsey numbers [4]. We present a novel approach to address symmetries in graph
problems in order to make advances towards solving some of these open problems.

For hard combinatorial problems with few symmetries, such as Van der Waerden numbers [5, 6]
and Erdős’ discrepancy problem, general purpose methods, in particular SAT solvers, are the current
state-of-the art. However, hard combinatorial problems with lots of symmetries, such as Ramsey
numbers, are still best solved using dedicated approaches. Although SAT has been applied to Ramsey
numbers [7, 8], the most impressive result, computing R(4, 5) [9], is two decades old and has not been
reproduced with general purpose methods.

This contrast can be explained by a gap in ability to fully break all symmetries. When there
are just a few symmetries, it is relatively easy to break them using a small predicate, so solvers can
avoid isomorphic parts of the search space. However, when there are many symmetries, such as when
permuting all the vertices of a graph, then there is no sub-exponential method that can fully break
them yet.

The current state-of-the-art symmetry-breaking methods for SAT [10] or specifically for graphs [11]
are unable to break all symmetries for graph problems of order five and larger. We will show that
the average number of active graphs per isomorphism class —after symmetry breaking, with both
methods— is quadratic in the size of the graph. Any perfect symmetry-breaking technique would
ensure that only one graph is active per isomorphism class. Reducing the average number of active
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graphs per isomorphism class clearly improves performance [11]. A method that would perfectly break
graph symmetries is expected to boost the capabilities of general purpose solvers significantly.

The question arises: how expensive is it to perfectly break all graph symmetries? We decided to
use the number of clauses required to achieve perfect symmetry breaking as the measurement. The
main motivation for this focus is that more high-level measurements could be expressed using clauses,
while this does not hold for the other way around. Consequently, there may exist polynomial-sized
perfect symmetry breaking for graph problems using clauses, while high-level representations might
be exponential in size.

We present several approaches to answering that question. One surprising result is that breaking
all graph symmetries may be possible with compact predicates. For example, up to order five, the
largest size for which we could compute optimal results, literals occur at most twice in the small-
est predicates. Moreover, our compact and perfect predicates are smaller than the most compact
representation of existing (partially) symmetry-breaking methods, at least for small graphs.

Our study of perfect symmetry breaking for graph problems is based on the concept of isolators:
predicates, over Boolean variables representing potential edges of graphs of a given order, which rule
out only redundant graphs. We developed algorithms to compute isolators that are perfect or optimal
(perfect and minimal). We show that interesting patterns can be observed in the graphs that are
admitted by optimal isolators.

2. Background and Related Work

We denote by Gk the set of all labeled, undirected graphs of order k. Graphs G,H ∈ Gk are in the
same isomorphism class if G can be obtained by relabeling the vertices of H.

Example 1. Consider the set of all labeled, undirected graphs of order three using the vertex labels a,
b, and c. We will represent graphs as a set of edges where each edge is written as the two vertices it
connects. G3 is:

{{},{ab},{ac},{bc},{ab, ac},{ab, bc},{ac, bc},{ab, ac, bc}}
Graphs {ab, ac} and {ac, bc} are in the same isomorphism class, because {ab, ac} can be obtained from
{ac, bc} by swapping the vertex labels a and c.

A graph existence problem of order k asks whether there exists an unlabeled, undirected graph of
order k with a given property. Since the graphs are unlabeled, only one graph from each isomorphism
class needs to be considered. The Ramsey numbers are famous graph existence problems. Graph
existence problems have been thoroughly studied, as can be observed in a survey pointing to over 600
papers on the subject [12].

The state-of-the-art symmetry-breaking tool for SAT problems (not restricted to graph problems)
is shatter [10]. For graph existence problems, the symmetries —detected on the clausal level—
correspond to permutations of the vertices. Given a graph existence problem of order k, shatter adds
symmetry-breaking predicates that sort the vertices. The addition of the predicates can reduce the
SAT solving time by orders of magnitude.

More specifically, let the vertices be named v1, . . . , vk. Given a graph G, Ai,j denotes the ith

row of the adjacency matrix of G without columns i and j. Symmetry-breaking predicate p�(vi, vj)
enforces a lexicographic order between Ai,j and Aj,i, denoted by Ai,j � Aj,i. We describe graphs using
edge variables: Boolean variables that express the presence of an edge. For a graph with k vertices,
we have (k2 − k)/2 edge variables, i.e., one variable for each possible edge. Predicate p�(vi, vj) can
be encoded with about 6k clauses using auxiliary (non-edge) variables. Using only the edge variables,
it costs about 2k clauses to express this constraint. Hence auxiliary variables can reduce the encoding
from exponential to linear in the number of vertices.

The symmetry-breaking clauses added by shatter to graph existence problems of order k corre-
spond to the constraint p�(v1, v2)∧p�(v2, v3)∧· · ·∧p�(vk−1, vk). We will call this symmetry-breaking
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technique the quad method as it adds O(k2) clauses. Codish et al. [11] made two observations regard-
ing the predicates p�(vi, vj) for graph existence problems: i) p�(vi, vj) is not transitive; and ii) it is
valid to add all predicates p�(vi, vj) with 1 ≤ i < j ≤ k to graph existence problems. We will refer to
this latter method as the cubic method as it adds O(k3) clauses.
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Figure 1. The redundancy ratios of the quad and cubic methods.

We define the redundancy ratio of a graph symmetry-breaking method as the ratio between
the number of assignments that satisfy the predicates and the number of isomorphism classes. One
can view the redundancy ratio as the average number of graphs per isomorphism class that are not
eliminated by a graph symmetry-breaking method. We call a graph symmetry breaking perfect for
order k if the redundancy ratio is one for order k.

Figure 1 shows the redundancy ratios of the quad and cubic methods, which are only perfect up
to order four. The cubic method outperforms the quad method, but for both methods, the redundancy
ratio increases almost quadratically for higher orders within the experimental range: approximately
(k − 5)2 for quad and (k − 6)2 for cubic. Although their difference in redundancy ratio is modest,
the cubic method is able to solve some graph existence problems that are too hard for the quad
method [11] to solve. Therefore, it is expected that a perfect graph symmetry-breaking technique
would boost performance on graph existence problems significantly.

A recent paper [13] presents a perfect symmetry-breaking approach based on so-called canonizing
sets. This approach realizes a redundancy ratio of one, but has several disadvantages. Most impor-
tantly, the number of clauses and variables required to express these symmetry-breaking predicates
grows exponentially in the size of the graph. For example, perfect symmetry-breaking for graphs of
order five via canonizing sets uses 225 clauses and 55 variables. In contrast, the method we propose in
this paper produces perfect symmetry breaking for graphs of order five using only 12 clauses and 10
variables. Due to the exponential growth, it is impossible to use this method for any graph existence
problems of order 11 and higher. Additionally, the canonizing sets method does not allow us to answer
the main question of this paper: how expensive is it to perfectly break all graph symmetries? Canon-
izing sets are only able to express a subset of the possible symmetry-breaking options. In particular,
our compact perfect symmetry-breaking predicates cannot be expressed using canonical sets.

3. Perfect Isolators and Canonical Forms

Consider propositional formulas over variables representing all possible edges between k vertices. We
say that a graph G ∈ Gk is admitted by such a formula F if there exists a satisfying assignment of F
in which each edge variable is assigned to true if and only if the edge occurs in G. An isolator of Gk,
written I, is such a formula that admits at least one graph in each isomorphism class of Gk. We write
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each edge’s variable and its positive literal in the same way as the edge itself. Negation of literals is
notated with an overline.

Example 2. Consider the isolator Iex := (ab ∨ ac) ∧ (ac ∨ bc) of G3 using the vertex labels a, b, and c.
Four full assignments satisfy Iex (using t for true and f for false):

ab = f , ac = f , bc = f ; ab = t, ac = f , bc = f ;

ab = t, ac = t, bc = f ; ab = t, ac = t, bc = t.

These assignments correspond to the following four graphs:

{}; {ab}; {ab, ac}; {ab, ac, bc}.
Observe that each graph occurs in a different isomorphism class as each graph has a different number
of edges.

Throughout this paper, we distinguish three special types of isolators. The trivial isolator equals
the empty formula and thus admits all graphs G ∈ Gk. A perfect isolator admits exactly one graph from
each isomorphism class. An optimal isolator is a perfect isolator with a minimal number of clauses.
Iex in Example 2, which is equivalent to P ′3 in Example 3, is an optimal isolator for G3. Notice that
a perfect isolator breaks all graph symmetries in graph existence problems, i.e. the reduction ratio is
one.

A canonical labeling C of Gk is a subset of Gk containing exactly one graph from each isomorphism
class. Given a canonical labeling C, a graph G ∈ C is the canonical form of all graphs occurring in
the isomorphism class of G. Several canonical labeling algorithms have been implemented, such as
nauty [14] and bliss [15]. For each perfect isolator I of Gk, there is an induced canonical labeling C,
containing the graphs that are admitted by I. As we will show below, it is also possible to convert a
canonical labeling into a perfect isolator.

Example 3. Consider the graphs of order three with vertex labels a, b, and c. There are four iso-
morphism classes of G3: graphs with zero edges, one edge, two edges, and three edges. There are two
different canonical labelings of G3 (modulo vertex renaming) which are shown below as C3 and C′3.

C3 := {{}, {ab}, {ac, bc}, {ab, ac, bc}}
C′3 := {{}, {ab}, {ab, ac}, {ab, ac, bc}}

For both canonical labelings there exists a perfect isolator consisting of two binary clauses with Boolean
variables ab, ac, and bc expressing that edges ab, ac, and bc are present.

P3 := (ac ∨ bc) ∧ (ac ∨ bc) // equals : ac↔ bc

P ′3 := (ab ∨ ac) ∧ (ac ∨ bc) // equals : bc→ ac→ ab

A canonical labeling can easily be converted into a perfect isolator, albeit one of exponential size.
Let L(G) denote the representation of a graph G as a set of literals: L(G) contains for each present
edge in G the corresponding positive literal, and for each absent edge the corresponding negative
literal. For example, take a graph G ∈ G4: if G = {ab, ad, bc, cd}, then L(G) = {ab, ac, ad, bc, bd, cd}.
Let C be a canonical labeling of Gk. A perfect isolator in disjunctive normal form (DNF) based on C
can be constructed as follows:

PDNF :=
∨
G∈C

(
∧
l ∈ L(G))

The size of any PDNF of Gk is exponential in k, because the number of isomorphism classes is
exponential in k. In order to use such isolators for SAT solving, a transformation into CNF is required.
We write PCNF for the Tseitin transformation [16] of PDNF. PCNF is larger than PDNF by a factor of
about k2.

The size of the isolator PCNF can be reduced significantly. There exist two tools that can simplify
propositional formulas: espresso [17] and bica [18]. Both tools can simplify a formula to its smallest
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CNF representation. We denote by Psimp the smallest formula in CNF that is logically equivalent to
PDNF. The sizes of different representations of perfect isolators based on nauty’s canonical labelings
are shown in Table 1. Computing the PDNF and PCNF is cheap, but computing Psimp with bica is
costly for larger graphs (seconds for k = 6, minutes for k = 7, and hours for k = 8).

Table 1. The size of perfect isolators in cubes (PDNF) or in clauses (PCNF and Psimp)
based on the nauty’s canonical labelings and formula simplifications by bica.

k 2 3 4 5 6 7 8

|PDNF| 2 4 11 34 156 1, 044 12, 346
|PCNF| 3 13 67 341 2, 341 21, 925 345, 689
|Psimp| 0 2 9 24 77 311 > 1, 839

We also simplified canonical labelings produced by bliss. The sizes of the resulting simplified
formulas were similar to those produced via nauty. However, bica is significantly slower in reducing
the bliss-based formulas. We tried to use espresso, but it is not powerful enough to minimize perfect
isolators of order six and larger.

Although the sizes of Psimp are minimal for a given canonical labeling, much smaller perfect
isolators may exist for other canonical labelings. An optimal isolator of Gk is the smallest Psimp

among all canonical labelings of Gk.

4. Optimal Isolators via Satisfiability Solving

Perfect isolators of order four and up are hard to compute. As a potential solution, we propose to
translate the optimal isolator problem into Boolean satisfiability (SAT). Let Fk,m be the SAT problem
encoding that there exists a perfect isolator of order k consisting of m clauses. We will refer to such
clauses as isolator clauses. To find an optimal isolator for a given k, we need to find an m such that
Fk,m is satisfiable, while Fk,m−1 is unsatisfiable. We first describe some details about the encoding of
Fk,m followed by some results on computing optimal isolators for small k.

4.1. Encoding

Let Ek be the set of edges that occur in graphs in Gk. Set Lk contains a positive and negative literal
for each element in Ek. The main variables used in the encoding of Fk,m, namely xl,i with l ∈ Lk and
i ∈ {1, . . . ,m}, describe the isolator clauses Ci and are defined as follows:

xl,i :=

{
t if l ∈ Ci

f otherwise

Additionally, we have variables yG,i denoting that isolator clause Ci satisfies graph G ∈ Gk. An
isolator clause Ci satisfies a graph G if and only if there exists a literal l ∈ Ci such that l ∈ L(G). This
can be encoded with m · |Ek| · |Gk| binary clauses and m · |Gk| clauses of length |Ek| which together
represent the following definition using the logical OR constraint:

yG,i := OR({xl,i | l ∈ L(G)})
Finally, variables zG denote whether graph G is satisfied by all m isolator clauses, or, equivalently,

whether graph G is admitted by the isolator. This can be realized by the straight-forward encoding
of the following logical AND constraint, requiring O(m · |Gk|) clauses.

zG := AND(yG,1, . . . , yG,m)

Notice that the above encoding quickly becomes very large. For example, using k = 6, the number
of clauses is close to m · 106. Using auxiliary variables, the above OR constraint can be encoded with
2m · |Gk| binary clauses and m · |Gk| ternary clauses. These auxiliary variables ai,r and bi,s with

i ∈ {1, . . . ,m}, r∈{0, . . . , 2
⌊
|Ek|

2

⌋
−1}, and s∈{0, . . . , 2

⌈
|Ek|

2

⌉
−1} represent bit masks for the first

⌊|Ek|
2

⌋
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edges (ai,r) and the last
⌈|Ek|

2

⌉
edges (bi,s). The 2m · |Gk| binary clauses have the form (ai,r ∨ yG,i) and

(bi,s ∨ yG,i) and the m · |Gk| ternary clauses have the form (ai,r ∨ bi,s ∨ zG) for all i and some r and s.
The only constraints in Fk,m that are not definitions, express that exactly one graph from each

isomorphism class is satisfied by all m isolator clauses. This graph can be seen as the canonical form
of that isomorphism class. Let Ik denote the partitioning of Gk into isomorphism classes. For each
isomorphism class I ∈ Ik, we add the following ExactlyOne constraint, for which compact encodings
exist [19]:

ExactlyOne({zG | G ∈ I})

4.2. Symmetry Breaking

A simply symmetry-breaking technique for computing isolators adds constraints that enforce a lex-
icographic order between the isolator clauses. Although this significantly improves the runtimes on
unsatisfiable formulas (lower bound results), more advanced techniques are required to obtain lower
bounds for isolators of graphs with six vertices.

The advanced symmetry breaking is based on the following observations: 1) every isolator clause
has to contain at least one positive and at least one negative literal; and 2) graphs with a just single
edge ac can only be killed by an isolator clause with the single negative literal ac. The first step of
advanced symmetry breaking is picking the canonical graph of the isomorphism class that contains
graphs with exactly one edge. We selected the graph with only edge ab. Given a graph with k vertices,
the other (k2 − k)/2 − 1 graphs in this isomorphism class cannot be canonical. As a single isolator
clause can kill at most one of these graphs, we need at least (k2−k)/2−1 isolator clauses to kill them
all. We break the symmetry by enforcing that the first (k2−k)/2−1 isolator clauses have exactly one
negative literal. Moreover that single negative literal is forced to be ac in the first isolator clause, to
be bc in the second isolator clause, etc.

Finally, we can apply symmetry breaking on the isomorphism class that contains the graphs with
all but one edge. We add a constraint enforcing that either the graph without only ab or the graph
without only ac or the graph without only cd is canonical. The reasoning is based on the observation
that there are three options for the canonical form of this isomorphism class: it is the same edge (ab);
a connecting edge (ac); or a disjoint edge (cd) compared to the canonical graph with a single edge.

4.3. Results

Using the encoding described above and solving the formulas with glucose 3.0 [20] we computed
optimal isolators for graphs up to order five1. For graphs of order six or larger, we were not able to
compute an upper bound, i.e., find a satisfying assignment for any Fk,m using parallel SAT solvers
running on 24 cores with a 24 hour time limit. Crucial for the lower bound (UNSAT) results is breaking
the symmetry as described above. To illustrate the difference between simple symmetry breaking (add
a lexicographic order) and advanced symmetry breaking: solving F5,11 with simple symmetry breaking
took an hour using a parallel solver on 24 cores (in wallclock time), while solving F5,11 with advanced
symmetry breaking can be done in less than 6 seconds running on a single core. Table 2 shows the
results of the experiments.

An optimal isolator of order four, P4, shown below, consists of seven clauses: five binary and two
ternary. Notice that P4 is a renamable Horn formula, as are the optimal isolators of order three (recall
P3 and P ′3).

P4 := (ad ∨ bd) ∧ (bd ∨ ac) ∧ (cd ∨ bc) ∧ (ab ∨ bc) ∧ (bc ∨ ac) ∧ (ab ∨ bd ∨ cd) ∧ (bc ∨ bd ∨ ad)

Optimal isolators of order five, such as P5 below, consist of only twelve clauses. It is surprising to
see that such a small formula —just slightly larger than the number of edges, similar to order four—
admits exactly one graph from each of the 34 isomorphism classes. Moreover, all clauses in P5, apart
from the last one, have length three or less.

1The isolators and CNF formulas mentioned in this paper are available at https://github.com/marijnheule/isolator.
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Table 2. Statistics of SAT solving optimal isolator problems using glucose 3.0.
Runtimes in seconds on an Intel Xeon E31280 CPU.

formula result variables clauses runtime

F4,6 UNSAT 630 1, 741 0.02
F4,7 SAT 722 1, 997 0.01
F5,11 UNSAT 13, 662 41, 946 5.86
F5,12 SAT 14, 770 45, 402 2.34
F6,14 UNSAT 513, 398 1, 553, 144 30.44
F6,15 UNSAT 546, 580 1, 654, 776 186.09
F6,16 UNSAT 579, 762 1, 756, 408 2, 487.84
F6,17 UNSAT 612, 944 1, 858, 040 79, 135.40

P5 := (ad ∨ bd) ∧ (bd ∨ ac) ∧ (cd ∨ bc) ∧ (bc ∨ ad) ∧ (ae ∨ ce) ∧ (be ∨ ae) ∧ (ab ∨ bd ∨ cd) ∧
(ae ∨ de ∨ be) ∧ (ad ∨ ce ∨ de) ∧ (ab ∨ cd ∨ de) ∧ (ac ∨ ad ∨ ce) ∧ (ce ∨ ab ∨ ae ∨ bc)

Optimal isolators P4 and P5 have four clauses in common: the first three binary clauses and the
first ternary clause. Another property they share is that each literal occurs at most twice. If the latter
holds for optimal isolators of larger orders —though unlikely— then their size would be linear in the
number of edge variables.

4.4. Visualizing Optimal Isolators

We studied the canonical labelings induced by optimal isolators. Figure 2 visualizes the canonical
labelings induced by the optimal isolators P3, P4, and P5. We call two canonical forms connected if
they differ by exactly one edge. In Figure 2 connections are shown with an arrow from the graph
without the edge to the graph with the edge.

Notice that there are several similarities in these visualizations. For example, in all three cases,
there are two root canonical forms (i.e., graphs without incoming arcs): the edge-less graph and a path
of two edges. Furthermore, the canonical forms of the single edge graph and the two-edge path together
form a triangle. We also looked at visualizations of the canonical labelings produced by nauty, bliss,
and shatter. The latter pattern (the triangle) is not present in those canonical labelings.

The order in which edges are added starting from the empty graph are similar. Comparing the
visualizations of P4 and P5 reveals that edges are added in the following order: ab, cd, bc, ad, bd, and
ac. Also the canonical form of order k of the star with k − 1 edges has the vertex with the highest
label as center of the star. Finally, notice that the canonical forms admitted by P5 are either part of
a chain or a big cluster.

These and other patterns may provide some insight in how to construct compact isolators for
orders larger than five.

5. Enumerating Optimal Isolators

Optimal isolators are not unique. We already discussed two different optimal isolators for graphs with
three vertices: P3 and P ′3. These are the only two optimal isolators for graphs with three vertices.
There are more than two optimal isolators for graphs with more than three vertices: The formulas
F4,7 and F5,12 in the prior section have lots of solutions even after symmetry breaking. However, many
solutions correspond to the “same” optimal isolator.

Two isolators are logically equivalent if and only if they admit the same graphs. For example,
the optimal isolators I1 = (ab∨ac)∧(ac∨bc) and I2 = (ab∨ac)∧(ab∨ac∨bc) are logically equivalent,
since the second literal ab in I2 is redundant. Two isolators are logically equivalent modulo renaming if
there exist a permutation of the variables (possibly with negation) that makes the isolators logically
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P3 :

a b

c

P4 :

a b

cd

P5 :

a b

cde

Figure 2. The canonical forms of graphs based on the smallest perfect isolators P3

(top), P4 (middle), and P5 (bottom). When two graphs differ by exactly one edge,
there is an arrow from the graph without the edge to the graph with the edge.
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equivalent. Many solutions of F4,7 and F5,12 correspond to isolators that have redundant literals and
that are logically equivalent modulo renaming.

A common approach to enumerate all solutions of CNF formula F works as follows: 1) Compute
a solution σ of F ; 2) add the blocking clause C of σ (i.e., the clause consisting of all literals that are
falsified by σ) to F ; and 3) repeat until F becomes unsatisfiable. Applying this approach to F4,7 and
F5,12 would generate many solutions that correspond to isolators with redundant literals. In order
to avoid that, we eliminate all xl,i and xl,i literals from the blocking clauses before adding them to
F . This way, each blocking clause would not only remove the corresponding isolator, but also all
the logically equivalent ones. With this modification, 280 blocking clauses are added to F4,7 and 88
blocking clauses are added to F5,12 — before turning them into unsatisfiable formulas.

Given an isolator I, any permutation of the vertices or negating all literals results in another
isolator. For example, I3 = (ab ∨ bc) ∧ (bc ∨ ac) can be obtained from swapping the vertices a and b
in I1. Similarly, I4 = (ab ∨ ac) ∧ (ac ∨ bc) can be obtained by negating all literals in I1. The isolators
I1, I3, and I4 are not logically equivalent, but they are logically equivalent modulo renaming. Most
isolators that were found via the blocking clause approach turned out to be logically equivalent modulo
renaming. We implemented a tool that converts a given isolator to its minimal form: remove redundant
literals and rename such that the binary representation of all admitted graphs is minimal (among all
possible variable permutations and negation). Two isolators are equivalent if and only if they have
the same minimal form. There are 62 different minimal forms of optimal isolators for graphs with four
vertices (shown in Appendix A) and 16 different minimal forms of optimal isolators for graphs with
five vertices (shown in Appendix B).

6. Perfect Isolators via Random Probing

Above, we discussed two methods for computing perfect isolators: i) simplifying a formula representing
a canonical labeling; and ii) encoding the problem into SAT. The first method works for graphs up to
order eight, but the resulting isolators are relatively large. The second method can compute optimal
isolators up to order five, but cannot deal with larger graphs. In this section, we present a third method
which scales reasonably well, while producing more compact perfect isolators than the first method.

6.1. Random Probing Algorithm

The last method we present to compute perfect isolators is based on random probing. The algorithm
starts with the trivial isolator. In each step, a clause is added to the isolator using some randomized
heuristics. The algorithm terminates when the isolator becomes perfect.

The trivial isolator admits all graphs, while a perfect isolator admits only one graph per isomor-
phism class. In order to compute a compact perfect isolator, one wants to pick a clause to extend
the current isolator that reduces the number of graphs that are admitted by the isolator as much as
possible — bringing it closer to a perfect isolator. Yet not all clauses can be picked as it is required
that at least one graph is admitted from each isomorphism class.

The greedy version of the randomized probing algorithm picks a clause that reduces the number
of graphs admitted by the isolator the most, breaking ties randomly. More specifically, the reduction
measurement of a clause with respect to an isolator is the number of graphs that are admitted by the
isolator, but no longer admitted once the clause is added to the isolator. The algorithm that always
picks a clause with the highest reduction measurement is not able to compute an optimal isolator for
graphs of order five, regardless of how ties are broken — because there is no optimal isolator that
contains clauses with only the highest reduction measurement.

The algorithm needs two improvements to find optimal isolators of graphs of order five. The first
improvement ranks all the clauses based on the reduction measurement, again breaking ties randomly.
But instead of picking the top ranked clause, the new algorithm picks the nth element in the ranking
with probability 0.5n. So with 50% chance the top element is picked, with 25% chance the second
element is picked, etc. After this modification, the algorithm could in theory compute any perfect
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isolator, although the probability for most of them is extremely small. In practice, the algorithm does
not find an optimal isolator of graphs of size five after millions of random probes with a very high
probability. The main reason is that most top ranked clauses perform exactly the same reduction,
i.e., the set of graphs that are ruled out by those clauses is exactly the same. Consequently, it does
not matter whether you pick the first, second, or third ranked clause, because in most cases they are
equivalent as a candidate for extending the isolator.

The second modification was developed to counter this effect. Apart from a ranking, each clause
gets a hash value based on the set of graphs that are ruled out by that clause. In case multiple clauses
have the same reduction and hash value, only one of them appears in the ranking.

6.2. Implementation Optimizations

Several optimizations were implemented to perform random probing reasonably efficiently. The initial
stable version was too slow to perform large-scale experiments. The optimizations described below
improved the performance by more than two orders of magnitude when computing isolators of order
six and larger.

First, the results of one step can be partially reused for the next step. Clauses can be partitioned
into three sets: conflicting, redundant, and useful clauses. Conflicting clauses rule out all remaining
graphs in some isomorphism class. Redundant clauses admit all remaining graphs in all isomorphism
classes. Useful clauses rule out some remaining graphs, but still admit at least one graph in each
isomorphism class. Once a clause is known to be conflicting or redundant, it can be ignored from that
point onwards, as it will stay conflicting or redundant in future steps.

Second, further implementation optimizations can be derived from the subsumption relation
between clauses: if a clause C is subsumed by a clause D, then the reduction of C is less or equal to
the reduction of D. Since we are interested in useful clauses with a high reduction, a clause is ignored
if there exists at least one useful clause that subsumes it. Moreover, if a clause D is redundant, then
all clauses C ⊃ D are redundant as well. Hence, all clauses that are subsumed by redundant clauses
can be marked redundant without computing their reduction. The subsumption relation is checked
efficiently using a hash table.

6.3. Results

We ran the random probing algorithm starting with the trivial isolators of orders five to seven. The
results of two million random probes on order five are shown in Figure 3 (a). With a high probability,
the random probing algorithm computes a perfect isolator around seventeen clauses long. With a very
small probability, slightly more than one in a million, the algorithm computes an optimal isolator of
order five, consisting of only twelve clauses. The improvements discussed in Section 6.2 were crucial
to finding optimal isolators. The average runtime of a single probe is approximately 0.02 seconds.
Although a single probe is cheap, computing an optimal isolator using randomized probing is relatively
expensive as it may require hundreds of thousands of probes. The SAT solving approach is much more
efficient since it can compute an optimal isolator of order five in a few minutes.

Random probing for isolators of order six are shown in Figure 3 (b). Using the same setup as with
order five, the smallest perfect isolator after 400 000 probes consisted of 29 clauses, with each probe
running for about 0.5 seconds. In order to improve these results, the smallest 50 isolators discovered
were used as starting points for a second round of 400 000 probes. For this second round, the first
step consists of choosing the first ten clauses of one of the 50 best isolators. After this initialization,
the probing algorithm continued as usual. During this second round, perfect isolators were discovered
consisting of only 27 clauses.

The random probing algorithm was somewhat changed for perfect isolators of order seven: we
turned the first modification off, i.e., always picked the highest ranked clause, because it resulted in
smaller perfect isolators. This is probably caused by the smaller sample size (80 000 probes per round),
which was necessary as the runtime of a single probe was on average 7 minutes for order seven. The
smallest isolator we found consisted of 114 clauses after 4 rounds. Details are shown in Figure 3 (c).
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Figure 3. Distribution of the size of perfect isolators using the random probing
algorithm on graphs of order five (a), six (b), and seven (c). Round 1 experiments used
the trivial isolator as starting points. Round r > 1 experiments initialized isolators
using the first 10(r − 1) clauses of one of the 50 best probes of Round r − 1.

Computing a perfect isolator of order eight required starting with a non-trivial isolator, because
the number of initial graphs, |G8| = 228, was too large for our implementation to handle. We used the
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symmetry-breaking predicate of the quad method of order eight (see Section 2) as the initial isolator,
which consists of 170 clauses and adds 28 auxiliary variables. A single probe with that starting point
resulted in a perfect isolator of 956 total clauses in two days.

6.4. Comparison

The focus of this paper is on computing small perfect isolators and not yet on exploiting them.
However, we believe that small perfect isolators are not only interesting from a theoretical point of
view, but also from a practical one. For example, Itzhakov and Codish [13] determine the number
of graphs that have no clique and no co-clique of size four (also known as Ramsey R(4, 4, k) graphs)
and claw-free graphs after perfect symmetry breaking. Table 3 shows that breaking symmetries using
perfect isolators produced by the random probing results in much smaller formulas for which all
solutions can be computed much faster.

Table 3. Comparison of the canonical sets method and perfect isolators by random
probing on the size of the symmetry-breaking predicates (n denotes number of vari-
ables, and m denotes number of clauses) and the costs to compute all solutions on
Ramsey R(4, 4, k) graphs and claw-free CF (k) graphs. Costs for canonical sets are
taken from [13], while we computed all solutions using sharpSAT [21]. No runtimes are
provided for the instances without symmetry-breaking predicates as these problems
have many more (symmetric) solutions.

F F + canonical sets F + probe isolator
problem n m n m time n m time

R(4, 4, 6) 15 30 72 315 0.01 15 57 0.00
R(4, 4, 7) 21 70 286 1395 0.05 21 184 0.01
R(4, 4, 8) 28 140 2177 10885 1.69 56 1096 0.04
CF (6) 15 60 72 345 0.01 15 87 0.00
CF (7) 21 140 286 1465 0.03 21 254 0.01
CF (8) 28 280 2177 11025 1.08 56 1236 0.03

7. Conclusions

We studied the concept of perfect isolators for small graphs. One surprising and encouraging result is
that there exist very small perfect isolators for graphs up to order five — the largest order for which
we could compute optimal (smallest perfect) isolators. For graphs up to order eight, perfect isolators
were obtained via a random probing algorithm. These isolators are likely not optimal.

The main question that remains unanswered is the growth rate of optimal isolators. Focussing
only at the known optimal isolators, the growth rate appears to be quadratic in the size of the
graph: all optimal isolators of order k have approximately (but fewer than) |Ek|+k clauses. However,
when the best (non-optimal) results of larger graphs are taken into account, the growth rate appears
much steeper. This discrepancy might be explained by the lack of using auxiliary variables when
constructing perfect isolators. Auxiliary variables are crucial to realize compact (partial) symmetry-
breaking predicates via existing methods.

In future research we want to compute optimal and perfect isolators for graphs of larger orders.
We expect that such isolators will be helpful in tackling hard graph existence problems, such as
Ramsey numbers.
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Appendix A. Enumeration of Optimal Isolators for Graphs with Four Vertices

(ac ∨ bc) ∧ (bc ∨ ad) ∧ (ad ∨ bd) ∧ (bc ∨ ab ∨ cd) ∧ (cd ∨ ad ∨ ab ∨ ac) ∧ (bd ∨ ab ∨ ac ∨ cd) ∧ (cd ∨ ab ∨ ad)

(ab ∨ ac) ∧ (ac ∨ bc) ∧ (bd ∨ ab ∨ ad) ∧ (ad ∨ ab ∨ cd) ∧ (bd ∨ ac ∨ cd) ∧ (cd ∨ bd) ∧ (bc ∨ ab ∨ ad)

(ac ∨ bc) ∧ (ad ∨ bc ∨ bd) ∧ (ad ∨ ac ∨ bd) ∧ (bd ∨ ab ∨ ac) ∧ (ab ∨ ac ∨ cd) ∧ (bd ∨ cd) ∧ (cd ∨ ad)

(ac ∨ bc) ∧ (ad ∨ bc ∨ bd) ∧ (ac ∨ bd) ∧ (bd ∨ ad) ∧ (bc ∨ cd) ∧ (cd ∨ bd ∨ ab ∨ ac) ∧ (cd ∨ ab ∨ bd)

(ac ∨ bc) ∧ (bc ∨ ac ∨ ad) ∧ (bd ∨ ab ∨ ac) ∧ (bd ∨ ad) ∧ (ad ∨ cd) ∧ (cd ∨ ab ∨ bd) ∧ (cd ∨ ac ∨ bd)

(ac ∨ bc) ∧ (bc ∨ bd) ∧ (bd ∨ ad) ∧ (cd ∨ bd ∨ ab ∨ ac) ∧ (bc ∨ ab ∨ cd) ∧ (ad ∨ ab ∨ ac ∨ cd) ∧ (cd ∨ ab ∨ bd)

(ac ∨ bc) ∧ (ad ∨ bd) ∧ (bc ∨ bd) ∧ (bd ∨ ad) ∧ (bc ∨ ab ∨ cd) ∧ (ab ∨ bd ∨ cd) ∧ (cd ∨ bd ∨ ab ∨ ac)

(ac ∨ bc) ∧ (ad ∨ bd) ∧ (bc ∨ bd) ∧ (bd ∨ ad) ∧ (bc ∨ ab ∨ cd) ∧ (cd ∨ bd ∨ ab ∨ ac) ∧ (cd ∨ ab ∨ bd)

(ab ∨ ac) ∧ (ac ∨ bc) ∧ (ad ∨ bc ∨ bd) ∧ (bd ∨ ad) ∧ (ad ∨ ab ∨ cd) ∧ (cd ∨ bd) ∧ (ac ∨ ab ∨ bd)

(ab ∨ ac) ∧ (ad ∨ ac ∨ bc) ∧ (ad ∨ bd) ∧ (bd ∨ ac ∨ bc ∨ cd) ∧ (bd ∨ ab ∨ cd) ∧ (cd ∨ ad) ∧ (bc ∨ ab ∨ ad)

(ab ∨ ac) ∧ (ac ∨ bc) ∧ (ad ∨ ac ∨ bd) ∧ (bd ∨ ad) ∧ (ad ∨ ab ∨ cd) ∧ (ad ∨ bc ∨ cd) ∧ (cd ∨ bd)

(ab ∨ ac) ∧ (bd ∨ ad) ∧ (bd ∨ ac ∨ bc) ∧ (ad ∨ bc ∨ cd) ∧ (ad ∨ ab ∨ cd) ∧ (cd ∨ bd) ∧ (ac ∨ ab ∨ bd)

(ab ∨ ac) ∧ (ad ∨ bd) ∧ (ad ∨ ac ∨ bc) ∧ (bd ∨ ac ∨ cd) ∧ (bd ∨ ab ∨ cd) ∧ (cd ∨ ad) ∧ (ac ∨ ab ∨ bd)

(ab ∨ ac) ∧ (ad ∨ ac ∨ bc) ∧ (ad ∨ bd) ∧ (bd ∨ ac ∨ cd) ∧ (bd ∨ ab ∨ cd) ∧ (cd ∨ ad) ∧ (bc ∨ ab ∨ bd)

(ab ∨ ac) ∧ (ac ∨ bc) ∧ (bc ∨ ac ∨ ad) ∧ (bd ∨ ad) ∧ (ad ∨ ab ∨ cd) ∧ (bd ∨ ac ∨ cd) ∧ (cd ∨ bd)

(ab ∨ ac) ∧ (ad ∨ ac ∨ bc) ∧ (bd ∨ ad) ∧ (bd ∨ bc) ∧ (bc ∨ ad ∨ ab ∨ cd) ∧ (cd ∨ bd) ∧ (ac ∨ ab ∨ bd)

(ab ∨ ac) ∧ (bd ∨ bc) ∧ (bd ∨ ad) ∧ (bc ∨ ad ∨ ab ∨ cd) ∧ (cd ∨ bd) ∧ (ac ∨ ab ∨ bd) ∧ (bc ∨ ab ∨ ad)

(ab ∨ ac) ∧ (ad ∨ ac ∨ bc) ∧ (bc ∨ ac ∨ ad) ∧ (ad ∨ bc ∨ bd) ∧ (bd ∨ cd) ∧ (ac ∨ cd) ∧ (cd ∨ bd)

(ab ∨ ac) ∧ (ad ∨ ac ∨ bc) ∧ (bc ∨ ac ∨ ad) ∧ (bc ∨ ad ∨ bd) ∧ (bd ∨ cd) ∧ (ac ∨ cd) ∧ (cd ∨ bd)

(ab ∨ ac) ∧ (ad ∨ ac ∨ bc) ∧ (bc ∨ ac ∨ ad) ∧ (ac ∨ bd) ∧ (ad ∨ bc ∨ bd) ∧ (bd ∨ cd) ∧ (cd ∨ ab ∨ ad ∨ bc)

(ab ∨ ac) ∧ (ad ∨ ac ∨ bc) ∧ (bc ∨ ac ∨ ad) ∧ (bc ∨ ad ∨ bd) ∧ (ac ∨ bd) ∧ (bd ∨ cd) ∧ (cd ∨ ab ∨ ad ∨ bc)

(ab ∨ ac) ∧ (ad ∨ ac ∨ bc) ∧ (bc ∨ ac ∨ ad) ∧ (ad ∨ bc ∨ cd) ∧ (ac ∨ cd) ∧ (cd ∨ bd) ∧ (bd ∨ ab ∨ ad ∨ bc)

(ab ∨ ac) ∧ (ad ∨ ac ∨ bc) ∧ (bc ∨ ac ∨ ad) ∧ (ac ∨ cd) ∧ (bc ∨ ad ∨ cd) ∧ (cd ∨ bd) ∧ (bd ∨ ab ∨ ad ∨ bc)

(ac ∨ ad) ∧ (ac ∨ bc) ∧ (ad ∨ bd) ∧ (bd ∨ ab ∨ ac) ∧ (ab ∨ cd) ∧ (bd ∨ ac ∨ cd) ∧ (bc ∨ ab ∨ bd)

(ac ∨ ad) ∧ (ac ∨ bc) ∧ (ad ∨ bd) ∧ (bd ∨ ab ∨ ac) ∧ (ab ∨ cd) ∧ (bd ∨ ac ∨ cd) ∧ (cd ∨ ab ∨ bd)

(ac ∨ bc) ∧ (ac ∨ ad) ∧ (bc ∨ bd) ∧ (bd ∨ ab ∨ ac) ∧ (bd ∨ ac ∨ cd) ∧ (ab ∨ cd) ∧ (ad ∨ ab ∨ bd)

(ac ∨ bc) ∧ (ac ∨ ad) ∧ (bc ∨ bd) ∧ (bd ∨ ab ∨ ac) ∧ (bd ∨ ac ∨ cd) ∧ (ab ∨ cd) ∧ (cd ∨ ab ∨ bd)

(ab ∨ ac) ∧ (ac ∨ ad) ∧ (ac ∨ bc) ∧ (ad ∨ bc ∨ bd) ∧ (bd ∨ ac ∨ cd) ∧ (ab ∨ cd) ∧ (cd ∨ bd)

(ab ∨ ac) ∧ (ac ∨ ad) ∧ (ac ∨ bc) ∧ (bc ∨ ad ∨ bd) ∧ (bd ∨ ac ∨ cd) ∧ (ab ∨ cd) ∧ (cd ∨ bd)

(ac ∨ ad) ∧ (ac ∨ bc) ∧ (ad ∨ bd) ∧ (bd ∨ ab ∨ ac) ∧ (ab ∨ cd) ∧ (bd ∨ ac ∨ cd) ∧ (cd ∨ ab ∨ ad ∨ bc)

(ac ∨ bc) ∧ (ac ∨ ad) ∧ (bc ∨ bd) ∧ (bd ∨ ab ∨ ac) ∧ (bd ∨ ac ∨ cd) ∧ (ab ∨ cd) ∧ (cd ∨ ab ∨ ad ∨ bc)

(ac ∨ ad) ∧ (ad ∨ bc) ∧ (bc ∨ bd) ∧ (ad ∨ ab ∨ cd) ∧ (ab ∨ bc ∨ cd) ∧ (cd ∨ bc ∨ ab ∨ ac) ∧ (bd ∨ ab ∨ ac ∨ cd)

(ac ∨ ad) ∧ (ad ∨ bc) ∧ (bc ∨ bd) ∧ (ad ∨ ab ∨ cd) ∧ (cd ∨ bc ∨ ab ∨ ac) ∧ (bd ∨ ab ∨ ac ∨ cd) ∧ (cd ∨ ab ∨ bc)

(ac ∨ ad) ∧ (ad ∨ bc) ∧ (bc ∨ bd) ∧ (ab ∨ bc ∨ cd) ∧ (ad ∨ ab ∨ cd) ∧ (cd ∨ bd ∨ ab ∨ ac) ∧ (bd ∨ ab ∨ ad ∨ cd)

(ab ∨ ac) ∧ (ac ∨ ad) ∧ (bd ∨ ac ∨ bc) ∧ (bc ∨ ab ∨ cd) ∧ (bd ∨ ac ∨ cd) ∧ (cd ∨ bd) ∧ (ad ∨ ab ∨ bc)

(ac ∨ ad) ∧ (bc ∨ ac ∨ bd) ∧ (bc ∨ ad ∨ bd) ∧ (bd ∨ ab ∨ ac) ∧ (ab ∨ ac ∨ cd) ∧ (bd ∨ cd) ∧ (cd ∨ bc)
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(ac ∨ ad) ∧ (ad ∨ ac ∨ bc) ∧ (bd ∨ ab ∨ ac) ∧ (bd ∨ bc) ∧ (bc ∨ cd) ∧ (cd ∨ ac ∨ bd) ∧ (cd ∨ ab ∨ bd)

(ac ∨ ad) ∧ (bc ∨ ad ∨ bd) ∧ (ac ∨ bd) ∧ (bd ∨ bc) ∧ (ad ∨ cd) ∧ (cd ∨ bd ∨ ab ∨ ac) ∧ (cd ∨ ab ∨ bd)

(ab ∨ ac) ∧ (ac ∨ ad) ∧ (bc ∨ ac ∨ bd) ∧ (bd ∨ ac ∨ cd) ∧ (bd ∨ ab ∨ cd) ∧ (cd ∨ bc) ∧ (ad ∨ ab ∨ bc)

(ac ∨ ad) ∧ (ad ∨ bd) ∧ (bd ∨ bc) ∧ (ab ∨ bd ∨ cd) ∧ (ad ∨ ab ∨ cd) ∧ (cd ∨ bd ∨ ab ∨ ac) ∧ (bc ∨ ab ∨ ac ∨ cd)

(ac ∨ ad) ∧ (ad ∨ bd) ∧ (bd ∨ bc) ∧ (ad ∨ ab ∨ cd) ∧ (cd ∨ bd ∨ ab ∨ ac) ∧ (bc ∨ ab ∨ ac ∨ cd) ∧ (cd ∨ ab ∨ bd)

(ac ∨ ad) ∧ (ad ∨ bd) ∧ (bd ∨ bc) ∧ (ab ∨ bd ∨ cd) ∧ (ad ∨ ab ∨ cd) ∧ (cd ∨ bc ∨ ab ∨ ac) ∧ (bc ∨ ab ∨ ad ∨ cd)

(ac ∨ ad) ∧ (bc ∨ bd) ∧ (ad ∨ bd) ∧ (bd ∨ bc) ∧ (ab ∨ bc ∨ cd) ∧ (ad ∨ ab ∨ cd) ∧ (cd ∨ bd ∨ ab ∨ ac)

(ac ∨ ad) ∧ (bc ∨ bd) ∧ (ad ∨ bd) ∧ (bd ∨ bc) ∧ (ad ∨ ab ∨ cd) ∧ (cd ∨ bd ∨ ab ∨ ac) ∧ (cd ∨ ab ∨ bc)

(ab ∨ ac) ∧ (bc ∨ ac ∨ ad) ∧ (ac ∨ ad ∨ bd) ∧ (bc ∨ bd) ∧ (bd ∨ ab ∨ cd) ∧ (cd ∨ bc) ∧ (ad ∨ ab ∨ bc)

(ab ∨ ac) ∧ (ac ∨ ad) ∧ (ad ∨ ac ∨ bc) ∧ (bd ∨ bc) ∧ (bc ∨ ab ∨ cd) ∧ (cd ∨ bd) ∧ (ac ∨ ab ∨ bd)

(ab ∨ ac) ∧ (ac ∨ ad) ∧ (bc ∨ ad ∨ bd) ∧ (bd ∨ bc) ∧ (bc ∨ ab ∨ cd) ∧ (cd ∨ bd) ∧ (ac ∨ ab ∨ bd)

(ab ∨ ac) ∧ (bc ∨ ac ∨ ad) ∧ (bc ∨ bd) ∧ (bd ∨ ac ∨ ad ∨ cd) ∧ (bd ∨ ab ∨ cd) ∧ (cd ∨ bc) ∧ (ad ∨ ab ∨ bc)

(ab ∨ ac) ∧ (ac ∨ ad) ∧ (bc ∨ ac ∨ bd) ∧ (bd ∨ bc) ∧ (bc ∨ ad ∨ cd) ∧ (bd ∨ ab ∨ cd) ∧ (cd ∨ bd)

(ab ∨ ac) ∧ (bd ∨ bc) ∧ (bc ∨ ad ∨ cd) ∧ (bc ∨ ab ∨ cd) ∧ (cd ∨ bd) ∧ (cd ∨ ac ∨ ad) ∧ (ac ∨ ab ∨ bd)

(ab ∨ ac) ∧ (bc ∨ bd) ∧ (bd ∨ ac ∨ cd) ∧ (bd ∨ ab ∨ cd) ∧ (cd ∨ ac ∨ ad) ∧ (cd ∨ bc) ∧ (ad ∨ ab ∨ bc)

(ab ∨ ac) ∧ (ac ∨ ad) ∧ (bd ∨ bc) ∧ (bc ∨ ab ∨ cd) ∧ (bd ∨ ad ∨ ac ∨ cd) ∧ (cd ∨ bd) ∧ (ad ∨ ab ∨ bc)

(ab ∨ ac) ∧ (bc ∨ bd) ∧ (bc ∨ ac ∨ ad) ∧ (bd ∨ ac ∨ cd) ∧ (bd ∨ ab ∨ cd) ∧ (cd ∨ bc) ∧ (ac ∨ ab ∨ bd)

(ab ∨ ac) ∧ (ac ∨ ad) ∧ (ad ∨ ac ∨ bc) ∧ (bd ∨ bc) ∧ (bc ∨ ab ∨ cd) ∧ (bd ∨ ac ∨ cd) ∧ (cd ∨ bd)

(ad ∨ ac) ∧ (bc ∨ ac ∨ ad) ∧ (ac ∨ ad ∨ bd) ∧ (bc ∨ bd) ∧ (bd ∨ cd) ∧ (cd ∨ ab ∨ bc) ∧ (cd ∨ ad ∨ bc)

(ad ∨ ac) ∧ (ad ∨ bc) ∧ (bc ∨ ac ∨ ad) ∧ (bc ∨ bd) ∧ (bd ∨ ac ∨ bc) ∧ (ac ∨ cd) ∧ (cd ∨ ab ∨ bc)

(ac ∨ ad) ∧ (ad ∨ ac) ∧ (ad ∨ bc) ∧ (bc ∨ bd) ∧ (ab ∨ bc ∨ cd) ∧ (ad ∨ ab ∨ cd) ∧ (bd ∨ ab ∨ bc)

(ac ∨ ad) ∧ (ad ∨ ac) ∧ (ac ∨ bc) ∧ (bc ∨ bd) ∧ (bd ∨ bc ∨ cd) ∧ (ac ∨ ab ∨ cd) ∧ (cd ∨ ab ∨ bc)

(ac ∨ ad) ∧ (bc ∨ bd) ∧ (ad ∨ bd) ∧ (bd ∨ bc) ∧ (ad ∨ ab ∨ cd) ∧ (ab ∨ bc ∨ cd) ∧ (cd ∨ ad ∨ ac)

(ad ∨ ac ∨ bc) ∧ (bc ∨ ac) ∧ (ad ∨ bd) ∧ (ac ∨ bc ∨ bd) ∧ (bd ∨ cd) ∧ (cd ∨ bc ∨ ad) ∧ (cd ∨ ab ∨ ad)

(ad ∨ ac ∨ bc) ∧ (bc ∨ ad) ∧ (bc ∨ ac) ∧ (ad ∨ bd) ∧ (bd ∨ ac ∨ ad) ∧ (ac ∨ cd) ∧ (cd ∨ ab ∨ ad)

(ac ∨ bc) ∧ (bc ∨ ac) ∧ (bc ∨ ad) ∧ (ad ∨ bd) ∧ (bd ∨ ad ∨ cd) ∧ (ac ∨ ab ∨ cd) ∧ (cd ∨ ab ∨ ad)
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Appendix B. Enumeration of Optimal Isolators for Graphs with Five Vertices

P5a := (ab ∨ de) ∧ (ac ∨ bc) ∧ (ac ∨ cd) ∧ (ae ∨ de) ∧ (ae ∨ bd) ∧ (bd ∨ be) ∧ (ac ∨ cd ∨ ce) ∧
(ad ∨ be ∨ cd) ∧ (ad ∨ be ∨ ce) ∧ (ae ∨ bc ∨ ce) ∧ (ae ∨ bc ∨ ce) ∧ (ac ∨ ad ∨ bc ∨ bd)

P5b := (ab ∨ de) ∧ (ac ∨ bc) ∧ (ac ∨ cd) ∧ (ae ∨ bd) ∧ (ae ∨ be) ∧ (bd ∨ de) ∧ (ac ∨ ad ∨ be) ∧
(ac ∨ bd ∨ cd) ∧ (ad ∨ bc ∨ be) ∧ (ae ∨ bc ∨ ce) ∧ (ac ∨ bc ∨ bd ∨ ce) ∧ (ad ∨ ae ∨ cd ∨ ce)

P5c := (ab ∨ de) ∧ (ac ∨ bc) ∧ (ad ∨ de) ∧ (ad ∨ be) ∧ (ae ∨ be) ∧ (bc ∨ cd) ∧ (ac ∨ bc ∨ de) ∧
(ac ∨ be ∨ ce) ∧ (ac ∨ ae ∨ bd) ∧ (ad ∨ bc ∨ cd) ∧ (ae ∨ bc ∨ bd) ∧ (bd ∨ be ∨ cd ∨ ce)

P5d := (ac ∨ bc) ∧ (ad ∨ de) ∧ (ad ∨ be) ∧ (ae ∨ be) ∧ (ae ∨ bd) ∧ (bc ∨ cd) ∧ (ab ∨ bc ∨ de) ∧
(ab ∨ ce ∨ de) ∧ (ac ∨ bc ∨ ce) ∧ (ae ∨ bc ∨ ce) ∧ (be ∨ cd ∨ ce) ∧ (ab ∨ ad ∨ bc ∨ cd)

P5e := (ac ∨ bc) ∧ (ac ∨ bc) ∧ (ad ∨ ae) ∧ (ad ∨ be) ∧ (ae ∨ bd) ∧ (cd ∨ ce) ∧ (ab ∨ bd ∨ be) ∧
(ad ∨ bc ∨ ce) ∧ (ad ∨ bd ∨ de) ∧ (bc ∨ be ∨ cd) ∧ (ab ∨ ac ∨ cd ∨ de) ∧ (ab ∨ bc ∨ ce ∨ de)

P5f := (ac ∨ bc) ∧ (ac ∨ bc) ∧ (ad ∨ bd) ∧ (ad ∨ be) ∧ (ae ∨ bd) ∧ (cd ∨ ce) ∧ (ab ∨ ae ∨ be) ∧
(ac ∨ be ∨ ce) ∧ (ad ∨ bc ∨ cd) ∧ (ad ∨ ae ∨ de) ∧ (ab ∨ ac ∨ ce ∨ de) ∧ (ab ∨ bc ∨ cd ∨ de)

P5g := (ab ∨ de) ∧ (ac ∨ bc) ∧ (ac ∨ cd) ∧ (ad ∨ be) ∧ (ae ∨ bd) ∧ (bd ∨ be) ∧ (cd ∨ ce) ∧
(ab ∨ cd ∨ ce) ∧ (ad ∨ ae ∨ cd) ∧ (ad ∨ bd ∨ ce) ∧ (ab ∨ ac ∨ ae ∨ ce) ∧ (ae ∨ bc ∨ cd ∨ de)

P5h := (ab ∨ de) ∧ (ac ∨ bc) ∧ (ac ∨ cd) ∧ (ad ∨ bd) ∧ (ae ∨ be) ∧ (bd ∨ be) ∧ (cd ∨ ce) ∧
(ab ∨ cd ∨ ce) ∧ (ad ∨ ae ∨ bc) ∧ (ad ∨ ae ∨ cd) ∧ (be ∨ ce ∨ de) ∧ (ab ∨ ac ∨ ae ∨ ce)

P5i := (ab ∨ de) ∧ (ac ∨ bc) ∧ (ac ∨ cd) ∧ (ad ∨ bd) ∧ (ae ∨ be) ∧ (bd ∨ be) ∧ (cd ∨ ce) ∧
(ab ∨ cd ∨ ce) ∧ (ad ∨ ae ∨ cd) ∧ (ad ∨ be ∨ ce) ∧ (ab ∨ ac ∨ ae ∨ ce) ∧ (ae ∨ bc ∨ cd ∨ de)

P5j := (ad ∨ de) ∧ (ad ∨ be) ∧ (ae ∨ bd) ∧ (bc ∨ cd) ∧ (bd ∨ be) ∧ (cd ∨ ce) ∧ (ab ∨ ac ∨ ad ∨ ce) ∧
(ab ∨ bc ∨ de) ∧ (ab ∨ cd ∨ de) ∧ (ac ∨ ce ∨ de) ∧ (ab ∨ ac ∨ be ∨ ce) ∧ (ac ∨ bc ∨ be ∨ ce)

P5k := (ad ∨ be) ∧ (ad ∨ bd) ∧ (ae ∨ bd) ∧ (bc ∨ cd) ∧ (be ∨ de) ∧ (cd ∨ ce) ∧ (ab ∨ ac ∨ be ∨ ce) ∧
(ab ∨ bc ∨ de) ∧ (ab ∨ cd ∨ de) ∧ (ac ∨ ce ∨ de) ∧ (ab ∨ ac ∨ ad ∨ ce) ∧ (ac ∨ ad ∨ bc ∨ ce)

P5l := (ab ∨ de) ∧ (ac ∨ bc) ∧ (ad ∨ ae) ∧ (ad ∨ be) ∧ (ae ∨ bd) ∧ (cd ∨ ce) ∧ (ab ∨ ac ∨ be ∨ ce) ∧
(ac ∨ ae ∨ ce) ∧ (ad ∨ bc ∨ cd) ∧ (ab ∨ ac ∨ be ∨ cd) ∧ (ac ∨ bd ∨ cd ∨ de) ∧ (bc ∨ bd ∨ cd ∨ de)

P5m := (ab ∨ ac) ∧ (ac ∨ ad) ∧ (bc ∨ de) ∧ (bd ∨ de) ∧ (bd ∨ ce) ∧ (be ∨ ce) ∧ (ab ∨ ae ∨ ce) ∧
(ab ∨ be ∨ cd) ∧ (ac ∨ ad ∨ bd) ∧ (ac ∨ be ∨ cd) ∧ (ac ∨ ae ∨ bc ∨ bd) ∧ (ad ∨ ae ∨ cd ∨ ce)

P5n := (ab ∨ ac) ∧ (ad ∨ ae) ∧ (bd ∨ ce) ∧ (bd ∨ cd) ∧ (be ∨ cd) ∧ (be ∨ de) ∧ (ab ∨ ac ∨ cd) ∧
(ac ∨ ae ∨ bd) ∧ (ac ∨ ad ∨ bd) ∧ (ab ∨ ad ∨ bc ∨ de) ∧ (ab ∨ bc ∨ be ∨ ce) ∧ (ac ∨ ad ∨ bc ∨ de)

P5o := (ac ∨ ad) ∧ (ad ∨ ae) ∧ (bc ∨ de) ∧ (bd ∨ ce) ∧ (bd ∨ cd) ∧ (be ∨ ce) ∧ (ab ∨ ac ∨ be) ∧
(ab ∨ ac ∨ ce) ∧ (ac ∨ bc ∨ de) ∧ (be ∨ cd ∨ de) ∧ (ab ∨ ad ∨ ae ∨ bc) ∧ (ab ∨ ad ∨ be ∨ cd)

P5p := (ac ∨ ad) ∧ (ac ∨ ae) ∧ (bc ∨ be) ∧ (bc ∨ de) ∧ (bd ∨ de) ∧ (be ∨ cd) ∧ (ab ∨ ac ∨ ae) ∧
(ab ∨ ad ∨ bc) ∧ (ab ∨ bd ∨ ce) ∧ (ad ∨ bc ∨ cd) ∧ (ae ∨ bd ∨ ce) ∧ (ac ∨ ad ∨ ce ∨ de)
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