
Sorting Parity Encodings by Reusing Variables

Leroy Chew and Marijn J.H. Heule

Computer Science Department, Carnegie Mellon University, PA, USA

Abstract. Parity reasoning is challenging for CDCL solvers. A simple
instance of two contradictory parity constraints on a modest number
of variables can be difficult to refute when the variables are simply in
a different order. Existing methods to solve these formulas detect the
parity constraints from the formula and apply Gaussian elimination or
construct a binary decision diagram. Existing implementations either
lack support of proof logging or use many extension variables.
The direct encoding of the parity function requires exponentially many
clauses. To get around this, Tseitin variables are introduced to realize a
compact encoding. We present a technique for short clausal proofs that
uses these Tseitin variables to swap and sort the encodings within the
DRAT system. We show how to construct proofs of size O(n logn) for two
randomized and contradicting parity constraints by reusing variables.

1 Introduction

Modern SAT solving technology is based on Conflict Driven Clause Learning
(CDCL) [13]. The resolution proof system [17] has a one-to-one correspondence
[16] with CDCL solving, however in practice, the techniques used in modern
solvers go beyond what can be succinctly represented in a resolution proof. Lower
bounds [22] show that often we cannot always hope to match the calculations a
solver or preprocessor performs with a matching linear or even polynomial size
resolution proof. This difficulty means that when we need to present verifiable
certificates of unsatisfiable instances, resolution is not always sufficient.

Extended Resolution (ER) [21] is a strong propositional proof system that
can polynomially simulate CDCL and many other techniques. However, ER is
not necessarily the most useful system in practice, as we also want to minimise
the degree of the polynomial simulation.

The DRAT proof system [7] is polynomially equivalent to ER [9]. Yet most
practitioners favour DRAT due to its ability to straightforwardly simulate known
preprocessing and inprocessing techniques. DRAT works by allowing inference
to go beyond preserving models and instead preserves only satisfiability.

In this paper, we demonstrate DRAT’s strengths on a particular kind of un-
satisfiable instances that involve parity constraints. Formulas with parity con-
straints have been benchmarks for SAT for decades. The Dubois family encodes
the parity function on two sequences of literals in the same order, but with dif-
ferent Tseitin variables. Additionally, in one instance a literal is flipped to give a
contradiction. Urquhart formulas [22] encode a modulo two sum of the degree of



2 L. Chew and M.J.H. Heule

each vertex of a graph, the unsatisfiability comes from an assertion that this sum
is odd, a violation of the Handshake Lemma. The Parity family from Crawford
and Kearns [3] takes multiple parity instances on a set of variables and combines
them together. For these problems, practical solutions have been studied using
Gaussian elimination, equivalence reasoning, binary decision diagrams and other
approaches [23,12,14,6,20,19,10,11,5].

Extracting checkable proofs in a universal format have been another mat-
ter entirely. While it is believed that polynomial size circuitry exists to solve
these problems, actually turning them into proofs could mean they may only
be “short” in a theoretical polynomial-size sense rather than a practical one.
Constructing a DRAT proof of parity reasoning has been investigated theoreti-
cally [15], but no implementation exists to actually produce them nor is it clear
whether the size is still reasonable to be useful in practice.

There has been some investigation into looking at DRAT without the use
of extension variables which is of intermediate power between resolution and
ER. The power of DRAT without extension variables, known as DRAT−, is
somewhere in between resolution and ER. The power of DRAT does not rely on
its simulation of ER as shown by several simulation results exist for DRAT− [2].
A key simulation technique was the elimination and reuse of a variable, which
we use to find short DRAT− proofs of a hard parity formula.

The structure of parity constraints can be manipulated by reusing variables
and we exploit the associativity and commutativity of the parity function. We
demonstrate this on formulas similar to the Dubois family except the variables
now appear in a random order in one parity constraint. We show how to obtain
DRAT proofs of size O(n log n) without using additional variables. Our method
can also be used to produce ER proofs of similar size with new variables.

2 Preliminaries

In propositional logic a literal is a variable x or its negation x, a clause is a
disjunction of literals and a Conjunctive Normal Form (CNF) is conjunction
of clauses. A unit clause is a clause containing a single literal. We denote the
negation of literal l as l (or ¬l). The variable corresponding to literal l is var(l).
If C is a clause, then C is the conjunction of the negation of the literals in C
each a unit clause. In this paper, we treat clauses/formulas as unordered and
not containing more than one copy of each literal/clause respectively.

Unit propagation simplifies a conjunctive normal form F by building a partial
assignment and applying it to F . It builds the assignment by satisfying any literal
that appears in a unit clause. Doing so may negate opposite literals in other
clauses and result in them effectively being removed from that clause. In this
way, unit propagation can create more unit clauses and can keep on propagating
until no more unit clauses remain or the empty clause is reached. We denote
that the empty clause can be derived by unit propagation applied to CNF F
by F `1 ⊥. Since unit propagation is an incomplete but sound form of logical
inference this is a sufficient condition to show that F is a logical contradiction.



Sorting Parity Encodings by Reusing Variables 3

2.1 The DRAT proof system

In this section we define the rules of the DRAT proof system. Each rule modifies
a formula by either adding or removing a clause while preserving satisfiability
or unsatisfiability, respectively.

Definition 1 (Asymmetric Tautology (AT)[7]). Let F be a CNF formula.
A clause C is an asymmetric tautology w.r.t. F if and only if F ∧ C `1 ⊥.

Asymmetric tautologies are also known as RUP (reverse unit propagation)
clauses. The rules ATA and ATE allow us to add and eliminate AT clauses. ATA
steps can simulate resolution steps and weakening steps.

F (ATA: C is AT w.r.t. F )
F ∧ C

F ∧ C (ATE: C is AT w.r.t. F )
F

Definition 2 (Resolution Asymmetric Tautology (RAT)[7]). Let F be a
CNF formula. A clause C is a resolution asymmetry tautology w.r.t. F if and
only if there exists a literal l ∈ C such that for every clause l ∨D ∈ F it holds
that F ∧D ∧ C `1 ⊥.

The rules RATA and RATE allow us to add and eliminate RAT clauses.
RATA can be used to add new variables that neither occur in F or anywhere
else. This can be used to simulate extension steps in ER.

F (RATA: C is RAT w.r.t. F )
F ∧ C

F ∧ C (RATE: C is RAT w.r.t. F )
F

3 A parity contradiction based on random orderings

In this section we will detail the main family of formulas investigated in this
work. These formulas will be contradictions expressing both the parity and non-
parity on a set of variables.

We define the parity of propositional literals a, b, c as follows

xor(a, b, c) := (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c)

Let X = {x1, . . . , xn}, and let σ be a bijection between literals on X, that
preserves negation (σ(¬l) = ¬σ(l)). Let e denote the identity permutation on
the literals of X. Let T = {t1, . . . , tn−3}. We define Parity(X,T, σ) as

xor(σ(x1), σ(x2), t1) ∧
n−4∧
j=1

xor(tj , σ(xj+2), tj+1) ∧ xor(tn−3, σ(xn−1), σ(xn))

This formula is satisfiable if and only if the total parity of {σ(xi) | xi ∈ X} is
1. The T variables act as Tseitin variables and whenever the formula is satisfied,
ti+1 is always the sum modulo two of σ(x1), . . . , σ(xi+2). The final clauses of
xor(tn−3, σ(xn−1), σ(xn−1)) thus are satisfied when the sum of tn−3, σ(xn−1)
and σ(xn) is 1 mod 2.



4 L. Chew and M.J.H. Heule

ATA

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

RATE

d p ∨ a ∨ b

d p ∨ a ∨ b

d p ∨ a ∨ b

d p ∨ a ∨ b

d p ∨ q ∨ c

d p ∨ q ∨ c

d p ∨ q ∨ c

d p ∨ q ∨ c

RATA

p ∨ c ∨ b

p ∨ c ∨ b

p ∨ c ∨ b

p ∨ c ∨ b

p ∨ q ∨ a

p ∨ q ∨ a

p ∨ q ∨ a

p ∨ q ∨ a

ATE

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

Fig. 1. DRAT steps required for Lemma 1, d denotes a deletion step.

Suppose we pick σ so that there is some i ∈ [n] such that σ(xj) is a negative
literal if and only if j = i. Let T ′ = {t′1, . . . , t′n−3} be another set of Tseitin
variables. Now the 3-CNF Parity(X,T, σ)∧Parity(X,T ′, e) is false as it states
the parity of X is true but also states it false. However the permutation σ
obfuscates the similarities between the two Parity parts of the formula.

Were σ equal to e then these formulas would be equivalent to the Dubois

formulas and a linear proof could be made by inductively deriving clauses that
express t′j = tj for j < i − 1 and then t′j 6= tj for j ≥ i − 1. This will always
allow us to derive a contradiction.

When σ 6= e we still have a contradiction due to the commutativity of the par-
ity function. However such a straightforward DRAT proof becomes obstructed
by the disarranged ordering. This permutation also makes these formulas hard
for CDCL solvers (see Section 4). Our approach is to perform a sort on the X
variables of within the clauses of Parity(X,T ′, e). First of all we need to show
that elementary swaps are feasible in DRAT.

3.1 Short proofs

Lemma 1. Suppose we have a CNF F and two sets of xor clauses xor(a, b, p)
and xor(p, c, q), where variable p appears nowhere in F . We can infer

F ∧ xor(a, b, p) ∧ xor(p, c, q)

F ∧ xor(b, c, p) ∧ xor(p, a, q)

in a constant number of DRAT steps without adding new variables.

Proof. The idea is to eliminate variable p so that we define q directly as the
parity of a, b, c using eight “ternary xor” clauses. Each of these clauses can
be added directly via ATA. We can now remove (using RATE) all clauses that
contain variable p. These steps are equivalent to performing Davis-Putnam (DP)
resolution [4] on variable p.



Sorting Parity Encodings by Reusing Variables 5

3

2

1

x1 x2

x3

x4

x5

x6

3

2 1

x1 x2x3x4

x5

x6

Fig. 2. Swapping the position of an internal node to balance the tree.

What we are left with is that two levels of parity have been replaced with
one level of ternary parity. We can reverse the above steps to get us two levels of
parity yet again, but we can swap a and c (since they appear symmetrically in
our “ternary xor” clauses). We re-use the eliminated p to now mean the xor of b
and c using RATA. Finally, we remove the “ternary xor” clauses using ATE. ut

Note that here elimination is required only because we want to re-use the
variable p. We can also show a similar step in ER without the elimination steps,
introducing the “ternary xor” clauses immediately with resolution. We can in-
troduce the four xor(p′, b, c) extension clauses for p′, and by resolving them with
the ternary clauses on b we get eight intermediate clauses which can resolve with
each other on c to get the remaining four xor(p′, a, q) clauses. This process in-
volves 50% more addition steps, but since it contains no deletion steps we have
25% fewer steps in total. This may be useful in different settings involving for-
mulas that include parity where p is shared among other clauses outside of the
parity and the global constraints of RAT prevent p being re-used.

Sorting the input literals. We can switch the two parity inputs using Lemma 1
in a constant number of proof steps. Furthermore the technique in DRAT does
not require any additional extension variables and since the number of addition
and deletion steps in Lemma 1 is the same, the working CNF does not change
in size. Sorting using adjacent variables requires Θ(n2) swaps.

Let us ignore the variables xn−1 and xn and the clauses that include them
as special cases. We can take xor(x1, x2, t1)∧

∧n−4
i=1 xor(ti, xi+2, ti+1) as the def-

inition of tn−3 in circuit form, using the X variables as input gates and the ti
variables as xor (⊕) gates. This circuit is a tree with linear depth. the distance
between two input nodes is linear in the worst-case, which is why we get Ω(n2)
many swaps. However Lemma 1 allows us even more flexibility, we can not only
rearrange the input variables but the Tseitin variables.

For example if we have xor(ti, xi+2, ti+1) and xor(ti−1, xi+1, ti) clauses we can
eliminate ti so that ti+1 is defined as the parity of xi+1, xi+2, and ti−1. However
we can now redefine ti as the xor of xi+1, xi+2 (using xor(ti, xi+1, xi+2)) and ti+1

as the xor of ti and ti−1 (using xor(ti+1, ti, ti−1)). See Figure 2 for an example
and notice how we change the topology of the tree.



6 L. Chew and M.J.H. Heule

7

43

21 5 6

x1 x2 x3 x4 x5 x6 x7 x8

7

43

2

1 5 6

x1

x2

x3 x4

x5 x6 x7 x8

7

4

3

2

1

5 6x1

x2

x3 x4 x5 x6 x7 x8

Fig. 3. Moving x2 up to the source of the tree

In bn2 c many swaps we can change our linear depth tree into a tree that
consists of a two linear branches of depth at most dn2 e joined at the top by an
xor. This means that using a divide and conquer approach, we can turn this tree
in a balanced binary tree of dlog2 ne depth in O(n log n) many steps.

The purpose of a log depth tree structure is to allow leaf-to-leaf swapping
from both ends of the the tree without having to do a linear number of swaps,
in fact we can do arbitrary leaf swaps in O(dlog ne) many individual steps. This
is done by pushing a variable up its branch to the source node of the tree and
pushing it back down another branch to its destination as in Figures 3 and 4.
Then we can reverse the steps with the variable being swapped out. The resulting
tree even retains the position of all other nodes.

7

4

3

2

1

5 6x1

x2

x3 x4 x5 x6 x7 x8

7

4

3

2

1

5 6

x1x2

x3 x4

x5 x6 x7 x8

7

4

3

2

1

5

6

x1

x2 x3 x4x5 x6

x7 x8

Fig. 4. Moving x2 down to swap with x7

Note that we also have the variables xn and xn−1 that only appear in the
clauses of xor(tn−3, xn−1, xn). Suppose the two children of tn−3 in its definition
circuit are a and b, in other words xor(tn−3, a, b) are the clauses currently defining
tn−3. Without loss of generality suppose we want to swap xn−1 with a.

The clauses of xor(tn−3, xn−1, xn) are exactly the same as the clauses of
xor(tn−3, xn−1, xn). Using Lemma 1 we can eliminate tn−3 and gain eight clauses
that represent that xn is the ternary xor of a, b and xn−1. Then we can reverse
the steps but instead swap the positions of xn−1 and a.



Sorting Parity Encodings by Reusing Variables 7

In this way we can introduce xn−1 or xn into the tree and swap it with
any leaf. Once again we only require O(log n) many applications of Lemma 1 to
completely swap the position of xn−1 or xn with any leaf.

Arriving at the empty clause. The total number of leaf-to-leaf swaps we
are required to perform is bounded above linearly so we stay within O(n log n)
many steps. We can now undo the balanced tree into a linear tree in (we reverse
what we did to balance it) keeping within an O(n log n) upper bound.

Recall that we performed a sort on the variables in Parity(X,T ′, e) thereby
transforming it into Parity(X,T ′, σ′) with var(σ′(x)) = var(σ(x)), resulting
in the formula Parity(X,T, σ) ∧ Parity(X,T ′, σ′). Thus the final part of the
proof now involves refuting a formula equivalent to one of the Dubois formulas.

We create a proof that inductively shows equivalence or non-equivalence be-
tween variables tj ∈ T and the t′j ∈ T ′ starting from j = 1 to j = n− 3. If there
is an even number of instances i, 1 ≤ i ≤ j + 1 where σ′(xi) 6= σ(xi) we derive
(t′j ∨ tj) and (t′j ∨ tj). If there are an odd number of instances i, 1 ≤ i ≤ j + 1
where σ′(xi) 6= σ(xi) we instead derive (t′j ∨ tj) and (t′j ∨ tj).

Whichever case, we can increase j with the addition (ATA) of six clauses.
We can think of this as working via DP resolution in a careful order: σ(xj+1),
tj−1, t′j from j = 1 to n− 3 in increasing j (and treat σ(x1) as t0).

Finally, when j = n − 3, we have either already exceeded the single value
i such that σ′(xi) 6= σ(xi), or it appears in n − 1 or n. Either way, we can
add the four clauses (σ(xn−1)∨σ(xn)),(¬σ(xn−1)∨σ(xn)), (σ(xn−1)∨¬σ(xn)),
(¬σ(xn−1)∨¬σ(xn)) then the two unit clauses (σ(xn)) and (¬σ(xn)) and finally
the empty clause. This final part of the refutation uses O(n) many ATA steps.

4 Experiments

The formulas we ran experiments on are labelled rpar(n, g). Which represent
Parity(X,T, σ(n,g)) ∧ Parity(X,T ′, e) using the DIMACS format. The pa-
rameter n is the number of input variables and a random number genera-
tor g. The CNF uses variables X = {1, . . . , n}, T = {n + 1, . . . , 2n − 3},
T ′ = {2n − 2, . . . , 3n − 6}, e is the identity permutation, and σ(n,g) is a ran-
dom permutation based on g, where one random literal in,g is flipped by σ.

We ran a program rParSort that generated an instance rpar(n, rnds) based
on a seed s and also generated a DRAT proof based on the work in Section 3.1.
We compare the size of our proofs by ones produced by the state-of-the-art
SAT solver CaDiCaL [1] (version 1.2.1) and the tool EBDDRES [18] (version
1.1). The latter solves the instance using binary decision diagrams and turns
the construction into an ER proof. These ER proofs can easily be transformed
into the DRAT format as DRAT generalizes ER. Proof sizes (in the number of
DRAT steps, i.e. lines in the proof) are presented and compared in Figure 5.

rParSort proofs remained feasible for values as large as n = 4000 with proofs
only being 150MB due to the O(n log n) upper bound in proof lines. We believe



8 L. Chew and M.J.H. Heule

n vars clauses lines size(KB)

10 24 64 1 681 25
20 54 144 7 469 115
50 144 384 30 657 481

101 297 792 77 971 1 426
250 744 1 984 253 777 4 810
500 1 494 3 984 583 885 11 176

1 000 2 994 7 984 1 344 837 29 278
2 000 5 994 15 984 3 023 541 67 405
3 000 8 994 23 984 4 778 373 107 276
4 000 11 994 31 984 6 668 629 150 181 34 36 38 40 42 44 46

104

105

106

107

108

n

EBDDRES

CaDiCaL

rParSort

Fig. 5. rParSort proof sizes for rpar(n, rnd53) formulas (left). Comparisons of
average (of 10) proof sizes on n ∈ {35, . . . , 45} (right).

leading coefficient is also kept small by number of factors such as the proof lines
being width 4 and only 16 being needed per swap step.

CaDiCaL showed difficulty for modest values of n. While proofs with less than
106 lines are common for n = 35, the size and running time grows exponentially
and by n = 41 proofs are larger than 107 lines. CaDiCaL times out using a 5000
seconds limit on some instances with n = 46 and on most instances with n ≥ 50.

The size of proofs produced by EBDDRES appears to grow slower compared
to CDCL, which is not surprising as BDDs can solve the formulas in polynomial
time. However, as can be observed in Figure 5, the ER proofs are actually bigger
for small n. The extracted DRAT proofs (converted from the ER proofs) are
large: the average proof with n ≥ 35 had more than 107 lines. This means that
this BDD-based approach is not practical to express parity reasoning in DRAT.

Conclusion

We have shown that through manipulating existing encoding variables DRAT
can take advantage of the commutativity of xor definitions via Lemma 1. Our
proof generator is capable of producing reasonable-sized proofs for instances with
tens of thousands of variables, while state-of-the-art SAT solvers without xor
detection and Gaussian elimination, such as CaDiCaL, can only solve instances
up to about 60 variables. Although these formulas are also doable for BDD-based
approaches, the resulting proofs are too big for practical purposes.

The DRAT proofs are in the fragment of DRAT−, where the number of
variables stays fixed, which is of potential benefit to the checker. If we are not
concerned with the introduction of new variables, our DRAT proofs can easily
be made into ER proofs with only a 50% increase in addition steps (and the
introduction of new variables). This is an alternative approach that may prove
useful in other settings where elimination of a variable is not so easy.



Sorting Parity Encodings by Reusing Variables 9

References

1. Biere, A.: Cadical at the sat race 2019 (2019)
2. Buss, S., Thapen, N.: Drat proofs, propagation redundancy, and extended reso-

lution. In: International Conference on Theory and Applications of Satisfiability
Testing. pp. 71–89. Springer (2019)

3. Crawford, J.M., Kearns, M.J., Schapire, R.E.: The minimal disagreement parity
problem as a hard satisfiability problem (1994)

4. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7, 210–215 (1960)

5. Han, C.S., Jiang, J.H.R.: When boolean satisfiability meets gaussian elimination
in a simplex way. In: Madhusudan, P., Seshia, S.A. (eds.) Computer Aided Verifi-
cation. pp. 410–426. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

6. Heule, M., van Maaren, H.: Aligning cnf- and equivalence-reasoning. In: Hoos,
H.H., Mitchell, D.G. (eds.) Theory and Applications of Satisfiability Testing. pp.
145–156. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

7. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) Automated Reasoning. pp. 355–370. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2012)

8. Jeřábek, E.: Dual weak pigeonhole principle, Boolean complexity, and derandom-
ization. Annals of Pure and Applied Logic 129, 1–37 (2004)

9. Kiesl, B., Rebola-Pardo, A., Heule, M.J.H.: Extended resolution simulates DRAT.
In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) Automated Reasoning - 9th
International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings. Lecture Notes
in Computer Science, vol. 10900, pp. 516–531. Springer (2018)

10. Laitinen, T., Junttila, T., Niemelä, I.: Extending clause learning dpll with parity
reasoning. In: Proceedings of the 2010 Conference on ECAI 2010: 19th European
Conference on Artificial Intelligence. p. 21–26. IOS Press, NLD (2010)

11. Laitinen, T., Junttila, T., Niemela, I.: Equivalence class based parity reasoning
with dpll(xor). In: Proceedings of the 2011 IEEE 23rd International Conference on
Tools with Artificial Intelligence. p. 649–658. ICTAI ’11, IEEE Computer Society,
USA (2011)

12. Li, C.M.: Equivalent literal propagation in the dll procedure. Discrete Applied
Mathematics 130(2), 251 – 276 (2003), the Renesse Issue on Satisfiability

13. Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT
solvers. In: Handbook of Satisfiability. IOS Press (2009)

14. Ostrowski, R., Grégoire, É., Mazure, B., Säıs, L.: Recovering and exploiting struc-
tural knowledge from cnf formulas. In: Van Hentenryck, P. (ed.) Principles and
Practice of Constraint Programming - CP 2002. pp. 185–199. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2002)

15. Philipp, T., Rebola-Pardo, A.: Drat proofs for xor reasoning. In: Michael, L., Kakas,
A. (eds.) Logics in Artificial Intelligence. pp. 415–429. Springer International Pub-
lishing, Cham (2016)

16. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning sat solvers as
resolution engines. Artificial Intelligence 175(2), 512 – 525 (2011)

17. Robinson, J.A.: Theorem-proving on the computer. Journal of the ACM 10(2),
163–174 (1963)

18. Sinz, C., Biere, A.: Extended resolution proofs for conjoining bdds. In: Grigoriev,
D., Harrison, J., Hirsch, E.A. (eds.) Computer Science – Theory and Applications.
pp. 600–611. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)



10 L. Chew and M.J.H. Heule

19. Soos, M.: Enhanced gaussian elimination in dpll-based sat solvers. In: Berre, D.L.
(ed.) POS-10. Pragmatics of SAT. EPiC Series in Computing, vol. 8, pp. 2–14.
EasyChair (2012)

20. Soos, M., Nohl, K., Castelluccia, C.: Extending sat solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing -
SAT 2009. pp. 244–257. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

21. Tseitin, G.C.: On the complexity of derivations in propositional calculus. In:
Slisenko, A.O. (ed.) Studies in Mathematics and Mathematical Logic, Part II,
pp. 115–125 (1968)

22. Urquhart, A.: Hard examples for resolution. Journal of the ACM 34(1), 209–219
(1987)

23. Warners, J.P., van Maaren, H.: A two-phase algorithm for solving a class of hard
satisfiability problemsfn1fn1supported by the dutch organization for scientific re-
search (nwo) under grant sion 612-33-001. Operations Research Letters 23(3), 81
– 88 (1998)


