
The Packing Chromatic Number of the Infinite
Square Grid is At Least 14
Bernardo Subercaseaux £ �

Carnegie Mellon University, Pittsburgh, USA

Marijn J.H. Heule £ �

Carnegie Mellon University, Pittsburgh, USA

Abstract
A packing k-coloring of a graph G = (V,E) is a mapping from V to {1, ..., k} such that any pair
of vertices u, v that receive the same color c must be at distance greater than c in G. Arguably
the most fundamental problem regarding packing colorings is to determine the packing chromatic
number of the infinite square grid. A sequence of previous works has proved this number to be
between 13 and 15. Our work improves the lower bound to 14. Moreover, we present a new encoding
that is asymptotically more compact than the previously used ones.

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems

Keywords and phrases packing coloring, SAT solvers, encodings

Supplementary Material All the code used in our experiments can be found in
https://github.com/bsubercaseaux/PackingChromaticNumberAtLeast14

Funding Authors are supported by National Science Foundation grant CCF-2015445.

Acknowledgements Authors thank the Pittsburgh Supercomputing Center for allowing us to use
Bridges2 [4] in our experiments. The first author thanks Dylan Pizzo for his intriguing post on a
Math Facebook group in 2019, which inspired the journey leading to this article.

1 Introduction

Automated reasoning techniques have been successfully applied to a wide variety of coloring
problems, ranging from the classical computer assisted proof of the Four Color Theorem [1]
establishing that 4 colors are enough to color any planar graph, to partial progress on the
Hadwiger-Nelson problem [16] of computing the chromatic number of the graph with vertex
set R2 and edges between points at euclidean distance exactly 1, and computing Ramsey-like
numbers [12] that characterize the minimum size required for a graph to guarantee that all
its colorings will contain certain local structures. In this context, this article’s main focus
is the use of automated reasoning techniques for improving the best known bounds on the
packing chromatic number of the infinite square grid. The notion of packing coloring was
introduced in the seminal work of Goddard et al. [8]1, and has been extensively studied
since [3]. Let us now jump to its definition.

I Definition 1. Given a graph G = (V,E), a packing k-coloring is a mapping ϕ : V →
{1, . . . , k} such that for any pair of distinct nodes u, v ∈ V and any color c ∈ {1, . . . , k} it
holds that ϕ(u) = ϕ(v) = c =⇒ dist(u, v) > c.

Note that the standard notion of coloring can be stated as requiring ϕ(u) = ϕ(v) = c =⇒
dist(u, v) > 1, which shows that packing colorings are a natural generalization. Moreover,

1 It was originally presented under the name of broadcast coloring, motivated by the problem of choosing
broadcast frequencies for radio stations in a non-conflicting way [8], but the literature has preferred the
name packing coloring since [3].

mailto:bsuberca@andrew.cmu.edu
https://bsubercaseaux.github.io/
https://orcid.org/ 0000-0003-2295-1299
mailto:mheule@andrew.cmu.edu
http://cs.cmu.edu/~mheule/
https://orcid.org/0000-0002-5587-8801
https://github.com/bsubercaseaux/PackingChromaticNumberAtLeast14

2 The Packing Chromatic Number of the Infinite Square Grid is At Least 14

Table 1 Historical summary of the bounds known for χρ(Z2).

Year Citation Lower bound Upper bound

2002 Goddard et al. [8] 9 23
2002 Schwenk [13] 9 22
2009 Fiala et al. [7] 10 23
2010 Soukal and Holub [17] 10 17
2010 Ekstein et al. [5] 12 17
2015 Martin et al. [10] 13 16
2017 Martin et al. [11] 13 15
2022 Our work 14 15

the notion of chromatic number can be analogously defined for packing colorings as follows.

I Definition 2. Given a graph G = (V,E), define its packing chromatic number χρ(G) as
the minimum value of k such that G admits a packing k-coloring.

For any k ≥ 4, the problem of determining whether a graph G admits a packing 4-coloring
is known to be NP-hard [3].

I Example 3. Consider the infinite graph with vertex set Z and with edges between
consecutive integers, which we denote as Z1. A packing 3-coloring is illustrated in Figure 1.
On the other hand, by simple examination one can observe that it is impossible to obtain a
packing 2-coloring for Z1.

1 3 1 2 1 3 1 2· · · · · ·

Figure 1 Illustration for a packing 3-coloring for Z1.

Example 3 shows that χρ(Z1) = 3. Interestingly, the question of computing χρ(Z2),
where Z2 is the graph with vertex set Z×Z and edges between orthogonally adjacent points,
has been open since the introduction of packing colorings by Goddard et al. [8]. The first
bounds obtained were 9 ≤ χρ(Z2) ≤ 23 [8], and before this work, the best bounds known
where 13 ≤ χρ(Z2) ≤ 15 by Martin et al. [11]. A summary of the progress until present is
illustrated in Table 1. In what follows, we detail our approach to obtain a lower bound of 14,
and present a theoretically compact encoding as well. For a survey in packing colorings, the
reader can refer to that of Brešar et al. [3].

2 Direct Encoding and Basic Symmetry Breaking

Besides the lower bound of 10 proved by Fiala et al. [7], all other lower bounds have been
proved with the help of computers. Among these, only that of Martin et al. [11] (i.e., the
current best bound) was proved with the aid of SAT solvers. Our work continues along this
line.

Proving lower bounds for the packing chromatic number of an infinite graph usually relies
on the following trivial proposition.

I Proposition 4 ([8]). Let G be a graph, and H be a sub-graph of G. Then χρ(H) ≤ χρ(G).

B. Subercaseaux and M.J.H. Heule 3

3

1

2

1

1

2

1

1

7

1

5

1

1

6

1

4

1

1

2

1

1

2

1

11

Figure 2 Illustration of a satisfying assignment for D+
3,7.

For example, Martin et al. conclude that χρ(G) ≥ 13 by proving that a certain graph
H ⊂ Z2 (which consists on a 14× 14 grid, with the number 9 forced in position (7, 12)) does
not admit a packing 12-coloring, thus implying that χρ(Z2) ≥ χρ(H) > 12.

The direct encoding for determining whether a finite graph H = (V,E) admits a packing
k-coloring for some k is as follows.
1. Create variables xv,i for each v ∈ V and 1 ≤ i ≤ k, stating that vertex v receives color i.
2. Create a clause

xv,1 ∨ xv,2 ∨ . . . ∨ xv,k−1 ∨ xv,k

for each vertex v ∈ V , implying that every vertex will be assigned at least some color.
3. For each pair of vertices u, v and color i ∈ {dist(u, v), . . . , k}, create a clause

xu,i ∨ xv,i

forbidding that both u and v get color i.

Let us now denote by B(v, n) := {u ∈ V (Z2) | dist(u, v) ≤ n} the n-radius ball in Z2,
and recall that |B(v, n)| = 2n2 + 2n+ 1 = O(n2) for any v. Therefore, to encode whether a
given ball Bn := B((0, 0), n) admits a packing k-coloring, the direct encoding requires O(n2k)
variables, and its number of clauses is

O(n2) +
k∑
i=1

∣∣{(u, v) ∈ V (Bn)2 | 0 < dist(u, v) ≤ i
}∣∣

= O(n2) +
k∑
i=1

∑
u∈V (Bn)

|{v ∈ V (Bn) \ {u} | dist(u, v) ≤ i}| /2

= O(n2) +
k∑
i=1

n ·O(i2) = O(n2 + nk3).

Moreover, let Bn,k represent whether Bn admits a packing k-coloring. Then, let Dn,k be
the SAT instance created with the direct encoding for Bn,k, and let D+

n,k be equal to Dn,k

but forcing its central vertex to be assigned color min(n, k), choice that we justify later on.
Namely, adding the unit clause x(0,0),min(n,k). Figure 2 illustrates a satisfying assignment for
D+

3,7.

4 The Packing Chromatic Number of the Infinite Square Grid is At Least 14

I Proposition 5. If χρ(Z2) ≥ min(n, k) for some pair (n, k), and D+
n,k is unsatisfiable, then

χρ(Z2) ≥ k + 1.

Proof. If k ≤ n argue as follows. Assume, expecting a contradiction, that Z2 admits a
packing k-coloring ϕ. As χρ(Z2) ≥ k, every ϕ must assign at least one vertex v ∈ V (Z2) to
color k (otherwise ϕ would be a packing (k − 1)-coloring). Now, note that no other vertex
besides v can receive color k in B(v, n), and thus ϕ restricted to B(v, k) provides a satisfiable
assignment for D+

n,k, which contradicts the hypothesis. On the other hand, if k > n, assume
a packing k-coloring ϕ, and as χρ(Z2) ≥ n, there must exist a vertex v ∈ Z2 such that
ϕ(v) ≥ n. Let v be such that ϕ(v) ≥ n is minimized. Then, consider the ball B(v, n) and
note that either ϕ(v) = n or otherwise ϕ(v) > n and thus {u ∈ B(v, n) | ϕ(u) = n} = ∅,
by minimality of ϕ(v). In either case, ϕ restricted to B(v, n), but assigning color n to v,
provides a satisfiable assignment for D+

n,k. J

As we trivially have that if Dn,k is unsatisfiable then χρ(Z2) ≥ k, one can prove for
example that χρ(Z2) ≥ 12 by showing that both D4,7 and D+

7,11 are unsatisfiable instances.
While this endeavor took Ekstein et al. [5] 120 days of brute force computation, admittedly
with hardware from 2009, a current personal computer is able to prove the unsatisfiability
of D4,7 and D+

7,11 in less than an hour by using some further optimizations we will present
later. Intuitively, the reason to force min(n, k) in the center is that it is the smallest color we
can assign that guarantees no more occurrences besides the center. As in packing colorings
smaller colors have densities (i.e., fractions of the vertices receiving said colors) that are
greater or equal than those of higher colors [3], forcing a color c to appear only once is more
useful the smaller c is, as we are reducing from a higher original density. Note as well that, as
opposed to the previous work that used rectangles to provide lower-bounds [5, 11], our basic
shape is an `1-ball. Let us present an intuitive reason for why this is a good idea. Consider
the following property: a subgraph H ⊂ Z2 is said to be (n, k)-single, for n ≤ k if there is a
vertex v ∈ V (H) such that assigning color n to v guarantees that in no packing k-coloring of
H other vertex u 6= v can be assigned color n. Now note that, for any pair (n, k), it happens
that Bn is the smallest (n, k)-single graph in terms of its number of vertices.

In order to quantitatively understand effect of using `1-balls instead of squares, as well as
the difference between D+

n,k and Dn,k, we study the time required to prove a given lower
bound χρ(Z2) ≥ k with each of them, under the same hardware. We will use notation Sn
to refer to the square grid of n × n, and Sn,k to the direct encoding for Sn with k colors.
Moreover, to understand the impact of forcing, let us define S+

n,k to be equal to Sn,k, but with
an added unit clause enforcing that the value at the center of the grid, namely at position
(bn/2c, bn/2c) to contain value min(k, bn/2c).

Table 2 presents results comparing the runtime of the different alternatives. It can be
appreciated that although there is not a significant difference between shapes alone, the
forcing creates a substantial difference. This can be interpreted as a rather trivial form of
symmetry breaking. Empirically we found that `1-balls appeared to work better with the
further optimizations we introduce, and thus we stick with them.

2.1 Experimental Setup
In terms of software, experiments from Table 2 were ran on state-of-the-art solver CaDiCaL [2],
while experiments with cube-and-conquer, as those in Table 3 and Table 4 were ran using
iLingeling because it supports incremental solving [9]. In terms of hardware, all our
experiments were run in the Bridges2 cluster of the Pittsburgh Supercomputing Center [4],
which has the following specifications:

B. Subercaseaux and M.J.H. Heule 5

Table 2 Comparison of basic approaches for showing lower bounds on χρ(Z2) using CaDiCaL.

lower-
bound Requires UNSAT of (# vertices) Time

Square Square +
force `1-ball

`1-ball +
force Square Square

+ force `1-ball
`1-ball +
force

5 S4,4 (16) S+
4.4 (16) D2,4 (13) D+

1,4 (5) 0.00s 0.00s 0.00s 0.00s
6 S5,5 (25) S+

5,5 (25) D3,5 (25) D+
2,5 (13) 0.00s 0.00s 0.01s 0.00s

7 S5,6 (25) S+
5,6 (25) D4,6 (41) D+

3,6 (25) 0.04s 0.04s 0.04s 0.01s
8 S6,7 (36) S+

6,7 (36) D4,7 (41) D+
4,7 (41) 0.22s 0.04s 0.20s 0.06s

9 S7,8 (49) S+
7,8 (49) D5,8 (61) D+

4,8 (41) 7.00s 0.28s 7.56s 0.28s
10 S9,9 (81) S+

8,9 (64) D6,9 (85) D+
5,9 (61) 147.52s 11.82s 159.21s 12.22s

11 S10,10 (100) S+
9,10 (81) D7,10 (113) D+

5,10 (61) 2.56hrs 324.49s 3.03hrs 229.76s
12 S12,11 (144) S+

11,11 (121) D8,11 (145) D+
6,11 (85) >24hrs 4.92hrs >24hrs 5.76hrs

Two AMD EPYC 7742 CPUS, each with:
64 cores
2.25-3.40GHz
256MB L3
8 memory channels

512GB of RAM
NVMe SSD (3.84TB)
Mellanox ConnectX-6 HDR Infiniband 200Gb/s Adapter.

3 Proving that 14 is a Lower Bound

Given that runtime increases exponentially with respect to the number of colors (see Table 2),
to solve instance D+

12,13 within a reasonable amount of time, say 48hrs of computation
(including parallelism), we required some further optimizations.

In particular, we followed the cube-and-conquer approach [9]. In a nutshell, cube-and-
conquer is based on constructing a tautological DNF formula φ = C1 ∨ . . . ∨ Cm, with cubes
C1, . . . , Cm, and then using the following identity for any formula ψ:

SAT(ψ) ⇐⇒ SAT(ψ ∧ φ) ⇐⇒ SAT
(

m∨
i=1

(ψ ∧ Ci)
)
.

This equivalence means that we can solve instance ψ by solving a certain numbers of
instances of the form ψ ∧ Ci. These instances, if the cubes Ci are properly designed, should
be much easier to solve than the original instance ψ. Moreover, it is clear from its definition
that this approach is well-suited for parallel computation.

Let us now describe the construction of cubes that we used, which is also presented as
pseudocode in Algorithm 1. Let F and d be fixed integers. Then, our cubes will be based on
forcing up to F colors in the ball B((0, 0), d). More precisely, consider an instance D+

n,k, and
let c = min(n, k) be the color forced at the center. Then, let K = {k, k − 1, . . . , k − F} \ {c}
the set of the F highest colors without considering the one forced at the center. Now, for
every value f ∈ {F, . . . , 0}, we will create cubes forcing f colors in the following way. For
every ordered set O = (o1, . . . , of) consisting of f vertices in B((0, 0), d) \ {(0, 0)}, and every
permutation k1, . . . , kf of every subset K ′ ⊆ K, |K ′| = f , create a cube that forces each

6 The Packing Chromatic Number of the Infinite Square Grid is At Least 14

5
9
7
7

7
7
7

7
7
7

7

6

7
7

7
7 7

7
7

8
7

7
7

7
7

Figure 3 Illustration of a cube for instance D+
5,9. The ball B((0, 0), 3) is colored with light gray,

and notation 7 is used to indicate that a given cell is forced to not contain color 7.

vertex oi to receive color ki, and that asserts as well that colors in K \K ′ are not assigned
to any vertex in B((0, 0), d).

I Example 6. Figure 3 illustrates a cube created for solving the instance D+
5,9, with para-

meters F = 4 and D = 3. In particular K = {6, 7, 8, 9}, and the illustrated cube corresponds
to f = 3, K ′ = {6, 8, 9} and O = ((−1, 2), (1, 1), (0,−1)).

Algorithm 1 CubeConstruction(n, k, d, F)

1.1 K ← {k, k − 1, . . . , k − F} \ {min(n, k)}
1.2 cubes← ∅
1.3 for f ∈ {F, F − 1, . . . , 0} do
1.4 for O ⊆ B((0, 0), d) \ {(0, 0)}, |O| = f do
1.5 for K ′ ∈ Permutations(K, f) do

. Assume Permutations(K, f) returns a list with all the different f -sized ordered sets
of K.

1.6 cube← ∅
1.7 for i ∈ {1, . . . , f} do
1.8 (a, b)← oi
1.9 k ← K ′i

1.10 cube← cube ∪ {x(a,b),k}
1.11 for t ∈ K \K ′ do
1.12 for v ∈ B((0, 0), d) \O do
1.13 cube← cube ∪ {¬xv,t}

1.14 cubes← cubes ∪ {cube}

Let us prove that this construction forms indeed a tautology, while we also point out that
we checked with a SAT-solver that the generated cubes for the instance we ran form indeed
a tautology.

I Lemma 7. The construction of cubes presented in Algorithm 1 results in a tautology.

B. Subercaseaux and M.J.H. Heule 7

Figure 4 Illustration of symmetry breaking for cube generation. The principal octant is colored
with light red, and the cells in its intersection with B((0, 0), 3) \ {(0, 0)} are colored with dark red.

Proof. Consider the cube constructed when f takes value 0. That cube states that no
vertex v ∈ B((0, 0), d) receives any color in K. If that cube holds, then the DNF is satisfied.
Otherwise, some vertices in B((0, 0), d) must receive colors in K. Let

K∗ = {k ∈ K | ∃v ∈ B((0, 0), d), xv,k = 1},

and note that K∗ is non empty because the cube associated to value f = 0 does not hold.
Then, let O∗ be an ordered list of vertices getting different colors in K∗. As |K| = F , we
have |K∗| ≤ F , and thus O∗ contains at most F vertices. These implies that some cube
is generated exactly with the values f = |K∗|, K ′ = K∗ and O = O∗, and is by definition
satisfied, thus satisfying the DNF. J

3.1 Symmetry Breaking

To further optimize performance, there is a simple kind of symmetry breaking we can apply.
Indeed, note that the `1-ball presents a natural symmetry with respect to 4 different axis,
which will allows to asymptotically reduce the number of cubes to consider by a factor of 8.

More precisely, it suffices to consider cubes in which the largest number forced appears
in a particular octant, namely {(i, j) | i ≥ 0, j ≥ 0, i ≥ j}. Thus, we can simply optimize
Algorithm 1 by considering only cubes whose largest forced color lies in said octant. This is
illustrated in Figure 4. Despite its simplicity, this form of symmetry breaking had not been
used in the past to the best of our knowledge.

3.2 Number of Generated Cubes

The number of cubes generated by Algorithm 1 is an important parameter of our approach;
more cubes usually imply that each cube is easier to solve, up to a certain point at which
the sheer number of cubes becomes the dominant factor in runtime and thus performance
decreases. Moreover, this analysis can become even more complex in the presence of parallel
computation.

First, let us analyze the number of cubes asymptotically. Directly from Algorithm 1 it
follows that the number of cubes for a given value of f is exactly(

|B((0, 0), d) \ {0, 0}|
f

)(
|K|
f

)
f ! =

(
2d2 + 2d

f

)(
F

f

)
f !,

8 The Packing Chromatic Number of the Infinite Square Grid is At Least 14

Table 3 Illustration of the effect of the different parameters in the number of cubes, and the
derived runtime, for instance D+

5,10. Symmetry breaking is abbreviated as SB.

d F # cubes # cubes
w. SB Time cubes w/o SB Time cubes w/ SB

total average max total average max
2 2 157 40 126.71s 0.80s 12.35s 36.53s 0.91s 10.09s
2 3 1753 439 145.86s 0.08s 2.75s 38.43s 0.08s 2.56s
2 4 18001 4501 183.23s 0.01s 0.48s 45.48s 0.01s 0.33s
3 2 601 126 213.10s 0.35s 1.32s 45.25s 0.33s 1.47s
3 3 13873 2891 400.37s 0.02s 0.39s 82.90s 0.02s 0.25s
3 4 307009 63961 1204.19s 0.00s 0.24s 199.41s 0.00s 0.05s

Table 4 Illustration of the effect of the different parameters in the number of cubes, and the
derived runtime, for instance D+

7,11. Symmetry breaking is abbreviated as SB. All instances were
ran on a 128 cores machine.

d F
cubes
w. SB Time w. SB

Total Wall clock Avg. cube Max cube
2 2 40 3280.3s 1995.7s 82.4s 1994.6s
2 3 439 2845.0s 607.0s 6.7s 599.6s
2 4 4501 3038.5s 197.2s 0.7s 180.1s
2 5 42256 3549.1s 47.5s 0.08s 20.8s
3 2 126 3141.0s 298.5s 26.6s 297.3s
3 3 2891 3772.1s 79.6s 1.3s 51.5s
3 4 63691 6332.4s 59.9s 0.1s 8.6s
3 5 1354726 13216.4s 122.3s 0.01s 2.6s

and thus the total number of cubes is
F∑
f=0

(
2d2 + 2d

f

)(
F

f

)
f !.

To obtain a simpler expression we can use the standard bound
(
a
b

)
≤ (ea/b)b, and note that

f = F is the largest term in the sum, which implies that previous formula is asymptotically
bounded above by F (e2(2d2 + 2d)F) ≤ F (3ed)2F .

By applying the symmetry breaking procedure described in Section 3.1, this is further
reduced by a constant factor that converges to 8 asymptotically. Table 3 presents the
number of cubes generated under different parameters for instance D+

5,10, while Table 4
presents results for instance D+

6,11. Note that the best sequential time for D+
6,11 with our

cube-and-conquer approach is 2845 seconds, which represents more than a 5x improvement
with respect to the sequential execution shown in Table 2. Moreover, the speed-up we obtain
from parallelism is almost linear (i.e., best possible), as 128 cores allow for the best parallel
runtime to be a 60x improvement over the best sequential runtime (47s vs. 2845s).

Based on these experiences, we approached D+
12,13 by setting F = 5 and d = 3. Our

rationale for this is twofold. On the one hand, it can be appreciated from comparing Table 3
and Table 4 that, as the instance to solve gets larger, the value of d + F for its optimal
parameters increase. For example, for instance D+

6,11, the best combinations are d = 2, F = 5

B. Subercaseaux and M.J.H. Heule 9

followed by d = 3, F = 4, so the optimal value of d+ F appears to be 7. More in general the
runtime of in-parallel execution can be dominated by the time of the hardest cubes, and thus
reducing said time usually improves wall clock time. Both the increase of F and d contribute
towards this goal. On the other hand, it is clear in Table 4 that the total execution time gets
larger, and at d = 3, F = 6 there are more than 100 million cubes, thus making the total
execution time unmanagable.

3.3 Partioning the Last Cube

In order to tackle D+
12,13 we introduced yet another optimization. One can see in practice

that the cubes constructed by Algorithm 1 get progressively harder as f is decreasing. In
particular, the cube in which f = 0, and thus the only condition the cube imposes is that
no vertex in B((0, 0), d) receives a color in K, is usually the one that takes the most time
to solve. Especially in the context of parallel execution, runtime can be dominated by the
time it takes to solve the hardest cube, which motivates us to reduce its difficulty. For this
purpose we introduced a last optimization that we refer to as last cube partitioning that is
described next.

The cube constructed by Algorithm 1 with f = 0 is stating that there is a coloring in
which no vertex in B((0, 0), d) receives a color in K. Such a coloring can be conditioned on
whether it assigns the largest color outside of K to some vertex in B((0, 0), d) or not. If it
does not, then we can condition on whether it assigns the second largest color outside of
K to some vertex in in B((0, 0), d), and so on. This way, the hardest cube is broken into
|B((0, 0), d)| cubes, of which |B((0, 0), d) \ {(0, 0)}| consist of forcing the largest color outside
of K to the different positions in B((0, 0), d) \ {(0, 0)}, and the last one (which can be broken
down in the same fashion), states that colors in K ∪ {max(Kc)} are not assigned to any
vertex in B((0, 0), d) \ {(0, 0)}. We empirically found that doing two steps of this recursive
partitioning was enough to replace the last cube by a series of cubes that take less than a
second each. Part of our future work includes further experimentation with this optimization.

3.4 Solving D+
12,13

Using all optimizations discussed so far, included symmetry breaking, we were able to solve
instanceD+

12,13 in less than 48 hours. As our symmetry breaking process has not been formally
verified yet (which we leave for future work), we also solved every cube associated to D+

12,13,
increasing total runtime by a factor of 5. As it was known before that χρ(Z2) ≥ 13 [11], we
use Proposition 5 together with the unsatisfiability result obtained for D+

12,13 to prove our
main theorem.

I Theorem 8. χρ(Z2) ≥ 14.

Let us now present some data regarding the execution over instance D+
12,13. Because

of parallelization over 128 cores (see Section 2.1), we report both the total execution time
(meaning the sum of the time every single cube took) and wall clock time. Considering
symmetry breaking, there were a total of 1354741 many cubes. The total execution time was
3200hrs., while wall clock time was 45hrs. Moreover, the average time spent per cube was
only 8.50s., while the hardest cube took 30hrs. Figure 5 shows how progress (in terms of the
number of cubes solved) evolves over time. Figure 6 shows statistics on the time spent per
cube.

10 The Packing Chromatic Number of the Infinite Square Grid is At Least 14

0 400 800 1,200 1,600 2,000 2,400 2,800 3,2000

0.2

0.4

0.6

0.8

1

Total execution time (hrs)

Fr
ac
tio

n
of

cu
be

s
so
lv
ed

Figure 5 Depiction of the fraction of cubes solved over total execution time. A red dashed line
at 359 hours shows the point at which almost all cubes with f = 5 have been solved.

4 A Recursive Encoding

This section presents a boolean encoding for Bn,k that is much more asymptotically compact
than Dn,k, and how to combine it with the direct encoding to obtain one that is either
equally or more compact than the direct one in any case.

I Theorem 9. There is an encoding Cn,k for Bn,k that uses O(n2k lg k) variables and clauses.

The encoding, which we shall call recursive encoding, is composed of two different kinds
of variables:

xv,t representing that vertex v gets color t. (v ∈ Bn, t ∈ [k]).
fv,t,r representing that no vertex in B(v, 2r) gets color t. (v ∈ Bn, t ∈ [k], r ∈ [lg2(2k)]).

Note immediately that the number of variables matches the promised bound. Just as the
direct encoding, we require for every vertex v a clause stating that it will receive at least one
color. The fundamental difference with the direct encoding will be in the way that conflicts
are handled. We want to enforce that xv,t implies no vertex in B(v, t) \ {v} receives color t.
For this purpose we will use a constant number of the fv,t,r variables, for an appropriate set
of choices for v and r.

Let us start by enforcing that the fv,t,r variables achieved their desired semantic. We can
do so by defining fv,t,r in terms of the x variables for r = 1, and then using the following
recursive implication:

f(i,j),t,r −→ f(i−2r−1,j),t,r−1 ∧ f(i+2r−1,j),t,r−1 ∧ f(i,j−2r−1),t,r−1 ∧ f(i,j+2r−1),t,r−1,

which is illustrated in Figure 7.
With the goal of simplifying the exposition, let us introduce variables wv,t,r that will not

be part of the actual encoding, and thus can be understood as shorthands for an expression
we will define later. Semantically, wv,t,r represents that no vertex in B(v, r) gets color t.

I Lemma 10. For a fixed vertex v and color t, it is possible to encode that no vertex in
B(v, t) \ {v} receives color t with using only O(1) clauses, without counting the clauses
defining the fv,t,r variables described above.

B. Subercaseaux and M.J.H. Heule 11

[0
s
,
3.

6s
]

(3
.6
s
,
7.

6s
]

(7
.6
s
,
16
.3
s
]

(1
6.

3,
34
.8
s
]

(3
4.

8s
,
74
.3
s
]

(7
4.

3s
,
15

8.
4s

]
(1

58
.4
s
,
33

7.
7s

]
(3

37
.7
s
,
72

0.
0s

]
(7

20
.0
s
,
15

34
.7
s
]

(1
53

4.
7s
,
32

71
.6
s
]

(3
27

1.
6s
,
1.

9h
]

(1
.9
h
,
4.

1h
]

(4
.1
h
,
8.

8h
]

(8
.8
h
,
18
.7
h
]

(1
8.

7h
,
40
h
]

101

103

105

Time to solve

N
um

be
r
of

cu
be

s

Figure 6 Categorization of the time spent per cube. The times are separated into 14 intervals in
a geometric progression from 0 seconds up to 40 hours, and for each interval the number of cubes
whose solution time lies within the interval is displayed.

Figure 7 Illustration for r = 3 of the recursive decomposition for the f variables.

Proof. First, if t ≤ 2, using the direct-encoding for this satisfies the statement. We will
thus assume t ≥ 3. As the construction will depend on the parity of t, Figure 8 illustrates a
decomposition for odd values of t, while Figure 9 illustrates a decomposition for even values
of t.

By using at most 12 variables wv,t,r, we can enforce that no vertex in B(v, t) \ {v}
receives color t. In particular, let v = (i, j) ∈ V (Z2). Then, enforce 4 constraints of the
form w(i+∆i,j+∆j),t,b t−1

2 c
for (∆i,∆j) ∈ {(−1, 0), (1, 0), (0,−1), (0, 1)}, we call these primary

constraints. Now, to fill in the gaps between the regions, we will enforce secondary constraints.
Let us first define t′ = (bt/2c+ 1)/2 and t′′ = b(t− 1)/2c, and now we proceed to detail the
secondary constraints:

1. w(i−bt′c,j−dt′e),t,t′′

2. w(i−dt′e,j+bt′c),t,t′′

3. w(i+bt′c,j−dt′e),t,t′′

12 The Packing Chromatic Number of the Infinite Square Grid is At Least 14

4. w(i+dt′e,j+bt′c),t,t′′

(a) Illustration of the primary constraints. (b) Illustration of the primary and secondary
constraints.

Figure 8 Illustration of an odd decomposition for t = 7.

Assuming the wv,t,r constraints enforce the semantic of forbidding color t in B(v, r),
then the previous decomposition does indeed enforce exactly that no vertex in B(v, t) \ {v}
receives color t for odd values of t.

However, if t is even, as illustrated in Figure 9, we will need 4 new constraints, that we
can call tertiary constraints, and simply enforce that the 4 vertices orthogonally adjacent to
v do not receive color t.

It remains to get rid of the assumption about the wv,t,r variables. This assumption is in
fact not too strong, as each wv,t,r constraint can be enforced through 4 clauses using the
fv,t,r variables. If r = 2p, then wv,t,r is semantically equal to fv,t,p and nothing needs to
be done. Otherwise, let r∗ be the largest power of 2 that is smaller than r. Observe that
r∗ ≥ r/2. Then, if v = (i, j), we can define wv,t,r as

wv,t,r ←→
∧

(∆i,∆j)∈{(−1,0),(1,0),(0,1),(0,−1)}

f(i+∆i(r−r∗), j+∆j(r−r∗)),t,p∗ .

As the whole-decomposition of the condition we wish to enforce uses 8 of the w constraints,
each of which will be enforced through 4 clauses using the f variables, this requires a total
of 32 clauses if t is odd, and 36 clauses if t is even. J

We can see now that the total number of clauses matches the promised bound. Indeed,
each fv,t,r only requires 4 clauses to be properly defined, incurring into O(n2k lg k) clauses,
each vertex v requires 1 big clause stating it gets at least a color, incurring into O(n2) clauses,
and the result of Lemma 10 implies that each variable xv,t avoids conflicts in B(v, t) through
a constant number of clauses, incurring into O(n2k) clauses. Thus we conclude that the
recursive encoding uses O(n2k lg k) variables and clauses.

4.1 Compact Encoding
Although the recursive encoding presented above requires asymptotically fewer clauses, it
has a larger constant factor than the direct encoding, and thus it only improves the size of
the encoding from a given point onwards. That is, for every size n, there exists a value ρ(n),
such that it is more efficient to encode conflicts for colors above ρ(n) recursively. If ρ(n) > k,
then the direct encoding is best for a given Bn,k. This allows to define the compact encoding

B. Subercaseaux and M.J.H. Heule 13

(a) Illustration of the primary constraints. (b) Illustration of the primary and second-
ary constraints.

(c) Illustration of the primary, secondary
and tertiary constraints.

Figure 9 Illustration of an even decomposition for t = 6.

as that in which conflicts are encoded recursively only for colors in which this improves with
respect to the direct encoding. Guaranteeing that the number of clauses created by the
compact encoding for Bn,k is at most that of the direct encoding for Bn,k.

4.2 Comparing the Encodings

Table 5 compares the number of variables and clauses for different r × r grids with k colors.
We chose to implement the recursive encoding over grids instead of `1-balls for simplicity of
implementation. It can be observed that the compact encoding improves the most in larger
instances, such as when trying to prove a lowerbound of 13 or 14. In our experiments up to
13, the compact encoding does not provide a significant speed up in terms of runtime, and
thus so far its interest is mostly theoretical.

5 Directed Graphs for Handling Infinite Trees

Another family of infinite graphs for which the packing chromatic number has been studied is
that of infinite perfect n-ary trees Tn [3]. It was shown by Sloper that χρ(T2) = 7, and that
χρ(Tn) =∞ for n ≥ 3. Moreover, Fiala and Golovach have shown that computing χρ(T) is
NP-hard for an arbitrary tree T [6]. We will show in this section how χρ(T2) = 7 can be
established through automated reasoning. Proving χρ(T2) ≥ 7 is not hard, as it is enough
to consider the first 9 levels of T2 (i.e., the subgraph consisting of all vertices at distance
at most 8 from the root), to obtain a sub-graph of T2 that cannot be colored with 6 colors.
This instance, under the direct encoding, is sufficiently small to be solved in less than 0.1
seconds with CaDiCaL.

14 The Packing Chromatic Number of the Infinite Square Grid is At Least 14

Table 5 Comparison of the size of the instances generated by the direct, recursive, and compact
encodings.

(r, k) Direct encoding Recursive encoding Compact encoding
variables # clauses # variables # clauses # variables # clauses

(7, 8) 392 10325 10072 29573 392 10325
(9, 9) 729 27009 17629 54450 729 27009

(10, 10) 1000 44848 25389 78960 1000 44848
(12, 11) 1584 90520 37521 123220 1584 90520
(14, 12) 2352 165088 53005 182544 24256 148508
(17, 13) 3757 327161 76081 277006 39037 245866
(23, 14) 7406 823841 119906 481979 99906 451799

However, proving χρ(T2) ≤ 7 requires a new technique. On the one hand, the upper
bounds for χρ(Z2) have been computed by adding toroidal constraints to square subgrids
of Z2 [11]. This approach cannot be trivially replicated for the case of T2. On the other
hand, the original proof by Sloper does not use a solver, but rather a standard mathematical
argument over a coloring pattern that we suspect was found manually [15].

Even though T2 is an undirected graph, we will use a finite directed graph T ′` as a proxy
to show upper bounds on χρ(T2). The directed graph T ′` has vertex set equal to the first
` levels of T2, directed edges in both directions between pairs of vertices (u, v) that are
also connected in T2, and finally directed edges from every leaf u to the root of the tree.
The construction is illustrated in Figure 10. The reason we need directed edges instead of
undirected edges is that otherwise, if two different leaves u, v were connected to the root
(which is fundamental for the coloring to be extendable to T2), they would be at distance 2,
whereas their actual shortest path is the one going through their lowest common ancestor in
the tree. Now, let us consider a tree T` consisting of a root node r, from which two copies of
T ′` hang. We will encode a packing k-coloring for T` in the following way.
1. Each vertex v, except for r, defines a variable xv,t for each color t ∈ [k].
2. For every vertex that is not r, we create a clause stating that it has to receive at least

one color, exactly as in the previous encodings.
3. Consider an isomorphism π that goes from the left copy of T ′` that hangs from r, to the

right copy, and enforce now that for every vertex v in the left copy, v and π(v) receive
the same color. That is, xv,t ⇐⇒ xπ(v),t,∀t ∈ [k].

4. Create clauses for avoiding conflicts exactly as in the direct encoding, recalling that the
distance between two vertices is now defined as the length of the shortest directed path
between them.

Now, the following lemma applies the construction to upper bound χρ(T2).

I Lemma 11. Let I`,k be instance resulting from the encoding described above. If I`,k is
satisfiable, then χρ(T2) ≤ k.

Proof sketch. Assume I`,k is satisfiable, which induces a packing k-coloring φ of the copies
of T ′` in I`,k. We will obtain a packing k-coloring for T2 from φ. First note that T2 can be
defined recursively as a root from which 2 copies of T2 hang. By expanding this recursive
structure ` times, we can say T2 consists of a binary tree of ` levels, such that from each
leaf there are 2 copies of T2 hanging. It suffices to color the first ` levels of T2 according to
φ, and then recurse over each copy of T2 hanging from a leaf in the ` level. Now, in order

B. Subercaseaux and M.J.H. Heule 15

Figure 10 Illustration of the construction for T ′
4.

to see that this coloring is actually correct we need to verify that it does not create any
conflicts between the colors any pair of vertices receive. Indeed, note that the base case of
the recursion cannot create any conflicts as φ is a valid packing k-coloring for T ′`. Then,
between two copies of Tn that hang from leaves at the `-th level of Tn there cannot be any
conflicts either, as any said conflict would have also been a conflict between the copies of T ′`
in I`,k. J

6 Discussion and Future Work

Although we have managed to reduce the possible values of χρ(Z2) to {14, 15}, determining
χρ(Z2) will probably require further techniques. We have studied the impact of different
factors on the runtime of lower bounds: the basic shape of finite graphs to consider, the
impact of different forms of symmetry breaking, and the cube-and-conquer parallelization
approach. Proving upper bounds for this problem through local search appears to be much
easier than proving lower bounds (e.g., proving the best known upper bound, 15, requires
only a few minutes of computation in a personal computer). However, local search is not
able to find a solution for D+

14,14, which make us conjecture that χρ(Z2) = 15, and our future
work is focused on proving this. One direction of work is studying whether the compact
encoding can play a role for proving a lower bound of 15, or in finding a tiling pattern smaller
than the 72× 72 grid presented by Martin et al. [11]; although its large constant factor makes
it current performance comparable to the direct encoding, part of our future work includes
studying whether the same recursive principle, but under a more efficient decomposition of
`1-balls, can result in a practical speed-up. Another line of work is to compare our approach
with the Linear Programming-based approach of Shao and Vesel [14]. In particular, we plan
to study whether our approach can improve bounds for the packing chromatic number of
distance graphs. Finally, as shown in Section 5, automated reasoning techniques are suitable
for other classes of graphs as well, and thus several of the open problems presented in the
survey of Brešar et al. [3] could be approached with our techniques.

References

1 K. Appel and W. Haken. Every planar map is four colorable. Part I: Discharging. Illinois
Journal of Mathematics, 21(3):429 – 490, 1977. doi:10.1215/ijm/1256049011.

2 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of

https://doi.org/10.1215/ijm/1256049011

16 The Packing Chromatic Number of the Infinite Square Grid is At Least 14

SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

3 Boštjan Brešar, Jasmina Ferme, Sandi Klavžar, and Douglas F. Rall. A survey on packing
colorings. Discussiones Mathematicae Graph Theory, 40(4):923, 2020. doi:10.7151/dmgt.
2320.

4 Shawn T. Brown, Paola Buitrago, Edward Hanna, Sergiu Sanielevici, Robin Scibek, and
Nicholas A. Nystrom. Bridges-2: A Platform for Rapidly-Evolving and Data Intensive Research,
pages 1–4. Association for Computing Machinery, New York, NY, USA, 2021.

5 Jan Ekstein, Jirí Fiala, Premysl Holub, and Bernard Lidický. The packing chromatic number
of the square lattice is at least 12. CoRR, abs/1003.2291, 2010. URL: http://arxiv.org/
abs/1003.2291, arXiv:1003.2291.

6 Jiří Fiala and Petr A. Golovach. Complexity of the packing coloring problem for trees. In Hajo
Broersma, Thomas Erlebach, Tom Friedetzky, and Daniel Paulusma, editors, Graph-Theoretic
Concepts in Computer Science, pages 134–145, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

7 Jiří Fiala, Sandi Klavar, and Bernard Lidický. The packing chromatic number of infinite
product graphs. Eur. J. Comb., 30(5):1101–1113, jul 2009. doi:10.1016/j.ejc.2008.09.014.

8 Wayne Goddard, Sandra Hedetniemi, Stephen Hedetniemi, John Harris, and Douglas Rall.
Braodcast chromatic numbers of graphs. Ars Comb., 86, 01 2008.

9 Marijn J. H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer:
Guiding cdcl sat solvers by lookaheads. In Kerstin Eder, João Lourenço, and Onn Shehory,
editors, Hardware and Software: Verification and Testing, pages 50–65, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

10 Barnaby Martin, Franco Raimondi, Taolue Chen, and Jos Martin. The packing chromatic
number of the infinite square lattice is less than or equal to 16, 2015. arXiv:1510.02374v1.

11 Barnaby Martin, Franco Raimondi, Taolue Chen, and Jos Martin. The packing chromatic
number of the infinite square lattice is between 13 and 15. Discrete Applied Mathem-
atics, 225:136–142, 2017. URL: https://www.sciencedirect.com/science/article/pii/
S0166218X1730149X, doi:https://doi.org/10.1016/j.dam.2017.03.013.

12 David Neiman, John Mackey, and Marijn Heule. Tighter bounds on directed ramsey number
r(7), 2020. arXiv:2011.00683.

13 A. Schwenk. private communication with Wayne Goddard., 2002.
14 Zehui Shao and Aleksander Vesel. Modeling the packing coloring problem of graphs. Applied

Mathematical Modelling, 39(13):3588–3595, July 2015. doi:10.1016/j.apm.2014.11.060.
15 Christian Sloper. An eccentric coloring of trees. The Australasian Journal of Combinatorics

[electronic only], 29, 01 2004.
16 Alexander Soifer. The Hadwiger–Nelson Problem, pages 439–457. Springer International

Publishing, Cham, 2016. doi:10.1007/978-3-319-32162-2_14.
17 Roman Soukal and Přemysl Holub. A note on packing chromatic number of the square lattice.

The Electronic Journal of Combinatorics, 17(1), March 2010. doi:10.37236/466.

https://doi.org/10.7151/dmgt.2320
https://doi.org/10.7151/dmgt.2320
http://arxiv.org/abs/1003.2291
http://arxiv.org/abs/1003.2291
http://arxiv.org/abs/1003.2291
https://doi.org/10.1016/j.ejc.2008.09.014
http://arxiv.org/abs/1510.02374v1
https://www.sciencedirect.com/science/article/pii/S0166218X1730149X
https://www.sciencedirect.com/science/article/pii/S0166218X1730149X
https://doi.org/https://doi.org/10.1016/j.dam.2017.03.013
http://arxiv.org/abs/2011.00683
https://doi.org/10.1016/j.apm.2014.11.060
https://doi.org/10.1007/978-3-319-32162-2_14
https://doi.org/10.37236/466

	1 Introduction
	2 Direct Encoding and Basic Symmetry Breaking
	2.1 Experimental Setup

	3 Proving that 14 is a Lower Bound
	3.1 Symmetry Breaking
	3.2 Number of Generated Cubes
	3.3 Partioning the Last Cube
	3.4 Solving D+12, 13

	4 A Recursive Encoding
	4.1 Compact Encoding
	4.2 Comparing the Encodings

	5 Directed Graphs for Handling Infinite Trees
	6 Discussion and Future Work

