Certified Knowledge Compilation
with Application to Verified Model Counting

Randal E. Bryant &
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213 USA

Wojciech Nawrocki &
Department of Philosophy, Carnegie Mellon University

Jeremy Avigad &
Department of Philosophy, Carnegie Mellon University

Marijn J. H. Heule &

Computer Science Department, Carnegie Mellon University

—— Abstract

Computing many useful properties of Boolean formulas, such as their weighted or unweighted
model count, is intractable on general representations. It can become tractable when formulas are
expressed in a special form, such as the decision-decomposable, negation normal form (dec-DNNF).
Knowledge compilation is the process of converting a formula into such a form. Unfortunately
existing knowledge compilers provide no guarantee that their output correctly represents the original
formula, and therefore they cannot validate a model count, or any other computed value.

We present Partitioned-Operation Graphs (POGs), a form that can encode all of the representa-
tions used by existing knowledge compilers. We have designed CPOG, a framework that can express
proofs of equivalence between a POG and a Boolean formula in conjunctive normal form (CNF).

We have developed a program that generates POG representations from dec-DNNF graphs
produced by the state-of-the-art knowledge compiler D4, as well as checkable CPOG proofs certifying
that the output POGs are equivalent to the input CNF formulas. Our toolchain for generating
and verifying POGs scales to all but the largest graphs produced by D4 for formulas from a recent
model counting competition. Additionally, we have developed a formally verified CPOG checker and
model counter for POGs in the Lean 4 proof assistant. In doing so, we proved the soundness of our
proof framework. These programs comprise the first formally verified toolchain for weighted and
unweighted model counting.
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1 Introduction

Given a Boolean formula ¢, modern Boolean satisfiability (SAT) solvers can find an assignment
satisfying ¢ or generate a proof that no such assignment exists. They have applications across
a variety of domains including computational mathematics, combinatorial optimization, and
the formal verification of hardware, software, and security protocols. Some applications,
however, require going beyond Boolean satisfiability. For example, the model counting problem
requires computing the number of satisfying assignments of a formula, including in cases
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Figure 1 Certifying toolchain. The output of a standard knowledge compiler is converted into a
combined graph/proof (CPOG) which can be independently checked and evaluated

where there are far too many to enumerate individually. Model counting has applications in
artificial intelligence, computer security, and statistical sampling. There are also many useful
extensions of standard model counting, including weighted model counting, where a weight
is defined for each possible assignment, and the goal becomes to compute the sum of the
weights of the satisfying assignments.

Model counting is a challenging problem—more challenging than the already NP-hard
Boolean satisfiability. Several tractable variants of Boolean satisfiability, including 2-SAT,
become intractable when the goal is to count models and not just determine satisfiability
[28]. Nonetheless, a number of model counters that scale to very large formulas have been
developed, as witnessed by the progress in recent model counting competitions.

One approach to model counting, known as knowledge compilation, transforms the
formula into a structured form for which model counting is straightforward. For example, the
deterministic, decomposable, negation normal form (det-DNNF) introduced by Darwiche [7, 8],
as well as the more restricted decision-DNNF (dec-DNNF) [17, 24], represent a Boolean
formula as a directed acyclic graph, with terminal nodes labeled by Boolean variables and
their complements, and with each nonterminal node labeled by a Boolean And or Or operation.
Restrictions are placed on the structure of the graph (described in Section 5) such that a
count of the models can be computed by a single bottom-up traversal. Kimmig et al. present
a very general algebraic model counting [19] framework describing properties of Boolean
functions that can be efficiently computed from a det-DNNF representation. These include
standard and weighted model counting, and much more.

One shortcoming of existing knowledge compilers is that they have no generally accepted
way to validate that the compiled representation is logically equivalent to the original formula.
By contrast, all modern SAT solvers can generate checkable proofs when they encounter
unsatisfiable formulas. The guarantee provided by a checkable certificate of correctness
enables users of SAT solvers to fully trust their results. Experience has also shown that being
able to generate proofs allow SAT solver developers to quickly detect and diagnose bugs in
their programs. This, in turn, has led to more reliable SAT solvers.

This paper introduces Partitioned-Operation Graphs (POGs), a form that can encode all
of the representations produced by current knowledge compilers. The CPOG (for “certified”
POQG) file format then captures both the structure of a POG and a checkable proof of its
logical equivalence to a Boolean formula in conjunctive normal form (CNF). A CPOG proof
consists of a sequence of clause addition and deletion steps, based on an extended resolution
proof system [27]. We establish a set of conditions that, when satisified by a CPOG file,
guarantees that it encodes a well-formed POG and provides a valid equivalence proof.
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Figure 1 illustrates our certifying knowledge compilation and model counting toolchain.

Starting with input formula ¢, the D4 knowledge compiler [20] generates a dec-DNNF
representation, and the proof generator uses this to generate a CPOG file. The proof checker
verifies the equivalence of the CNF and CPOG representations. The ring evaluator computes
a standard or weighted model count from the POG representation. As the dashed box in
Figure 1 indicates, this toolchain moves the root of trust away from the complex and highly
optimized knowledge compiler to a relatively simple checker and evaluator. Importantly, the
proof generator need not be trusted—its errors will be caught by the proof checker.

To ensure soundness of the abstract CPOG proof system, as well as correctness of its
concrete implementation, we formally verified the proof system as well as versions of the proof
checker and ring evaluator in the Lean 4 proof assistant [11]. Running these two programs
on a CPOG file gives strong assurance that the proof and the model count are correct. Our
experience with developing a formally verified proof checker has shown that, even within the
well-understood framework of extended resolution, it can be challenging to formulate a full
set of requirements that guarantee soundness. In fact, our efforts to formally verify our proof
framework exposed subtle conditions that we had to impose on our partitioned sum rule.

We evaluate our toolchain using benchmark formulas from the 2022 standard and weighted

model competitions. Our tools handle all but the largest dec-DNNF graphs generated by D4.

We also measure the benefits of several optimizations as well as the relative performance of
the verified checker with one designed for high performance and capacity.

We also show that our tools can provide end-to-end verification of formulas that have
been transformed by an equivalence-preserving preprocessor. That is, verification is based
on the original formula, and so proof checking certifies correct operation of the preprocessor,
the knowledge compiler, and the proof generator.

We have developed an online supplement to this paper [3] that includes a worked example,
more details on the algorithms, and extensive experimental results.

2 Related Work

Generating proofs of unsatisfiability in SAT solvers has a long tradition [31] and has become
widely accepted due to the formulation of clausal proof systems for which proofs can readily
be generated and efficiently checked [15, 30]. A number of formally verified checkers have
been developed within different verification frameworks [6, 14, 21, 26]. The associated proofs
add clauses while preserving satisfiability until the empty clause is derived. Our work
builds on the well-established technology and tools associated with clausal proof systems,
but we require features not found in proofs of unsatisfiability. Our proofs construct a new
propositional formula, and we must verify that it is equivalent to the input formula. This
requires verifying additional proof steps, including clause deletion steps, and subtle invariants,
as described in Sections 7 and 10.

Capelli, Lagniez, and Marquis developed a knowledge compiler that generates a certificate
in a proof system that is itself based on dec-DNNF [4, 5]. Their CD4 program, a modified
version of D4, generates annotations to the compiled representation, providing information
about how the compiled version relates to the input clauses. It also generates a file of clausal
proof steps in the DRAT format [30]. Completing the certification involves running two
different checkers on the annotated dec-DNNF graph and the DRAT file. Although the
authors make informal arguments regarding the soundness of their frameworks, these do not
provide strong levels of assurance. Indeed, we have identified a weakness in their methodology
due to an invalid assumption about the guarantees provided by DRAT-TRIM, the program it
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uses to check the DRAT file. This weakness is exploitable: their framework can be “spoofed”
into accepting an incorrect compilation.

In more detail, CD4 emits a sequence of clauses R that includes the conflict clauses that
arose during a top-down processing of the input clauses. Given input formula ¢;, their first
task is to check whether ¢; = R, i.e., that any assignment that satisfies ¢; also satisfies each
of the clauses in R. They then base other parts of their proof on that property and use a
separate program to perform a series of additional checks. They use DRAT-TRIM to prove the
implication, checking that each clause in R satisifies the reverse asymmetric tautology (RAT)
property with respect to the preceding clauses [15, 18]. Adding a RAT clause C to a set of
clauses maintains satisfiability, but it does not necessarily preserve models. As an example,
consider the following formulas:

b1: (1,'1 V 1‘3)
¢pa: (1’1 V 1‘3) A (:L‘2 \Y 53)

Clearly, these two formulas are not equivalent—¢; has six models, while ¢5 has four. In
particular, ¢, allows arbitrary assignments to variable zo. Critically, however, the second
clause of ¢o is RAT with respect to ¢1—any satisfying assignment to ¢; can be transformed
into one that also satisfies ¢o by setting xo to 1, while keeping the values for other variables
fixed.

This weakness would allow a buggy (or malicious) version of CD4 to spoof the checking
framework. Given formula ¢; as input, it could produce a compiled result, including
annotations, based on ¢5 and also include the second clause of ¢ in R. The check with
DRAT-TRIM would pass, as would the other tests performed by their checker. We have
confirmed this possibility with their compiler and checker."

This weakness can be corrected by restricting DRAT-TRIM to only add clauses that obey the
stronger reverse unit propagation (RUP) property [13, 29]. We have added a command-line
argument to DRAT-TRIM that enforces this restriction.? This weakness, however, illustrates
the general challenge of developing a new proof framework. As we can attest, without
engaging in an effort to formally verify the framework, there are likely to be conditions that
make the framework unsound.

Fichte, Hecher, and Roland [12] devised the MICE proof framework for model counting
programs. Their proof rules are based on the algorithms commonly used by model counters.
They developed a program that can generate proof traces from dec-DNNF graphs and a
program to check adherence to their proof rules. This framework is not directly comparable
to ours, since it only certifies the unweighted model count, but it has similar goals. Again,
they provide only informal arguments regarding the soundness of their framework.

Both of these prior certification frameworks are strongly tied to the algorithms used
by the knowledge compilers and model counters. Some of the conditions to be checked
are relevant only to specific implementations. Our framework is very general and is based
on a small set of proof rules. It builds on the highly developed concepts of clausal proof
systems. These factors were important in enabling formal verification. In Section 12 and the
supplement [3], we also compare the performance of our toolchain to these other two.

! Downloaded May 18, 2023 as
https://github.com/crillab/d4/tree/333370cc1e843dd0749c1efe88516e72b5239174.
2 Available at https://github.com/marijnheule/drat-trim/releases/tag/v05.22.2023.
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3 Logical Foundations

Let X denote a set of Boolean variables, and let « be an assignment of truth values to some
subset of the variables, where 0 denotes false and 1 denotes true, i.e., a: X’ — {0,1} for
some X’ C X. We say the assignment is total when it assigns a value to every variable
(X’ = X), and that it is partial otherwise. The set of all possible total assignments over X
is denoted U.

For each variable x € X, we define the literals x and T, where T is the negation of z.

An assignment « can be viewed as a set of literals, where we write £ € o when ¢ = x and
a(z) =1 or when ¢ =7 and a(z) = 0. We write the negation of literal £ as ¢. That is, {/ =T
when ¢ = z and ¢ = x when / = 7.

» Definition 1 (Boolean Formulas). The set of Boolean formulas is defined recursively. Each

formula ¢ has an associated dependency set D(¢) C X, and a set of models M(¢), consisting

of total assignments that satisfy the formula:

1. Boolean constants 0 and 1 are Boolean formulas, with D(0) = D(1) = 0, with M(0) =0,
and with M(1) =U.

2. Variable x is a Boolean formula, with D(z) = {z} and M(z) = {a € U|a(z) = 1}.

3. For formula ¢, its negation, written —¢ is a Boolean formula, with D(—¢) = D($) and
M(=¢) =U — M(9).

4. For formulas ¢1, 2, ..., ¢k, their product ¢ = N\ ., i is a Boolean formula, with
D(¢) = U1gigk D(¢i) and M(¢) = m1gigk M(3).

5. For formulas ¢1, ¢2, ..., ¢k, their sum ¢ =\, ., ¢ is a Boolean formula, with D(¢) =
Ulgigk D(¢i) and M(¢) = Ulgigk M(¢i).

We highlight some special classes of Boolean formulas. A formula is in negation normal
form when negation is applied only to variables. A formula is in conjunctive normal form
(CNF) when i) it is in negation normal form, and ii) sum is applied only to literals. A CNF
formula can be represented as a set of clauses, each of which is a set of literals. Each clause
represents the sum of the literals, and the formula is the product of its clauses. We use set
notation to reference the clauses within a formula and the literals within a clause. A clause
consisting of a single literal is referred to as a unit clause and the literal as a unit literal.
This literal must be assigned value 1 by any satisfying assignment of the formula.

» Definition 2 (Partitioned-Operation Formula). A partitioned-operation formula satisfies

the following for all product and sum operations:

1. The arguments to each product must have disjoint dependency sets. That is, operation
Ni<i<r @i requires D(¢;) N D(¢;) =0 for 1 <i<j<k.

2. The o;rguments to each sum must have disjoint models. That is, operation \/| ., ¢
requires M(¢;) N M(¢p;) =0 for 1 <i<j<k. o

We let AP and VP denote the product and sum operations in a partitioned-operation formula.

4 Ring Evaluation of a Boolean Formula

We propose a general framework for summarizing properties of Boolean formulas along the
lines of algebraic model counting [19].

» Definition 3 (Commutative Ring). A commutative ring R is an algebraic structure
(A, +,x,0, 1), with elements in the set A and with commutative and associative opera-
tions + (addition) and x (multiplication), such that multiplication distributes over addition.
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0 is the additive identity and 1 is the multiplicative identity. Fvery element a € A has an
additive inverse —a such that a + —a = 0.

We write a — b as a shorthand for a + —b.

» Definition 4 (Ring Evaluation Problem). For commutative ring R, a ring weight function
associates a value w(x) € A with every variable x € X. We then define w(z) = 1 — w(x).
For Boolean formula ¢ and ring weight function w, the ring evaluation problem computes

R(¢,w) = ZaeM(¢) [Lico w(0) (1)

In this equation, sum Y. is computed using addition operation +, and product [] is computed
using multiplication operation X.

Many important properties of Boolean formulas can be expressed as ring evaluation
problems. The (standard) model counting problem for formula ¢ requires determining
|IM(¢)|. It can be cast as a ring evaluation problem by having + and x be addition and
multiplication over rational numbers and using weight function w(z) = 1/2 for every variable
z. Ring evaluation of formula ¢ gives the density of the formula, i.e., the fraction of all
possible total assignments that are models. For n = |X|, scaling the density by 2" yields the
number of models. This formulation avoids the need for a “smoothing” operation, in which
redundant expressions are inserted into the formula [10].

The weighted model counting problem is also defined over rational numbers. Some
formulations allow independently assigning weights W (z) and W (Z) for each variable x
and its complement, with the possibility that W(x) + W(Z) # 1. We can cast this as a
ring evaluation problem by letting r(x) = W(x) + W (Z), performing ring evaluation with
weight function w(z) = W(z)/r(x) for each variable x, and computing the weighted count
as R(o,w) x [[,cxr(z). Of course, this requires that r(z) # 0 for all z € X.

The function hashing problem provides a test of inequivalence for Boolean formulas.
That is, for n = |X|, let R be a finite field with |.A] = m such that m > 2n. For each
x € X, choose a value from A at random for w(z). Two formulas ¢; and ¢y will clearly
have R(¢1,w) = R(¢a,w) if they are logically equivalent, and if R(¢1,w) # R(p2, w),
then they are clearly inequivalent. If they are not equivalent, then the probability that
R(¢1,w) # R(¢2, w) will be at least (1 — %)n > (1- i)n > 1/2. Function hashing can
therefore be used as part of a randomized algorithm for equivalence testing [2]. For example,
it can compare different runs on a single formula, either from different compilers or from a
single compiler with different configuration parameters.

5 Partitioned-Operation Graphs (POGs)

Performing ring evaluation on an arbitrary Boolean formula could be intractable, but it is
straightforward for a formula with partitioned operations:

» Proposition 5. Ring evaluation with operations =, AP, and VP satisfies the following for
any weight function w:

R(_‘Qb, w) 1- R(¢a U})
R /\plgigk Gi, w ngigk R(¢s, w)
R \/plgigk bi, w) = Zlgigk R(¢i,w)
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As is described in Section 10, we have proved these three equations using Lean 4.

A partitioned-operation graph (POG) is a directed, acyclic graph with nodes N and edges
E C N x N. We denote nodes with boldface symbols, such as u and v. When (u,v) € E,
node v is said to be a child of node u. The in- and out-degrees of node u are defined as
indegree(u) = |E N (N x {u})|, and outdegree(u) = |E N ({u} x N)|. Node u is said to be

terminal if outdegree(u) = 0. A terminal node is labeled by a Boolean constant or variable.

Node u is said to be nonterminal if outdegree(u) > 0. A nonterminal node is labeled by
Boolean operation AP or VP. A node can be labeled with operation AP or VP only if it satisfies

the partitioning restriction for that operation. Every POG has a designated root node r.

Each edge has a polarity, indicating whether (negative polarity) or not (positive polarity)
the corresponding argument should be negated.

A POG represents a partitioned-operation formula with a sharing of common subformulas.

Every node in the graph can be viewed as a partitioned-operation formula, and so we write
¢u as the formula denoted by node u. Each such formula has a set of models, and we write
M(u) as a shorthand for M(¢y).

We can now define and compare two related representations:

A det-DNNF graph can be viewed a POG with negation applied only to variables.

A dec-DNNF graph is a det-DNNF graph with the further restriction that any sum node

u has exactly two children u; and ug, and for these there is a decision variable x such

that any total assignment o € M(u,) has a(z) = b, for b € {0, 1}.

The generalizations encompassed by POGs have also been referred to as deterministic
decomposable circuits (d-Ds) [23]. Our current proof generator only works for knowledge
compilers generating dec-DNNF representations, but these generalizations allow for future
extensions, while maintaining the ability to efficiently perform ring evaluation.

We define the size of POG P, written |P|, to be the the number of nonterminal nodes
plus the number of edges from these nodes to their children. Ring evaluation of P can be
performed with at most |P| ring operations by traversing the graph from the terminal nodes
up to the root, computing a value R(u, w) for each node u. The final result is then R(r, w).

6 Clausal Proof Framework

We write (possibly subscripted) @ for formulas encoded as clauses, possibly with extension
variables. We write (possibly subscripted) ¢ for formulas that use no extension variables.

A proof in our framework consists of a sequence of clause addition and deletion steps,
with each step preserving the set of solutions to the original formula. The status of the proof
at any step is represented as a set of active clauses 6, i.e., those that have been added but
not yet deleted. Our framework is based on extended resolution [27], where proof steps can
introduce new extension variables encoding Boolean formulas over input and prior extension
variables. Let Z denote the set of extension variables occuring in formula 6. Starting with 6
equal to input formula ¢y, the proof must maintain the invariant that ¢; < 326.

Clauses can be added in two different ways. One is when they serve as the defining clauses
for an extension variable. This form occurs only when defining AP and VP operations, as is
described in Section 7. Clauses can also be added or deleted based on implication redundancy.
That is, when clause C satisfies § = C for formula 6, then it can either be added to 6 to
create the formula 8 U {C} or it can be deleted from 0 U {C} to create 6.

We use reverse unit propagation (RUP) to certify implication redundancy when adding or
deleting clauses [13, 29]. RUP is the core rule supported by standard proof checkers [15, 30] for
propositional logic. It provides a simple and efficient way to check a sequence of applications
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of the resolution proof rule [25]. Let C = {{1,4,...,{,} be a clause to be proved redundant
with respect to formula 8. Let D1, Do, ..., Dy be a sequence of supporting antecedent clauses,
such that each D; is in . A RUP step proves that A,_,., D; = C by showing that the
combination of the antecedents plus the negation of C' leads to a contradiction. The negation
of C is the formula €1 A ly A - - - A €,, having a CNF representation consisting of p unit clauses
of the form ¢; for 1 < i < p. A RUP check processes the clauses of the antecedent in sequence,
inferring additional unit clauses. In processing clause D;, if all but one of the literals in the
clause is the negation of one of the accumulated unit clauses, then we can add this literal to
the accumulated set. That is, all but this literal have been falsified, and so it must be set to
true for the clause to be satisfied. The final step with clause Dj must cause a contradiction,
i.e., all of its literals are falsified by the accumulated unit clauses.

Compared to the proofs of unsatisfiability generated by SAT solvers, ours have important
differences. Most significantly, each proof step must preserve the set of solutions with
respect to the input variables; our proofs must therefore justify both clause deletions and
additions. By contrast, an unsatisfiability proof need only guarantee that no proof step
causes a satisfiable set of clauses to become unsatisfiable, and therefore it need only justify
clause additions.

7 The CPOG Representation and Proof System

A CPOG file provides both a declaration of a POG, as well as a checkable proof that a
Boolean formula, given in conjunctive normal form, is logically equivalent to the POG.
The proof format draws its inspiration from the LRAT [14] and QRAT [16] formats for
unquantified and quantified Boolean formulas, respectively. Key properties include:
The file contains declarations of AP and VP operations to describe the POG. Declaring a
node u implicitly adds an extension variable u and a set of defining clauses 6, encoding
the product or sum operation. This is the only means for adding extension variables to
the proof.
Boolean negation is supported implicitly by allowing the arguments of the VP and AP
operations to be literals and not just variables.
The file contains explicit clause addition steps. A clause can only be added if it is logically
implied by the existing clauses. A sequence of clause identifiers must be listed as a hint
providing a RUP verification of the implication.
The file contains explicit clause deletion steps. A clause can only be deleted if it is
logically implied by the remaining clauses. A sequence of clause identifiers must be listed
as a hint providing a RUP verification of the implication.
The checker must track the dependency set for every input and extension variable. For
each AP operation, the checker must ensure that the dependency sets for its arguments
are disjoint. The associated extension variable has a dependency set equal to the union
of those of its arguments.
Declaring a VP operation requires a sequence of clauses providing a RUP proof that
the arguments are mutually exclusive. Only binary VP operations are allowed to avoid
requiring multiple proofs of disjointness

7.1 Syntax

Table 1 shows the declarations that can occur in a CPOG file. As with other clausal proof
formats, a variable is represented by a positive integer v, with the first ones being input
variables and successive ones being extension variables. Literal ¢ is represented by a signed
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Table 1 CPOG Step Types. C: clause identifier, L: literal, V: variable

Rule Description
C a L* 0 cto Add RUP clause
d C cto Delete RUP clause
C P VL*0 Declare AP operation
C s VLL cto Declare VP operation
r L Declare root literal

Table 2 Defining Clauses for Product (A) and Sum (B) Operations

(A). Product Operation AP (B). Sum Operation VP
1D Clause ID Clause
i v *Kl 7g2 . *fk 3 —v 41 52
i+1 —v 21 i+1 v —l
i+2 —v 2 1+2 v —{y
i+k —v l

integer, with —v being the logical negation of variable v. Each clause is indicated by a positive
integer identifier C', with the first ones being the IDs of the input clauses and successive ones
being the IDs of added clauses. Clause identifiers must be totally ordered, such that any
clause identifier C’ given in the hint when adding clause C must have C’ < C.

The first set of proof rules are similar to those in other clausal proofs. Clauses can be

added via RUP addition (command a), with a sequence of antecedent clauses (the “hint”).

Similarly for clause deletion (command d).
The declaration of a product operation, creating a node with operation AP, has the form:

7 P v €1 42 e Zk 0

Integer i is a new clause ID, v is a positive integer that does not correspond to any previous
variable, and £, (s, ..., ¢ is a sequence of k integers, indicating the arguments as literals of
existing variables. As Table 2(A) shows, this declaration implicitly causes k + 1 clauses to
be added to the proof, providing a Tseitin encoding that defines extension variable v as the
product of its arguments.

The dependency sets for the arguments represented by each pair of literals ¢; and ¢; must
be disjoint, for 1 < i < j < k. A product operation may have no arguments, representing
Boolean constant 1. The only clause added to the proof will be the unit literal v. A reference
to literal —v then provides a way to represent constant 0.

The declaration of a sum operation, creating a node with operation VP, has the form:

7 S v 41 EQ H 0
Integer i is a new clause ID, v is a positive integer that does not correspond to any previous

variable, and /; and /5 are signed integers, indicating the arguments as literals of existing
variables. Hint H consists of a sequence of clause IDs, all of which must be defining clauses
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for other POG operations.?> As Table 2(B) shows, this declaration implicitly causes three
clauses to be added to the proof, providing a Tseitin encoding that defines extension variable
v as the sum of its arguments. The hint must provide a RUP proof of the clause £ V {s,
showing that the two children of this node have disjoint models.

Finally, the literal denoting the root of the POG is declared with the r command. It
can occur anywhere in the file. Except in degenerate cases, it will be the extension variable
representing the root of a graph.

7.2 Semantics

The defining clauses for a product or sum operation uniquely define the value of its extension
variable for any assignment of values to the argument variables. For the extension variable u
associated with any POG node u, we can therefore prove that any total assignment « to the
input variables that also satisfies the POG defining clauses will assign a value to u such that
a(u) =1 if and only if & € M(u).

The sequence of operator declarations, asserted clauses, and clause deletions represents a
systematic transformation of the input formula into a POG. Validating all of these steps
serves to prove that POG P is logically equivalent to the input formula. At the completion
of the proof, the following FINAL CONDITIONS must hold:

1. There is exactly one remaining clause that was added via RUP addition, and this is a

unit clause consisting of root literal 7.

2. All of the input clauses have been deleted.

In other words, at the end of the proof it must hold that the active clauses be exactly those
in 0p = {{r}} U Uyep Ou, the formula consisting of unit clause {r} and the defining clauses
for the nodes, providing a Tseitin encoding of P. Recognizing that any total assignment to
the input variables implicitly defines the assignments to the extension variables, we can see
that Op is the clausal encoding of ¢,.. Let ¢; denote the input formula. The sequence of
clause addition steps provides a forward implication proof that M(¢r) C M(¢,). That is,
any total assignment « satisfying the input formula must also satisfy the formula represented
by the POG. Conversely, each proof step that deletes an input clause proves that any total
assignment « that falsifies the clause must falsify ¢,.. Deleting all but the final asserted
clause and all input clauses provides a reverse implication proof that M(¢y) C M(é1).

The supplement [3], shows the CPOG description for an input formula with five clauses,
yielding a POG with six nonterminal nodes. It explains how the clause addition and deletion
steps yield a proof of equivalence between the input formula and its POG representation.

8 Generating CPOG from dec-DNNF

A dec-DNNF graph can be directly translated into a POG. In doing this conversion, our
program performs simplifications to eliminate Boolean constants. Except in degenerate cases,
where the formula is unsatisfiable or a tautology, we can therefore assume that the POG does
not contain any constant nodes. In addition, negation is only applied to variables, and so
the only edges with negative polarity will have variables as children. We can therefore view
the POG as consisting of literal nodes corresponding to input variables and their negations,
along with nonterminal nodes, which can be further classified as product and sum nodes.

3 The restriction to defining clauses in the hint is critical to soundness. Allowing the hint to include the
IDs of input clauses creates an exploitable weakness. We discovered this weakness in the course of our
efforts at formal verification.
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8.1 Forward Implication Proof

For input formula ¢ and its translation into a POG P with root node r, the most challenging
part of the proof is to show that M(¢r) C M(¢,), i.e., that any total assignment « that is
a model of ¢; and the POG definition clauses will yield «(r) = 1, for root literal r. This
part of the proof consists of a series of clause assertions leading to one adding {r} as a unit
clause. We have devised two methods of generating this proof. The monolithic approach
makes just one call to a proof-generating SAT solver and has it determine the relationship
between the two representations. The structural approach recursively traverses the POG,
generating proof obligations at each node encountered. It may require multiple calls to a
proof-generating SAT solver.

As notation, let 1 be a subset of the clauses in ¢;. For partial assignment p, the expression
1|, denotes the set of clauses v obtained from ¢ by: i) eliminating any clause containing
a literal £ such that p(¢) = 1, ii) for the remaining clauses eliminating those literals ¢ for
which p(¢) = 0, and iii) eliminating any duplicate or tautological clauses. In doing these
simplifications, we also track the provenance of each simplified clause C, i.e., which of the
(possibly multiple) input clauses simplified to become C. More formally, for C' € 1|, we let
Prov,(C, ) denote those clauses C' € ¥, such that C" C CUU,, £. We then extend the
definition of Prov to any simplified formula v as Prov,(v,v) = Uge, Prov,(C, ).

The monolithic approach takes advantage of the clausal representations of the input
formula ¢; and the POG formula ¢,. We can express the negation of ¢, in clausal form
as O = Uuep Oul{zy. Forward implication will hold when ¢; = ¢, or equivalently when
the formula ¢; A 67 is unsatisfiable, where the conjunction can be expressed as the union
of the two sets of clauses. The proof generator writes the clauses to a file and invokes a
proof-generating SAT solver. For each clause C' in the unsatisfiability proof, it adds clause
{r} UC to the CPOG proof, and so the empty clause in the proof becomes the unit clause
{r}. Our experimental results show that this approach can be very effective and generates
short proofs for smaller problems, but it does not scale well enough for general use.

We describe the structural approach to proof generation as a recursive procedure
validate(u, p, ©) taking as arguments POG node u, partial assignment p, and a set of clauses
1 C ¢5. The procedure adds a number of clauses to the proof, culminating with the addition
of the target clause: uV V¢, ¢, indicating that (Ave,pt) = u, Le., that any total assignment

a such that p C « will assign a(u) = 1. The top-level call has u =r, p = (), and ¢ = ¢;.

The result will therefore be to add unit clause {r} to the proof. Here we present a correct,

but somewhat inefficient formulation of validate. We then refine it with some optimizations.

The recursive call validate(u, p, ¥) assumes that we have traversed a path from the root
node down to node u, with the literals encountered in the product nodes forming the partial
assignment p. The set of clauses ¥ can be a proper subset of the input clauses ¢; when a
product node has caused a splitting into clauses containing disjoint variables. The subgraph
with root node u should be a POG representation of the formula |,,.

The process for generating such a proof depends on the form of node u:

1. If u is a literal ¢, then the formula 9|, must consist of the single unit clause C' = {¢'},
such that any C’ € Prov,(C, 1) must have C" C {{'} U U@GPZ. Any of these can serve as
the target clause.

2. If u is a sum node with children u; and ug, then, since the node originated from a
dec-DNNF graph, there must be some variable z such that either u; is a literal node for
 or u; is a product node containing a literal node for x as a child. In either case, we
recursively call validate(uy, p U {z}, ). This will cause the addition of the target clause
u VTV e o ¢. Similarly, either uy is a literal node for Z or ug is a product node containing
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a literal node for 7 as a child. In either case, we recursively call validate(ug, p U {Z}, ),

causing the addition of the target clause uo V 2V \/,¢ pZ. These recursive results can be

combined with the second and third defining clauses for u (see Table 2(B)) to generate
the target clause for u, requiring at most two RUP steps.

3. If u is a product node, then we can divide its children into a set of literal nodes A and a
set of nonterminal nodes uy, us, ..., ug.

a. For each literal ¢ € A, we must prove that any total assignment «, such that p C « has
a(f) = 1. In some cases, this can be done by simple Boolean constraint propagation
(BCP). In other cases, we must prove that the formula [ (7y 1s unsatisfiable. We do
so by writing the formula to a file, invoking a proof-generating SAT solver, and then
converting the generated unsatisfiability proof into a sequence of clause additions in
the CPOG file. (The solver is constrained to only use RUP inference rules, preventing
it from introducing extension variables.)

b. For a single nonterminal child (k = 1), we recursively call validate (uy, p U A, 9).

c. For multiple nonterminal children (k > 1), it must be the case that the clauses in
v = 1|, can be partitioned into k subsets 1,72, ..., v, such that D(y;) N D(y;) = 0 for
1 <1i < j <k, and we can match each node u; to subset 7; based on its literals. For
each i such that 1 < ¢ <k, let ¢; = Prov,(v;, ), i.e., those input clauses in 1 that,
when simplified, became clause partition 7;. We recursively call validate (u;, p U A, ¢;).

We then generate the target clause for node u with a single RUP step, creating the hint

by combining the results from the BCP and SAT calls for the literals, the recursively

computed target clauses, and all but the first defining clause for node u (see Table 2(A)).

Observe that all of these steps involve a polynomial number of operations per recursive call,
with the exception of those that call a SAT solver to validate a literal.

8.2 Reverse Implication Proof

Completing the equivalence proof of input formula ¢; and its POG representation with root
node r requires showing that M(¢,) C M(¢yr). This is done in the CPOG framework by
first deleting all asserted clauses, except for the final unit clause for root literal r, and then
deleting all of the input clauses.

The asserted clauses can be deleted in reverse order, using the same hints that were used
in their original assertions. By reversing the order, those clauses that were used in the hint
when a clause was added will still remain when it is deleted.

Each input clause deletion can be done as a single RUP step, based on an algorithm
to test for clausal entailment in det-DNNF graphs [4, 10]. The proof generator constructs
the hint sequence from the defining clauses of the POG nodes via a single, bottom-up pass
through the graph. The RUP deletion proof for input clause C effectively proves that any
total assignment a that satisfies the POG definition clauses but does not satisfy C will yield
a(r) = 0. Tt starts with the set of literals {¢ | £ € C'}, describing the required condition for
assignment « to falsify clause C. It then adds literals via unit propagation until a conflict
arises. Unit literal r gets added right away, setting up a potential conflict.

Working upward through the graph, node u is marked when the collected set of literals
forces u to evaluate to 0. When marking u, the program adds @ to the RUP literals and adds
the appropriate defining clause to the hint. A literal node for ¢ will be marked if £ € C, with
no hint required. If product node u has some child u; that is marked, then u is marked and
clause ¢ + 1 from among its defining clauses (see Table 2(A)) is added to the hint. Marking
sum node u requires that its two children are marked. The first defining clause for this node
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(see Table 2(B)) will then be added to the hint. At the very end, the program (assuming the
reverse implication holds) will attempt to mark root node r, which would require a(r) =0,
yielding a conflict.

It can be seen that the reverse implication proof will be polynomial in the size of the
POG, because each clause deletion requires a single RUP step having a hint with length
bounded by the number of POG nodes.

9 Optimizations

The performance of the structural proof generator for forward implication, both in its
execution time and the size of the proof generated, can be improved by two optimizations
described here. A key feature is that they do not require any changes to the proof framework—
they build on the power of extended resolution to enable new logical structures. They involve
declaring new product nodes to encode products of literals. These nodes are not part of the
POG representation of the formula; they serve only to enable the forward implication proof.
Here we summarize the two optimizations. The supplement [3] provides more details.

Literal Grouping: A single recursive step of validate can encounter product nodes having
many—tens or even hundreds—of literals as children. The earlier formulation of validate
considers each literal £ € \ separately, calling a SAT solver for every literal that cannot
be validated with BCP. Literal grouping handles all of these literals together. It defines
product node v having the literals as children. The goal then becomes to prove that any
total assignment must yield 1 for extension variable v. Calling a solver with v set to 0 yields
an unsatisfiability proof that can be mapped back to a sequence of clause additions in the
CPOG file validating all of the literals.

Lemmas: Our formulation of validate requires each call at a node u to recursively validate
all of its children. This effectively expands the graph into a tree, potentially requiring an
exponential number of recursive steps. Instead, for each node u having indegree(u) > 1, the
program can define and generate the proof of a lemma for u when it is first reached by a call
to validate and then apply this lemma for this and subsequent calls. The lemma states that
the POG with root node u satisfies forward implication for a formula ~,, where some of the
clauses in this formula are input clauses from ¢;, but others are simplified versions of input
clauses. The key idea is to introduce product nodes to encode (via DeMorgan’s Laws) the
simplified clauses and have these serve as lemma arguments.

The combination of these two optimization guarantees that i) each call to validate for a
product node will cause at most one invocation of the SAT solver, and ii) each call to validate
for any node u will cause further recursive calls only once. Our experimental results [3] show
that these optimizations yield substantial benefits.

10 A Formally Verified Toolchain

We set out to formally verify the system with two goals in mind: first, to ensure that the
CPOG framework is mathematically sound; and second, to implement correct-by-construction
proof checking and ring evaluation (the “Trusted Code” components of Figure 1). These two
goals are achieved with a single proof development in the Lean 4 programming language [11].
Verification was greatly aided by the Aesop [22] automated tactic. In this section, we briefly
describe the functionality we implemented and what we proved about it. More information
is provided in the supplement [3].

Proof checking. The goal of a CPOG proof is to construct a POG that is equivalent to the
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input CNF ¢;. The POG being constructed, and the set of active clauses are stored in the
checker state st. The checker begins by parsing the input formula, initializing the active
clauses to 6 < ¢y, and initializing the POG P to an empty one. It then processes every step
of the CPOG proof, either modifying its state by adding/deleting clauses in 6 and adding
nodes to P, or throwing an exception if a step is incorrect. Afterwards, it carries out the
FINAL CONDITIONS check of Section 7.2. Throughout the process, we maintain invariants that
ensure that P is partitioned and that a successful final check entails the logical equivalence
of ¢r and ¢, where r is the final POG root (Theorem 6).

The specifications we use to state these invariants are built on a general theory of
propositional logic, mirroring Section 3. Following the DIMACS CNF convention, we define
the data types Var of variables being positive natural numbers, ILit of literals being non-zero
integers, and PropForm of propositional formulas. PropForm is generic over the type of variables,
so we instantiate it with our type as PropForm Var. Assignments of truth values are taken to
be total functions PropAssignment Var := Var — Bool. Requiring totality is not a limitation:
instead of talking about two equal, partial assignments to a subset X’ C X of variables, we
can more conveniently talk about two total assignments that agree on X’'. We write o = ¢
when o : PropAssignment Var satisfies ¢ : PropForm Var.

The invariants refer to the checker state st with fields st.inputCnf for ¢, st.clauseDb
for 6, st.pog for P, st.pogDefsForm for the clausal POG definitions formula A, p 0.,
and st.allVars for all variables (original and extension) added so far. For any u € P,
st.pog.toPropForm u computes ¢y. The first two invariants state that assignments to original
variables extend uniquely to extension variables defining the POG nodes. In the formalization,
we split this into extension and uniqueness:

/-- Any assignment satisfying ¢; extends to ¢ while preserving values on X. -/
def extendsOver (X : Set Var) (y1 @2 : PropForm Var) :=
V (o1 : PropAssignment Var), o1 | ¢1 — 3 02, o1.agreeln X o2 A 02 E @2
/-- Assignments satisfying ¢ are determined on Y by their values on X. -/
def uniqueExt (X Y : Set Var) (¢ : PropForm Var) :=
V (o1 o2 : PropAssignment Var), o1 E ¢ — 02 E ¢ — o1.agreeln X o2 —
o1.agreeln Y oo

invariants.extends_pogDefsForm : extendsOver st.inputCnf.vars T st.pogDefsForm
invariants.uep_pogDefsForm : uniqueExt st.inputCnf.vars st.allVars st.pogDefsForm

Note that in the definition of uniqueExt, the arrows associate to the right, so the definition
says that the three assumptions imply the conclusion. The next invariant guarantees that
the set of solutions over the original variables is preserved:

def equivalentOver (X : Set Var) (¢:1 ¢2 : PropForm Var) :=
extendsOver X ¢1 @2 A extendsOver X ¢2 ¢1

invariants.equivInput : equivalentOver st.inputCnf.vars st.inputCnf st.clauseDb
Finally, for every node u € P with corresponding literal u we ensure that ¢, is partitioned
(Definition 2) and relate ¢y to its clausal encoding 0, = u A A\, p 0o

def partitioned : PropForm Var — Prop
tr | fls | var _ => True

disj ¢ ¥ => p.partitioned A v .partitioned AV 7, (7 E ¢ A T E )

|

| neg ¢ => p.partitioned

|

| conj ¢ ¥ => p.partitioned A 1 .partitioned A ¢.vars N t.vars = ()
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invariants.partitioned : V (u : ILit), (st.pog.toPropForm u).partitioned
invariants.equivalent_lits : V (u : ILit), equivalentOver st.inputCnf.vars
(u A st.pogDefsForm) (st.pog.toPropForm x)

These invariants are maintained by valid CPOG proofs. Together with additional invariants
that ensure the correctness of cached computations, they imply the soundness theorem for P
with root node r:

» Theorem 6. If the proof checker has assembled POG P with root node r starting from
input formula ¢y, and FINAL CONDITIONS (as stated in Section 7.2) hold of the checker state,
then ¢5 is logically equivalent to ¢y.

Proof. FINAL CONDITIONS imply that the active clausal formula 6 is exactly 0p = {{r}} U
Uuep Ou- The conclusion follows from this and the checker invariants. The full proof is
formally verified in Lean. <

After certifying a CPOG proof, the checker can pass its in-memory POG representation to the

ring evaluator, along with the partitioning guarantee provided by invariants.partitioned.

Ring evaluation. We formalized the central quantity (1) in the ring evaluation problem
(Definition 4) in a commutative ring R as follows:

def weightSum {R : Type} [CommRing R]
(weight : Var — R) (¢ : PropForm Var) (s : Finset Var) : R :=
> 7 in models ¢ s, II x in s, if 7 x then weight x else 1 - weight x

The rules for efficient ring evaluation of partitioned formulas are expressed as:

def ringEval (weight : Var — R) : PropForm Var — R

disj ¢ 1 => ringEval weight ¢ + ringEval weight ¢
conj ¢ 1 => ringEval weight ¢ * ringEval weight

| tr =>1

| fls => 0

| var x => weight x

| neg ¢ => 1 - ringEval weight ¢
|

|

Proposition 5 is then formalized as follows:

theorem ringEval_eq_weightSum (weight : Var — R) {¢ : PropForm Var} :
partitioned ¢ — ringEval weight ¢ = weightSum weight ¢ (vars ¢)

To efficiently compute the ring evaluation of a formula represented by a POG node, we
implemented Pog.ringEval and then proved that it matches the specification above:

theorem ringEval_eq_ringEval (pog : Pog) (weight : Var — R) (x : Var)
pog.ringEval weight x = (pog.toPropForm x).ringEval weight

Applying this to the output of our verified CPOG proof checker, which we know to be
partitioned and equivalent to the input formula ¢;, we obtain a proof that our toolchain
computes the correct ring evaluation of ¢;.

Model counting. Finally, we established that ring evaluation with the appropriate weights
corresponds to the standard model count. To do so, we defined a function that carries out
an integer calculation of the number of models over a set of variables of cardinality nvVars:
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def countModels (nVars : Nat) : PropForm Var — Nat

disj ¢ ¥ => countModels nVars ¢ + countModels nVars
conj ¢ 1Y => countModels nVars ¢ * countModels nVars ¢ / 2°nVars

| tr => 2"nVars

| fls => 0

| var _ => 2" (nVars - 1)

| neg ¢ => 2"nVars - countModels nVars ¢
|

I

We then formally proved that for a partitioned formula whose variables are among a finite
set s, this computation really does count the number of models over s:

theorem countModels_eq_card_models {p : PropForm Var} {s : Finset Var} :
vars ¢ C s — partitioned ¢ — countModels (card s) ¢ = card (models ¢ s)

In particular, taking s to be exactly the variables of ¢, we have that the number of models
of ¢ on its variables is countModels ¢ (card (vars ¢)).

11 Implementations

We have implemented programs that, along with the D4 knowledge compiler, form the
toolchain illustrated in Figure 1.* The proof generator is the same in both cases, since it
need not be trusted. Our verified version of the proof checker and ring evaluator have been
formally verified within the Lean 4 theorem prover. Our long term goal is to rely on these.
Our prototype version is written in C. It is faster and more scalable, but we anticipate its
need will diminish as the verified version is further optimized.

Our proof generator is written in C/C++ and uses CADICAL [1] as its SAT solver. To
convert proof steps back into hinted CPOG clause additions, the generator can use either its
own RUP proof generator, or it can invoke DRAT-TRIM [15]. The latter yields shorter proofs
and scales well to large proofs, but each invocation has a high startup cost. We therefore
only use it when solving larger problems (currently ones with over 1000 clauses).

The proof generator can optionally be instructed to generate a one-sided proof, providing
only the reverse-implication portion of the proof via input clause deletion. This can provide
useful information—any assignment that is a model for the compiled representation must
also be a model for the input formula—even when full validation is impractical.

We incorporated a ring evaluator into the prototype checker. It can perform both standard
and weighted model counting with full precision. It performs arithmetic over a subset of the
rationals we call Q, 5, consisting of numbers of the form a - 2. 5¢, for integers a, b, and c,
and with ¢ implemented to have arbitrary range. Allowing scaling by powers of 2 enables the
density computation and rescaling required for standard model counting. Allowing scaling
by powers of both 2 and 5 enables exact decimal arithmetic, handling the weights used in
the weighted model counting competitions. To give a sense of scale, the counter generated a
result with 260,909 decimal digits for one of the weighted benchmarks.

12  Experimental Evaluation

We summarize the results of our experiments here. The supplement [3] provides a more
complete description. For our evaluation, we used the public benchmark problems from the

4 The source code for all tools is available at https://github.com/rebryant/cpog/releases/tag/v1.0.0.
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Figure 2 Runtime (left) and proof size (right) for CPOG proofs. The runtime includes proof
generation, checking, and model counting relative to the runtime for D4. The proof size is measured
as total clauses relative to the number of defining clauses.

2022 standard and weighted model competitions.? We found that there were 180 unique CNF
files among these, ranging in size from 250 to 2,753,207 clauses. We ran our programs on a
processor with 64 GB of memory and having an attached high-speed, solid-state disk. With
a runtime limit of 4000 seconds, D4 completed for 124 of the benchmark problems. Our
proof generator was able to convert all of these into POGs, with their declarations ranging
from 304 to 2,761,457,765 (median 848,784) defining clauses.

We ran our proof generator with a time limit of 10,000 seconds. The results are shown in
Figure 2, The left-hand plot shows the elapsed time for the combination of proof generation,
checking, and counting versus the time for D4. The proof generator was able to generate full
proofs for 108 of the problems and one-sided proofs for an additional 9 of them, leaving just

7 with no verification. The prototype checker successfully verified all of the generated proofs.

The longest runtime for the combination of proof generation, checking, and counting for a
full proof was 13,145 seconds. Overall the ratio between the combined time for generation,
checking, and counting versus the time for D4 had a harmonic mean of 5.5. The right-hand
plot shows the total number of clauses in the CPOG file versus the number of defining clauses
for the problems having full proofs. The ratio between the total number of clauses and the
number of defining clauses had a harmonic mean of 3.13. To date, we have not found any
errors in the dec-DNNF graphs generated by D4.

We found that the monolithic approach for generating the forward implication proof
works well for smaller POGs (up to one million defining clauses), but it becomes inefficient for
larger ones. These experiments suggest a possible hybrid approach, stopping the recursion of
the structural approach and shifting to monolithic mode once the subgraph size is below some
threshold. By using monolithic mode, we were also able to perform end-to-end verification of
all but one of the benchmarks that could be verified without preprocessing, with a total time

® Downloaded from https://mccompetition.org/2022/mc_description.html
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limit (including preprocessing) of 1,000 seconds.

We also found that our two optimizations: literal grouping and lemmas can provide
substantial improvements in proof size and runtime. In the extreme cases, a lack of lemmas
caused one proof to grow by a factor of 52.5, while a lack of literal grouping caused another
proof to grow by a factor of 39.6. Overall, it is clear that these two optimizations are
worthwhile, and sometimes critical, to success for some benchmarks.

Running the verified proof checker in Lean 4 required, on average (harmonic mean),
around 5.9 times longer than the prototype checker. Encouragingly, the scaling trends
were identical for the two solvers, indicating that the two checkers have similar asymptotic
performance. We consider a factor of 5.9 to be acceptable for the assurance provided by
formal verification.

In comparing other proof frameworks, we found that the CD4 toolchain ran very fast and
could handle very large benchmarks. Even with a total time limit of 1,000 seconds, including
the time for knowledge compilation, the CD4 toolchain completed 106 benchmarks, while
the CPOG toolchain completed just 82. We found that the runtimes for the MICE toolchain
versus our CPOG toolchain showed little correlation, reflecting the fact that the two solve
different problems and use different approaches. In general, our CPOG toolchain showed
better scaling, in part due to its ability to control the recursion through lemmas. Neither of
these prior toolchains could perform end-to-end verification when the knowledge compilation
was preceded by preprocessing.

13 Conclusions

This paper demonstrates a method for certifying the equivalence of two different representa-
tions of a Boolean formula: an input formula represented in conjunctive normal form, and
a compiled representation that can then be used to extract useful information about the
formula, including its weighted and unweighted model counts. It builds on the extensive
techniques that have been developed for clausal proof systems, including extended resolution
and reverse unit propagation, as well as established tools, such as proof-generating SAT
solvers and DRAT-TRIM.

We are hopeful that having checkable proofs for knowledge compilers will allow them
to be used in applications where high levels of trust are required, and that it will provide a
useful tool for developers of knowledge compilers. Our experiments demonstrate that our
toolchain can already handle problems nearly at the limits of current knowledge compilers.
Further engineering and optimization of our proof generator and checker could improve
their performance and capacity substantially. We are hopeful that our tool can be adapted
to handle other knowledge compiler representations, such as sentential decision diagrams
(SDDs) [9].
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