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Abstract. We explore the Collatz conjecture and its variants through the lens of
termination of string rewriting. We construct a rewriting system that simulates
the iterated application of the Collatz function on strings corresponding to mixed
binary–ternary representations of positive integers. Termination of this rewriting
system is equivalent to the Collatz conjecture. To show the feasibility of our ap-
proach in proving mathematically interesting statements, we implement a minimal
termination prover that uses the automated method of matrix/arctic interpretations
and we perform experiments where we obtain proofs of nontrivial weakenings of
the Collatz conjecture. Finally, we adapt our rewriting system to show that other
open problems in mathematics can also be approached as termination problems
for relatively small rewriting systems. Although we do not succeed in proving
the Collatz conjecture, we believe that the ideas here represent an interesting new
approach.

1 Introduction

Let N = {0, 1, 2, . . .} denote the natural numbers and N+ = {1, 2, 3, . . .} denote the
positive integers. We define the Collatz function C : N+ → N+ as

C(n) =

{
n/2 if n ≡ 0 (mod 2)

3n+ 1 if n ≡ 1 (mod 2).

Given a function f and a number k ∈ N, the function fk denotes the kth iterate of f .
The well-known Collatz conjecture is the following:

Conjecture 1. For all n ∈ N+, there exists some k ∈ N such that Ck(n) = 1.

This is a longstanding open problem and there is a vast literature dedicated to its study.
For its history, we refer the reader to the comprehensive surveys by Lagarias [17–19].

Definition 1 (Convergent function). Consider a function f : X → X . Given x ∈ X ,
the sequence of iterates fτ (x) := (x, f(x), f2(x), . . .) is called the f -trajectory of x.
For some designated element z ∈ X , if for all x ∈ X the trajectory fτ (x) contains z,
the function f is called convergent.
? The full version is available at https://www.cs.cmu.edu/~eyolcu/research/rewriting-collatz.pdf.
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In this paper, we describe an approach based on termination of string rewriting to
automatically search for a proof of the Collatz conjecture. Although trying to prove
the Collatz conjecture via automated deduction is clearly a moonshot goal, there are
two recent technological advances that provide reasons for optimism that at least some
interesting variants of the problem might be solvable. First, the invention of the method
of matrix interpretations and its variants such as arctic interpretations turns the quest
of finding a ranking function to witness termination into a problem that is suitable for
systematic search. Second, the progress in satisfiability (SAT) solving makes it possible
to solve many seemingly difficult combinatorial problems efficiently in practice. Their
combination, i.e., using SAT solvers to find interpretations, has so far been effective in
solving challenging termination problems. We make the following contributions:

– We show how a generalized Collatz function can be expressed as a rewriting system
that is terminating if and only if the function is convergent.

– We show that translations into rewriting systems that use non-unary representations
of numbers are empirically more amenable to automation compared with their
previously and more commonly studied counterparts that use unary representations.

– We automatically prove various weakenings of the Collatz conjecture and observe
that only relatively large matrix/arctic interpretations exist for some generalized
Collatz functions. Existing termination tools often limit their default strategies to
search for small interpretations as they are tailored for the setting where the task is
to quickly solve a large quantity of relatively easy problems. We make the point that,
given more resources, the interpretation method has the potential to scale.

– We observe that the phase-saving heuristic used in modern SAT solvers degrades the
performance of CDCL solvers on formulas encoding the existence of matrix/arctic
interpretations, whereas using negative branching improves solver performance.

– We present adaptations of our rewriting system that allow reformulating several
more open problems in mathematics as termination problems of small size.

2 Preliminaries

2.1 String Rewriting Systems

Definition 2 (String rewriting system). Let Σ be an alphabet, i.e., a set of symbols. A
string rewriting system (SRS) over Σ is a relation R ⊆ Σ∗ ×Σ∗. Elements (`, r) ∈ R
are called rewrite rules and are usually written as `→ r. The system R induces a rewrite
relation→R := {(s`t, srt) | s, t ∈ Σ∗, `→ r ∈ R} on the set Σ∗ of strings.

Definition 3 (Termination). A relation → on A is terminating (denoted SN(→)) if
there is no infinite sequence s0, s1, . . . ∈ A such that si → si+1 for all i ≥ 0.

We conflate an SRS R with the rewrite relation it induces, writing “R is terminating”
instead of “→R is terminating”. The following is a useful generalization of termination:

Definition 4 (Relative termination). For SRSs R and S, the system R is said to be
terminating relative to S (denoted SN(R/S)) if every sequence of rewrites for the system
R ∪ S applies the rules from R at most finitely many times.
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Relative termination allows proofs to be broken into steps as codified by the following.

Lemma 1 (Rule removal [29, Theorem 1]). Let R be an SRS. If there exists a subset
T ⊆ R such that SN(T/R) and SN(R \ T ), then SN(R).

This lemma allows us to “remove rules” in the following way. When proving SN(R),
if we succeed at finding a subset T satisfying SN(T/R), the proof obligation becomes
weakened to SN(R\T ), where the rules of T are no longer present. This removal of rules
can be repeated until no rules remain, thus producing a stepwise proof of termination.

Another useful technique is reversal:

Lemma 2 (Rule reversal [29, Lemma 2]). For a string s = s1 . . . sn ∈ Σ∗, denote
srev := sn . . . s1 and define the reversal of an SRS R as Rrev := {`rev → rrev | ` →
r ∈ R}. For SRSs R and S, we have SN(R/S) if and only if SN(Rrev/Srev).

Reversal is of interest because methods for proving termination are not necessarily
invariant under reversal, that is, a given technique may fail to show termination of a
system R while succeeding for its reversal Rrev.

Yet another important notion is top termination:

Definition 5 (Top termination). Let R be an SRS over Σ. The top rewrite relation
induced by R is defined as→Rtop

:= {(`s, rs) | s ∈ Σ∗, ` → r ∈ R}. If→Rtop
is

terminating, R is said to be top terminating.

In plain language, top termination allows rewrites to be performed only at the leftmost end
of a string. As we will see in the next section (Theorem 1), top termination problems can
admit proofs of a more relaxed form compared to termination. Relative top termination,
i.e., proving SN(Rtop/S) for SRSs R and S, is a crucial component in the dependency
pair approach [1] which reduces a termination problem to a relative top termination
problem that is often easier to solve. In order to avoid requiring familiarity with the
dependency pair approach, we omit its discussion, and instead prove a self-contained
result (Lemma 4) that encapsulates dependency pairs in a more elementary manner for
the specific rewriting systems that we consider in this paper.

2.2 Interpretation Method

We state (at a high level) the key results on matrix/arctic interpretations that we use in
our implementation. For more details we refer the reader to existing work [2,6,10,15,26].
With the interpretation method, the main idea is to find a ranking function that assigns
a value to each string such that it decreases strictly when the string is modified by an
application of a rewrite rule. If for all strings the value is bounded from below, then it
cannot decrease indefinitely, ruling out the existence of an infinite sequence of rewrites.
Formally, we search for an instance of the following:

Definition 6 (Extended/weakly monotone algebra). Let Σ be an alphabet, A a set,
[σ] : A → A an interpretation for every σ ∈ Σ, > and & order relations over A such
that > is well-founded and & satisfies > · & ⊆ >. Letting [·]Σ := {[σ] | σ ∈ Σ},
the structure (A, [·]Σ , >,&) is a weakly monotone Σ-algebra if for every σ ∈ Σ the
interpretation [σ] is monotone with respect to &. It is an extended monotone Σ-algebra
if, additionally, for every σ ∈ Σ the interpretation [σ] is monotone with respect to >.
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We extend the interpretation from symbols to strings s = s1 . . . sn ∈ Σ∗ as [s] :=
[s1] ◦ · · · ◦ [sn]. The following general theorem characterizes relative termination (resp.
top termination) as the existence of extended (resp. weakly) monotone algebras.

Theorem 1 ([6, Theorem 2]). Let R and S be SRSs over the alphabet Σ. We have
SN(R/S) (resp. SN(Rtop/S)) if and only if there exists an extended (resp. weakly)
monotone Σ-algebra (A, [·]Σ , >,&) such that

– for each rule `→ r ∈ R we have [`](x) > [r](x) for all x ∈ A,
– for each rule `→ r ∈ S we have [`](x) & [r](x) for all x ∈ A.

An effective way to prove relative (top) termination is to try to satisfy the conditions
of the above theorem by fixing (A,>,&) and algorithmically searching for appropriate
interpretations of symbols. Matrix interpretations is an instance of this method. We fix
a dimension d, set A = Nd, define ~x & ~y ⇐⇒ xi ≥ yi for all i ∈ {1, . . . , d}, and
define ~x > ~y ⇐⇒ ~x & ~y ∧ x1 > y1. For interpreting each symbol σ ∈ Σ, we
consider an affine function [σ](~x) =Mσ~x+vσ . In this way, the structure (Nd, [·]Σ , >,&)
satisfies the requirements of Definition 6 for a weakly monotone algebra. Additionally
setting (Mσ)1,1 = 1 satisfies the requirements for an extended monotone algebra. Matrix
interpretations can also be adapted to the max–plus algebra of arctic numbers A :=
N∪{−∞} as coefficients with different arithmetic operations and order relations [15,26].

Example 1. Let R = {aa → aba} and S = {b → bb}. The following functions
constitute a matrix interpretations proof that shows SN(R/S).

[a](~x) =

[
1 1
0 0

]
~x+

[
0
1

]
[b](~x) =

[
1 0
0 0

]
~x+

[
0
0

]
It can be checked that the above interpretations give an extended monotone algebra and
that they satisfy the following for all ~x ∈ N2, which implies SN(R/S) via Theorem 1.

[aa](~x) =

[
1 1
0 0

]
~x+

[
1
1

]
>

[
1 1
0 0

]
~x+

[
0
1

]
= [aba](~x)

[b](~x) =

[
1 0
0 0

]
~x+

[
0
0

]
&

[
1 0
0 0

]
~x+

[
0
0

]
= [bb](~x)

In order to automate the search for the interpretations given a rewriting system R, an
effective approach is to encode all of the aforementioned constraints as a propositional
formula in CNF and use a SAT solver to look for a satisfying assignment. This addition-
ally involves fixing a finite domain for the coefficients that can occur in the interpretations
and encoding arithmetic over the chosen finite domain using propositional variables.

2.3 Generalized Collatz Functions

We consider instances of the following generalization of the Collatz function. Its variants
have commonly appeared in the literature [3, 12, 14, 16, 21, 24, 27].

Definition 7 (Generalized Collatz function). Let X be one of N, N+, or Z and define
X⊥ := X ∪ {⊥}. A function f : X⊥ → X⊥ is a generalized Collatz function if f(⊥) =



An Automated Approach to the Collatz Conjecture 5

⊥ and there exist an integer d ≥ 2 and rational numbers q0, . . . , qd−1, r0, . . . , rd−1
such that for all 0 ≤ i ≤ d− 1 and all n ∈ X , we have

f(n) = qin+ ri if n ≡ i (mod d)

or f(n) = ⊥ if n ≡ i (mod d).

In the above, we allow the representation of a partially defined function by mapping to
⊥ in the undefined cases. We call a partial f convergent if all f -trajectories contain ⊥.

Note that the Collatz function corresponds to a generalized one with d = 2, q0 = 1/2,
r0 = 0, q1 = 3, r1 = 1. Although the Collatz function is by far the most widely studied
case, there are several other concrete examples of generalized Collatz functions the
convergence of which is worth studying due to their connections to open problems in
number theory and computability theory. We discuss these cases in Section 5.

3 Rewriting the Collatz Function

We start with systems that use unary representations and then demonstrate via examples
that mixed base representations can be more suitable for use with automated methods.

3.1 Rewriting in Unary

The following system of Zantema [29] simulates iterated application of the Collatz
function to a number represented in unary, and terminates upon reaching 1.

Example 2. Z denotes the following SRS, consisting of 5 symbols and 7 rules.

h11 → 1h 11h� → 11s�
1s → s1
�s → �h

h1� → t11�
1t → t111
�t → �h

This system can be seen as encoding the execution of a Turing machine with cells that
can be contracted/expanded. The symbols 1 and � (blank) form the tape alphabet, while
the symbols h (half), s (shift), t (triple) indicate the head along with the state of the
machine. Through the following result, the Collatz conjecture can be reformulated as
termination of string rewriting.

Theorem 2 ([29]). Z is terminating if and only if the Collatz conjecture holds.

While the forward direction of the above theorem is easy to see (since �h12n� →∗Z
�h1n� for n > 1 and �h12n+1� →∗Z �h13n+2� for n ≥ 0), the backward direction is
far from obvious because not every string corresponds to a valid configuration of the
underlying machine.

As another example, consider the systemW = {h11 → 1h,1h� → 1t�,1t →
t111, �t→ �h} (originally due to Zantema4). Termination of this system has yet to be
proved via automated methods. Nevertheless, there is a simple reason for its termination:

4 https://www.lri.fr/~marche/tpdb/tpdb-2.0/SRS/Zantema/z079.srs

https://www.lri.fr/~marche/tpdb/tpdb-2.0/SRS/Zantema/z079.srs
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It simulates iterated application of a partial generalized Collatz function W : N+
⊥ → N+

⊥
defined as follows, which is easily seen to be convergent.

W (n) =

{
3n/2 if n ≡ 0 (mod 2)

⊥ if n ≡ 1 (mod 2)

If a proof of the Collatz conjecture is to be produced by some automated method
that relies on rewriting, then that method better be able to prove a statement as simple as
the convergence of W . With this in mind, we describe an alternative rewriting system
that simulates the Collatz function and terminates upon reaching 1. We then provide
examples where the alternative system is more suitable for use with termination tools
(for instance allowing an automated proof of the convergence of W ).

3.2 Rewriting in Mixed Base

In the mixed base scheme, the overall idea is as follows. Given a number n ∈ N+, we
write a mixed binary–ternary representation for it (noting that this representation is not
unique). With this representation, as long as the least significant digit is binary, the parity
of the number can be recognized by checking only this digit, as opposed to scanning
the entire string when working in unary. This allows us to easily determine the correct
case when applying the Collatz function. If the least significant digit is ternary, then
the representation is rewritten (while preserving its decimal value) to make this digit
binary. Afterwards, since computing n/2 corresponds to erasing a trailing binary 0 and
computing 3n + 1 corresponds to inserting a trailing ternary 1, applying the Collatz
function takes a single rewrite step. We explain this scheme more formally below.

A mixed base numeral system is a numeral system where the base changes across
positions, which we define as follows. Note that unary is not a positional numeral system,
so we require the bases to be greater than 1.

Definition 8 (Mixed base representation). Let B ⊆ N>1 be a set of bases and let
N = n1b1n2b2 . . . nkbk be a string where ni ∈ N. If we have for each 1 ≤ i ≤ k that
bi ∈ B and 0 ≤ ni < bi, then N is called a mixed B-ary representation.

The string N from above represents the decimal number N10 =
∑k
i=1 ni

∏k
j=i+1 bj .

Observing that the addition of leading zeros to a string does not change its decimal value,
we may assume without loss of generality that n1 > 0. Furthermore, b1 does not affect
the decimal value of the string, so we may omit it.

Now, define βnb (x) := bx+ n. After rearranging, we see that the decimal value of
the B-ary string N = n1n2b2 . . . nkbk may also be written as N10 = (βnk

bk
◦ βnk−1

bk−1
◦

· · · ◦βn2

b2
)(n1). This gives us a string and a function view of the same representation, and

we will switch between them as appropriate. In doing so, we also conflate the symbols
and the corresponding functions, referring to βnb as nb.

As the last ingredient before describing the rewriting system, we observe that we can
write (βnb ◦βmc )(x) = bcx+bm+n equivalently as another composition (βm

′

c ◦βn
′

b )(x) =
cbx+ cn′ +m′ for some suitable 0 ≤ n′ < b and 0 ≤ m′ < c. This allows us to swap
the bases of adjacent positions while preserving the decimal value of the string.
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From this point on, we constrain ourselves to the mixed {2, 3}-ary (binary–ternary)
representations as we shift our focus to simulating the Collatz function (noting that it
is possible to adapt the rewriting system that we will end up with to other instances of
the general case). More precisely, we simulate the following redefinition of the Collatz
function where the odd case incorporates an additional division by 2.

T (n) =

{
n
2 if n ≡ 0 (mod 2)
3n+1

2 if n ≡ 1 (mod 2)

We will describe an SRS T over the symbols {f,t,0,1,2, /, .} that simulates
iterated application of the Collatz function and terminates upon reaching 1. The symbols
f,t correspond to binary digits 02, 12; and 0,1,2 to ternary digits 03, 13, 23. The
symbol / marks the beginning of a string while also standing for the most significant
digit (without loss of generality assumed to be 1) and . marks the end of a string.
Consider the functional view of these symbols:

f(x) = 2x
t(x) = 2x+ 1

0(x) = 3x
1(x) = 3x+ 1
2(x) = 3x+ 2

/(x) = 1
.(x) = x

(1)

Each positive natural number can be expressed as some composition of these functions,
which corresponds to a string as per our previous discussion.

Example 3. Allowing the inclusion of a redundant trailing symbol . to mixed base
representations, we can write 19 = (/0f1.)10 = .(1(f(0(/(x))))). The string rep-
resentation ends with a ternary symbol, so we will rewrite it. With the function view,
we have 1(f(x)) = 3(2x) + 1 = 6x + 1 = 2(3x) + 1 = t(0(x)). This shows
that we could also write 19 = (/00t.)10, which now ends with the binary digit 12.
This gives us the rewrite rule f1 → 0t. We can now apply the Collatz function to
this representation by rewriting only the rightmost two symbols of the string since
T (.(t(x))) = 3(2x+1)+1

2 = 6x+4
2 = 3x + 2 = (.(2(x))). This gives us the rewrite

rule t. → 2.. After applying this rule, we indeed obtain T (19) = 29 = (/002.)10.

In the manner of the above example, we compute all the necessary transformations
and obtain the following 11-rule SRS T .

DT =

{
f. → .
t. → 2.

}
A =

f0 → 0f
f1 → 0t
f2 → 1f

t0 → 1t
t1 → 2f
t2 → 2t

 B =

 /0 → /t
/1 → /ff
/2 → /ft


This SRS is split into subsystems DT (dynamic rules for T ) and X = A ∪ B (auxiliary
rules). The two rules in DT encode the application of the Collatz function T , while
the rules in X serve to push binary symbols towards the rightmost end of the string by
swapping the bases of adjacent positions without changing the represented value.

Example 4 (Rewrite sequence of T ). Consider the string s = /ff0. that represents
the number 12. Below is a possible rewrite sequence of T that starts from s, with the
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corresponding decimal values (under the interpretations from (1)) displayed above the
strings. Underlines indicate the parts of the strings where the rules are applied.

12 12 6 6 3 3 5

/ff0. →A /f0f. →DT
/f0. →A /0f. →DT

/0. →B /t. →DT
/2.

5 8 8 8 4 2 1

→B /ft. →DT
/f2. →A /1f. →B /fff. →DT

/ff. →DT
/f. →DT

/.

The trajectory of T continues upon reaching 1, however, in order to be able to formulate
the Collatz conjecture as a termination problem, T is made in such a way that its rewrite
sequences stop upon reaching the string representation /. of 1 since no rule is applicable.

Termination of the subsystems of T with B or DT removed is easily seen. However,
since we have matrix interpretations at our disposal, let us give a compact proof.

Lemma 3. SN(T \ B) and SN(T \ DT ).

Proof. It is easily checked that the interpretations below show SN((T \ B)rev), which
implies SN(T \ B) by Lemma 2.

[f](x) = [t](x) = 2x+ 1 [.] = x [0](x) = [1](x) = [2](x) = 2x

Below interpretations show SN((T \ DT )rev), which implies SN(T \DT ) by Lemma 2.

[f](x) = [t](x) = [/](x) = x+ 1 [0](x) = [1](x) = [2](x) = 4x ut

As a whole, the system T simulates the iterated application of T (except at 1).

Theorem 3. T is terminating if and only if T is convergent.

Proof (sketch). We observe that the rules of T do not change the number of occurrences
of / or . in a string and that the rewrite sequences operate strictly on one side of these
symbols. Thus, we may view a given string as split into blocks delimited by / or .
and consider the termination of each block separately. In this way, we conclude that
there exists a nonterminating rewrite sequence for a string if and only if it contains a
block of the canonical form /(f|t|0|1|2)∗. that can be rewritten indefinitely, since the
rewrite sequences that start on blocks of all other forms are already seen to terminate by
Lemma 3. Furthermore, under the interpretations in (1), the sequences of values attained
by the rewrites of the blocks in canonical form correspond directly to Collatz trajectories,
since the rules in X do not change the value of the block and the rules in DT change the
value of the block in exactly the same way as the Collatz function T . ut

When trying to remove a rule in DT or B it suffices to show relative top termination,
allowing us to use weakly (instead of extended) monotone algebras when applying
Theorem 1 and take advantage of the more relaxed constraints when searching for
matrix/arctic interpretations. The lemma below encapsulates dependency pairs, and it
can in fact be automatically proved via the dependency pair framework [9].

Lemma 4. For each subset R ⊆ B, if SN(Rtop/T ) then SN(R/T ). And, for each
subsetR ⊆ DT , if SN(Rrev

top/T rev) then SN(Rrev/T rev).
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Proof (sketch). Without loss of generality, assume we start with a string of the canonical
form /(f|t|0|1|2)∗. (resp. its reversal). Then, the rules in B (resp. DT rev) can only
be applied at the top level. As we know from Lemma 3 that T \ B (resp. T \ DT ) is
terminating, any infinite sequence of rewrites in T (resp. its reversal) would require
infinitely many applications of the rules from B (resp. DT rev). As these rules can only
be applied at the top level, this would imply relative top nontermination. ut

4 Automated Proofs

We adapt the rewriting system T to different generalized Collatz functions to explore the
effectiveness of the mixed base scheme on weakened variants of the Collatz conjecture.
The rewriting systems, scripts to reproduce the experiments, and our implementation of
a termination prover are available at https://github.com/emreyolcu/rewriting-collatz.

Most top-tier termination tools, such as AProVE, Matchbox, and TTT2, use the SAT
solver MiniSat [5] to search for matrix/arctic interpretations. This choice is somewhat
surprising as MiniSat has not been updated since 2008 and the performance of SAT
solvers has improved significantly in the last decade. The use of MiniSat in these provers
is motivated by its observed effectiveness in finding interpretations. We investigated the
reason for this, which turned out to be a heuristic that MiniSat disables in its default
configuration. MiniSat uses negative branching [5], which explores the “false” branch
first for all decision variables. Modern SAT solvers use phase-saving [22] which first
explores the branch corresponding to the truth value to which the variable was forced to
most recently during unit propagation. In our case, enabling negative branching improves
solver performance for formulas that encode the existence of interpretations.

4.1 Convergence of W

With the mixed binary–ternary scheme, the function W from Section 3.1 can be seen
to be simulated by the systemW ′ = {f. → 0.} ∪ X . A small matrix interpretations
proof is found for this system in less than a second, in contrast to its variantW that uses
unary representations for which no automated proof is known.

Theorem 4. SN(W ′).

Proof. The interpretations below prove SN({.f→ .0}/X rev):

[f](~x) =

[
1 0
0 1

]
~x+

[
1
1

]
[t](~x) =

[
1 0
0 0

]
~x+

[
1
0

]

[/](~x) =

[
1 0
0 0

]
~x [.](~x) =

[
1 2
0 0

]
~x

[0](~x) =

[
1 0
0 1

]
~x+

[
2
0

]
[1](~x) =

[
1 0
1 0

]
~x+

[
2
2

]
[2](~x) =

[
1 0
1 0

]
~x+

[
2
2

]
By Lemmas 3 and 2, X rev is terminating. As a result,W ′rev is terminating, which

by Lemma 2 implies thatW ′ is terminating. ut

https://github.com/emreyolcu/rewriting-collatz
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4.2 Farkas’ Variant

Let 2N+ 1 = {1, 3, 5, . . .} denote the odd natural numbers. Farkas [8] studied a slight
modification F ′ : 2N+ 1 → 2N+ 1 of the Collatz function which can be proved
convergent via induction. We consider automatically proving the convergence of this
function as another test case for the mixed base scheme that is easier than the Collatz
conjecture without being entirely trivial. We refer the reader to [8] for the original
definition of F ′. Below, we define another function F : N → N that resembles the
Collatz function more closely than Farkas’ F ′ (with respect to the definitions of the
cases) while being equivalent to F ′ in terms of convergence. This variant is obtained by
introducing an additional case in the Collatz function for n ≡ 1 (mod 3) and applying
T otherwise. Its definition and a set DF of dynamic rules are shown below.

F (n) =


n−1
3 if n ≡ 1 (mod 3)

n
2 if n ≡ 0 or n ≡ 2 (mod 6)
3n+1

2 if n ≡ 3 or n ≡ 5 (mod 6)

DF =


1. → .
0f. → 0.
1f. → 1.
1t. → 12.
2t. → 22.


Termination of the rewriting system F = DF ∪X is equivalent to the convergence of F .
The proof of the equivalence is essentially the same as that of Theorem 3. Farkas gave
an inductive proof of convergence for F ′ via case analysis, and we found an automated
proof that F is terminating via arctic interpretations. It is worth mentioning that the
default configurations of the existing termination tools (e.g., AProVE, Matchbox) are
too conservative to prove termination of this system, but after their authors tweaked the
strategies they were also able to find automated proofs via arctic interpretations.

Theorem 5. For all n ∈ N+, the trajectory Fτ (n) contains 1.

Proof. We will show SN(F). By Lemmas 3 and 2, we have SN(X rev). The arctic in-
terpretations below (with the empty cells standing for −∞) prove SN(DF rev

top/X rev) by
Theorem 1, which implies SN(DF rev/X rev) by Lemma 4. As we know X rev is termi-
nating, by Lemma 1 we conclude SN(DF rev ∪ X rev), implying SN(F) via Lemma 2.

[f](~x) =


2

2 0
2

 ~x+


0
 [t](~x) =


2

0 2 0 0
2 2

 ~x+


0


[/](~x) =


0
2

4

 [.](~x) =


0

 ~x

[0](~x) =


0 4 0
4
4 0

0 3 0

 ~x [1](~x) =


1
4 0
4 0

0
0 3 0

 ~x [2](~x) =


0 0
4

0 1 0

0 0 0

 ~x
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4.3 Subsets of T

It is also interesting to consider whether we can automatically prove terminations of
proper subsets of T . Specifically, we considered the 11 subsystems obtained by leaving
out a single rewriting rule from T , and we found proofs via matrix/arctic interpretations
for all of the 11 subproblems. The reason for our interest in these problems is threefold:

1. Termination of T implies the terminations of all of its subsystems, so proving its
termination is at least as difficult a task as proving terminations of the 11 subsystems.
Therefore, the subproblems serve as additional sanity checks that an automated
approach aspiring to succeed for the Collatz conjecture ought to be able to pass.

2. When proving termination in a stepwise manner, we solve a sequence of relative
termination problems. Having proved the terminations of all 11 subsystems is a
partial solution to the full problem, since it implies that for any single rule `→ r ∈
T , proving SN({`→ r}/T ) settles the Collatz conjecture.

3. After the removal of a rule, the termination of the remaining system still encodes
a valid mathematical question about the Collatz trajectories. The question of ter-
mination of a proper subset is equivalent to asking if every corresponding Collatz
trajectory that does not require the use of the left-out rule is convergent.

Example 5. As an instance of leaving out a rule, consider the subsystem T \{f1→ 0t}.
There is a single-step matrix interpretations proof that this system is terminating:

[f](~x) =

[
1 1
1 0

]
~x [t](~x) =

[
1 3
3 4

]
~x+

[
1
1

]

[/](~x) =

[
1 5
0 0

]
~x [.](~x) =

[
1 0
1 0

]
~x+

[
1
1

]

[0](~x) =

[
7 2
2 5

]
~x+

[
2
1

]
[1](~x) =

[
2 1
1 1

]
~x+

[
1
0

]
[2](~x) =

[
2 2
2 4

]
~x+

[
0
2

]

With the above interpretations, we can show for instance that the Collatz trajectory
starting at 3 (represented as /t.) is convergent, because the missing rule is not used in
any derivation of 1 (/.) from 3. Below is an example derivation along with the decimal
values each string represents and a vector value of each string under the interpretations
above (setting ~x = (0, 0) for the purpose of demonstration). We omit the subscripts from
the rewrite relations and simply write→.

3 5 5 8 8 8 4 2 1

/t. → /2. → /ft. → /f2. → /1f. → /fff. → /ff. → /f. → /.[
79
0

]
>

[
78
0

]
>

[
68
0

]
>

[
62
0

]
>

[
41
0

]
>

[
40
0

]
>

[
26
0

]
>

[
14
0

]
>

[
12
0

]
Table 1 shows the parameters for the proofs that we found for the termination of each

subsystem. For each rule `→ r that is left out, we searched for a stepwise proof to show
that B\{`→ r} is terminating relative to T \{`→ r} (freely utilizing weakly monotone
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Table 1. Smallest proofs found for terminations of subsystems of T in under 120 seconds. The
columns show the matrix dimension d and the maximum number v of distinct coefficients that
appear in the matrices, along with the median time to find an entire termination proof across 10
repetitions for the fixed d and v.

Matrix Arctic

Rule removed d v Time d v Time

f. → . 3 4 4s 3 5 19s
t. → 2. 1 2 <1s 1 3 <1s

/0→ /t 2 2 <1s 2 3 <1s
/1→ /ff 3 3 1s 3 4 1s
/2→ /ft 4 4 8s 4 3 4s

Matrix Arctic

Rule removed d v Time d v Time

f0→ 0f 4 2 1s 3 4 3s
f1→ 0t 1 3 1s 1 4 1s
f2→ 1f 1 2 <1s 1 3 <1s

t0→ 1t 4 3 2s 3 4 1s
t1→ 2f 5 2 1s 4 3 1s
t2→ 2t 4 4 28s 2 5 1s

algebras due to Lemma 4). Such a proof requires at most three steps since there are at
most three rules in B \ {` → r}. On the table, we report the smallest parameters (in
terms of matrix dimension) that work for all of these steps. As we already know that
SN(T \ B) holds (by Lemma 3), the interpretations found allow us to conclude the
termination of each subsystem. This is not the only way to prove the terminations of the
subsystems, however, we chose this uniform strategy for the sake of comparison.

4.4 Odd Trajectories

In the originally defined Collatz function C, applying 2n + 1 7→ 6n + 4 produces
an even number, so we incorporate a single division by 2 into the definition of the
odd case and obtain the function T with the same overall dynamics as C. Taking
this idea further by performing as many divisions by 2 as possible leads to the so-
called Syracuse function Syr: 2N+ 1 → 2N+ 1, defined as Syr(n) = 3n+1

2k
where

k = max{k ∈ N+ | 2k divides 3n+ 1}.
Expressing the Syracuse function as a generalized Collatz function would require

infinitely many cases to account for all of the possible appearances of 2k as the denomi-
nator with different values of k. As a result, we are unable to simulate it with a finite
rewriting system. Nevertheless, we may compromise and accelerate the Collatz function
by a constant amount. We first observe that if n ≡ 1 (mod 8) then Syr(n) = 3n+1

4
and if n ≡ 3 (mod 4) then Syr(n) = 3n+1

2 . Furthermore, for any n ∈ N we have
Syr(8n + 5) = Syr(2n + 1) since 3(8n + 5) + 1 = 24n + 16 = 4(6n + 4) =
4(3(2n + 1) + 1). Putting these observations together, we can define a generalized
Collatz function S : 2N+ 1→ 2N+ 1 as follows.

S(n) =


3n+1

4 if n ≡ 1 (mod 8)
n−1
4 if n ≡ 5 (mod 8)

3n+1
2 if n ≡ 3 (mod 4)

S is convergent if and only if C (or T ) is convergent, and the number of steps that
S takes to converge is between that of T and Syr. In a manner similar to before, we
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4 2

6 3

0 5

1

7

4 3

6 7

0 5

1

2

1

3 5

7

Fig. 1. Transition graphs of the iterates in the Collatz trajectories across residue classes modulo 8
for the functions C (left), T (middle), S (right). For each function f , the edge u→ v is part of its
transition graph if and only if there exists some n ≡ u (mod 8) such that f(n) ≡ v (mod 8).
Bold edges indicate transitions where f(n) > n.

can translate S into a rewriting system S = {ff• → 0•,tf• → •,t• → 2•} ∪ X .
Since we are working with odd numbers we used a new symbol • to mark the end of
a string, viewed functionally as •(x) = 2x + 1. Termination of the rewriting system
S is equivalent to the convergence of S. Similar to T , proving the termination of S is
currently beyond our reach, although it may potentially be an easier path to the Collatz
conjecture (compared to proving SN(T )). Failing to prove the termination of S itself,
we considered the subsystems of S as we did for T in Section 4.3. With matrix/arctic
interpretations, the terminations of all but two of the 11-rule subsystems of S were
automatically proved. Despite devoting thousands of CPU hours, we were not able to
find interpretations to prove that S1 = S \ {ff• → 0•} or S2 = S \ {tf• → •} is
terminating, so we leave them as challenges for automated termination proving.

4.5 Collatz Trajectories Modulo 8

Let m be a power of 2. Given k ∈ {0, 1, . . . ,m−1}, is it the case that all nonconvergent
Collatz trajectories contain some n ≡ k (mod m)? For several values of k this can be
proved to hold by inspecting the transitions of the iterates in the Collatz trajectories
across residue classes modulo m (shown on Figure 1 for m = 8). These questions can
also be formulated as the terminations of some rewriting systems. With this approach we
found automated proofs for several cases:

Theorem 6. If there exists a nonconvergent Collatz trajectory, it cannot avoid the
residue classes of 2, 3, 4, 6 modulo 8.

It remains open whether the above holds for the residue classes of 0, 1, 5, 7 modulo 8.

5 More Problems to Approach via Rewriting

Mahler’s 3/2 Problem. Let ξ ∈ R>0 be a real number. It is called a Z-number if for
all k ∈ N we have frac

(
ξ
(
3
2

)k)
< 1

2 , where frac(·) denotes the fractional part of the
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number. Mahler [20] conjectured that there are no Z-numbers. Moreover, he considered
a generalized Collatz function M : N+ → N+, defined as follows.

M(n) =


3n
2 if n ≡ 0 (mod 2)
3n+1

2 if n ≡ 1 (mod 4)

⊥ if n ≡ 3 (mod 4)

He related the behaviors of M -trajectories to the existence of Z-numbers:

Theorem 7. For n ∈ N+, if a Z-number exists in the interval [n, n+ 1), then there is
no k ∈ N for which Mk(n) ≡ 3 (mod 4).

Thus, the nonexistence of Z-numbers can be established by proving thatM is convergent,
which is equivalent to the termination ofM = {f. → 0.,ft. → 10.} ∪ X . In order
to ensure termination at the case n ≡ 3 (mod 4), there is no rule with the LHS tt..

Halting Problem for Busy Beaver-5. The busy beaver problem concerns finding binary-
alphabet Turing machines with n states that, when given an input tape of all 0s, write
the largest number of 1s on the tape upon halting. For each n, the machine that achieves
this is called the “Busy Beaver-n”. Note that this definition only requires the machines
to halt on all-0 inputs, leaving the behavior on other inputs unspecified and allowing
them not to halt in general. Michel [21] observed that for n ∈ {2, 3, 4}, the busy beaver
machines are all total Turing machines, i.e., they halt on all inputs, and moreover proved
that they all simulate some generalized Collatz function. It is an open problem whether
all busy beavers are total. In particular, it is unknown whether the current Busy Beaver-
5 candidate is total. Michel showed that the Busy Beaver-5 candidate simulates the
following generalized Collatz function.

B(n) =


5n+18

3 if n ≡ 0 (mod 3)
5n+22

3 if n ≡ 1 (mod 3)

⊥ if n ≡ 2 (mod 3)

Convergence of the above function can be studied via the termination of a rewriting
system obtained by a mixed {3, 5}-ary (ternary–quinary) translation scheme. We were
unable to prove the termination of the resulting system.

Ternary Expansions of 2n. Erdős [7] asked: When does the ternary expansion of 2n

omit the digit 2? This is the case for 20 = (1)3, 22 = (11)3, and 28 = (100111)3. He
conjectured that it does not happen for n > 8. This conjecture can be proved by showing
that the rewriting system E = {0. → .,1. → ., /. → /.}∪{r → ` | `→ r ∈ X} is
terminating on all initial strings of the form /f8f+.. Given a string that corresponds to
the binary representation of a power of 2, this system essentially rewrites the string into
ternary by pushing ternary symbols to the right without altering the value that the string
represents, and removes the occurrences of the ternary digits 0 and 1 (but not 2). If the
ternary expansion does not contain the digit 2 then all digits will be removed, resulting in
the string /. that can then be rewritten to itself indefinitely. This problem, as described,
is an instance of “local termination” [28] since it is concerned with termination on not
all possible strings but a subset of them. We have not performed experiments with this
system or local termination yet and we leave this for future work.
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6 Related Work

To our knowledge, Zantema [29], with his system Z that we saw in Section 3.1, was the
first to attempt using an automated method and string rewriting to search for a proof of
the Collatz conjecture. In addition, although we independently discovered the mixed
binary–ternary system described in Section 3.2, Scollo [25] had essentially the same
idea, the difference being that he adopted a functional view of the digits that is slightly
different than in (1). Scollo was not concerned with proving termination, though, and
proposed rewriting primarily as a formalism that forgoes the arithmetic interpretation of
the iterates and instead emphasizes its dynamic/computational behavior.

De Mol [4] showed the existence of a small 2-tag system [23] with the following rules
that simulates the iterated application of the Collatz function given a unary representation:
{1⇀ /., / ⇀ 1, . ⇀ 111}. This tag system halts if and only if the Collatz conjecture
holds, giving yet another formulation of the problem.

Kari [11] designed 1D cellular automata that perform multiplication by 3 and 3/2 in
base 6, and reformulated both the Collatz conjecture and Mahler’s 3/2 problem as sets
of constraints to be satisfied by the space-time diagrams of these cellular automata.

Kauffman [13] developed a formalism to perform arithmetic that he called string
arithmetic, and expressed the Collatz conjecture within it. This formalism works with
unary representations of numbers, and uses the three symbols 1, /, .. Letting ε denote
the empty string andN be any string representing a number, string arithmetic consists of
the following bidirectional rewrite rules (or “identities”) to convert between different
strings representing the same number: {./ ←→ ε,11←→ /1.,1N ←→ N1}. Then, the
Collatz function is encoded by the following two rules: {/N. → N, /N.1→ /N1.N}.
The Collatz conjecture is equivalent to the question of whether for strings of 1s of all
lengths there exists a rewrite sequence using the five rules above to reach the string 1.

7 Future Work

Several extensions to this work can further our understanding of the potential of rewriting
techniques for answering mathematical questions. For instance, although matrix/arctic
interpretations lead to automated proofs of several weakened variants discussed in
this paper, it might still be the case that there exists no matrix/arctic interpretation to
establish the termination of the Collatz system T . Proving nonexistence would provide
guidance as to where to focus our efforts when searching for a proof. Another issue
is the matter of representation, specifically, it is worth exploring whether there exists
a suitable translation of the Collatz conjecture into a term, instead of string, rewriting
system since many automated termination proving techniques are generalized to term
rewriting. Finally, injecting problem-specific knowledge into the rewriting systems or
the termination techniques would be helpful as there exists a wealth of information about
the Collatz conjecture that could simplify proof search.
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