Solving edge-matching problems
with satisfiability solvers

Marijn J.H. Heule*

Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Sciences
Delft University of Technology
marijn@heule.nl

Abstract. Programs that solve Boolean satisfiability (SAT) problems
have become powerful tools to tackle a wide range of applications. The
usefulness of these solvers does not only depend on their strength and the
properties of a certain problem, but also on how the problem is translated
into SAT. This paper offers additional evidence for this claim.

To show the impact of the translation on the performance, we studied
encodings of edge-matching problems. The popularity of these problems
was boosted by the release of Eternity II in July 2007: Whoever solves
this 256 piece puzzle first wins $ 2,000,000. There exists no straight-
forward translation into SAT for edge-matching problems. Therefore, a
variety of possible encodings arise.

The basic translation used in our experiments and described in this pa-
per, is the smallest one that comes to mind. This translation can be ex-
tended using redundant clauses representing additional knowledge about
the problem. The results show that these redundant clauses can guide
the search — both for complete and incomplete SAT solvers — yielding
significant performance gains.

1 Introduction

The Boolean satisfiability (SAT) problem deals with the question whether there
exists an assignment —a mapping of the Boolean values to the Boolean variables—
that satisfies a given formula. A formula, in Conjunctive Normal Form (CNF),
is a conjunction of clauses, each clause being a disjunction of literals. Literals
refer either to a Boolean variable z or to its negation .

SAT solvers have become very powerful tools to solve a wide range of prob-
lems, such as Bounded Model Checking and Equivalence Checking of electronic
circuits. These problems are first translated into CNF, solved by a SAT solver,
and a possible solution is translated back to the original problem domain.

Translating a problem into CNF in order to solve it does not seem optimal:
Problem specific information, which could be used to develop specialized solving
methods, may be lost in the translation. However, due to the strength of modern

* Supported by the Dutch Organization for Scientific Research (NWO) under grant
617.023.611.

SAT solvers, it could be very fruitful in practice: Problem specific methods to
beat the SAT approach may take years to develop.

SAT solvers have been successfully applied to various combinatorial problems
ranging form lower bounds to Van der Waerden numbers [3] to Latin Squares.
However, on many other combinatorial problems, such as Traveling Salesman
and Facility Allocation [8], SAT solvers cannot compete with alternative tech-
niques such as Linear Programming. A possible explanation is that the former
(successful) group can be naturally translated into CNF, while the latter, due
to arithmetic constraints cannot.

For most problems, there is no straight-forward translation into CNF. Whether
SAT solvers can efficiently solve such problems does not only depend on the
strength of the solvers, but also on the translation of the problem into CNF.
This paper offers an evaluation of the influence of a translation on the perfor-
mance of SAT solvers. The translation of edge-matching problems into CNF
serves as this papers experimental environment. The problem at hand appears
both challenging and promising; because 1) there is no "natural” translation
into CNF, yielding many alternative translations, and 2) there are no arithmetic
constraints that seem hard for SAT solvers.

The focus of this paper will be on the influence of redundant clauses — those
clauses which removal / addition will not increase / decrease the number of
solutions. Notice that redundancy as stated above should be interpreted in the
neutral mathematical sense of the word and not in the negative connotation
of day-to-day talk. In fact, as we will see, redundant clauses can improve the
performance of SAT solvers. Furthermore, all presented encodings will use the
same set of Boolean variables.

After introducing edge-matching problems (Section 2), this paper presents
the smallest translation into CNF that comes to mind. First the choice of the
variables (Section 3), followed by the required clauses (Section 4). This transla-
tion can be extended with clauses representing additional knowledge about the
problem (Section 5). Then it reflects on the influence of the translation (with and
without extensions) on the performance (Section 6) and concludes that encoding
is crucial to solve the hardest instances (Section 7).

2 Edge-Matching Problems

Edge-matching problems [5] are popular puzzles, that appeared first in the
1890’s. Given a set of pieces and a grid, the goal is to place the pieces on the grid
such that the edges of the connected pieces match. Edge-matching problems are
proved to be NP-complete [2]. Most edge-matching problems have square pieces
and square grids. Yet, there exists a large variety of puzzles! with triangle or 3D
pieces and irregular grids.

! See for instance http://www.gamepuzzles.com/edgemtch.htm

There are two main classes of edge-matching problems. First, the edges are
colored and connected edges much have the same color. These problems are called
unsigned. Second, instead of colors, edges can have a partial image. These edges
match if they have complementary parts of the same image. These problems are
called signed. A famous signed edge-matching problem is Rubik’s Tangle.

Edges on the border of the grid are not connected to pieces, so they cannot
match as the other edges. In case there are no constraints placed on these edges,
we call the problem unbounded. On the other hand, problems are bounded if
these edges are constraint. A common constraint is that these edges must have
the same color. Throughout this paper, when we refer to bounded edge-matching
problems, we assume this constraint and that their is a special color only for these
border edges.

The popularity of edge-matching problems was boosted by the release of the
Eternity IT puzzle in July 2007: Whoever solves it first wins $2,000,000. Eternity
ITis a 16 x 16 bounded unsigned edge-matching problem invented by Christopher
Monckton and published by Tomy. Apart from the large 256 piece puzzle, also
four smaller clue puzzles have been released.

3 Choosing the Variables

The selection of Boolean variables for the translation is an important first step
to construct an efficient encoding. This section introduces the variables used in
the proposed translation of edge-matching problems into CNF. These consist of
two types: Variables representing a mapping from pieces to squares (Section 3.1)
and variables describing the colors of the diamonds (Section 3.2). Apart from
these variables, this section describes the clauses relating to variables of the same
type. Clauses that consist of both types will be discussed in Section 4.
Throughout this paper, no auxiliary variables are introduced. Using only
the variables in this section, one can already construct dozens of alternative
translations. Therefore, evaluating these translations seems a natural starting
point. That said, related work such as [7] shows that auxiliary variables can be
very helpful to reduce the computational costs of solving the problem at hand.

3.1 Mapping Pieces to Squares

Arguably the most intuitive way to translate edge-matching problems into CNF
would be a mapping of the pieces to the squares of the grid. A similar approach
has been proposed to translate edge-matching problems into a Constraint Sat-
isfaction Problem [9]. This requires the following Boolean variables:

- 1 if piece p; is placed on square g;
“J 0 otherwise

Notice that there is no rotation embedded in the variable encoding. As we
will see in Section 4, rotation does not require additional variables and can be
achieved by clauses.

(c) (d)

Fig. 1. Examples of an (a) unbounded unsigned edge-matching problem, (b) unbounded
signed edge-matching problem, (¢) bounded unsigned edge-matching problem, and (d)
bounded signed edge-matching problem.

For bounded edge-matching problems, zero edges refer to those edges that
should be placed along the boundary of the grid. Given a n x n grid, these
problems contain four corner pieces with two zero edges (denoted by set Peorner)
and 4n — 8 border pieces with one zero edge (denoted by set Phorder)- The pieces
with no zero edges are denoted by set Penter- For unbounded edge-matching
problems, all pieces are in set Peenter-

Likewise, corner pieces can only be placed in the corners of the grid (denoted
by set Qcorner), border pieces only along the border (denoted by set Qborder),
and the other pieces can only be placed in the center (denoted by set Qcenter)-
So, the mapping variables are related as follows:

(\/xi,a) A (\/xi,b) A (\/xi,c) for qa S Qcornerv ab S Qborderv qc S chnter (1)

Pi€Pcorner Pi€Pborder Pi€ Peenter

(\/xa,j) /\(\/xb,j) /\(\/xc,j) for Pa € Pcornerypb S Pborderypc € Pcenter (2)

45 €Qcorner 45 €Qborder q; €Qcenter

The above encoding requires | Peomer|? + |Poorder|? + | Peenter|> variables and
2| Peorner| + 2| Poorder| + 2| Peenter| clauses. Notice that the encoding only forces
each piece on at-least-one square and each square to hold at-least-one piece. In
fact, in any valid placement, this should be exactly-one. Forcing them exactly-
one ezplicitly — each mapping of one piece on two squares would violate a specific
(binary) clause — is very expensive (in terms of additional (binary) clauses), as
we will discuss in Section 5.2. Instead, the clauses presented in Section 4 force
the one-on-one mapping implicitly which makes the explicit encoding redundant.

q q2 q3 q4 qs g6 dy da ds da ds
de d7 dg d9 le dll
qr as Q9 Qo | qu1 | q12 di2 X diz X dia X dis X dig
d17 d18 d19 dQO d21 d22
Q3 | qua | @15 | ¢ | @17 | @18 dag X d2a X da2s X dag X dar
dag X d29 X dzo X ds1 X d32 X das
q19 q20 g21 q22 q23 q24 dsa dss dsg ds7 dss
d3g X dao X da1 X daz X daz X daa
q25 | q26 | q27 | 928 | 929 | Q30 das X dag X dar X dag X dag
dso X ds1 X ds2 X ds3 X dsa X dss
g31 | 932 | 933 | 434 | 935 | Q36 dse X ds7 X dss X dso X deo

Fig. 2. The numbering of squares g; (left) and diamonds di (right) for a 6x6 edge-
matching problem. Gray squares are corner and border squares, gray diamonds are
border diamonds.

Implicit encoding assumes that all pieces are unique. In case two pieces are
equivalent (modulo rotation), then a few additional clauses have to be added
to force equivalent pieces to be placed on different squares. To ensure a valid
mapping, we therefore need some additional clauses for each square g;:

(Zi,; VT,;) for p; equivalent to p; and ¢ < { (3)

3.2 Colored Diamonds

The only constraint forced on a placement is that colors of connecting edges must
match. Edges are represented as triangles and connected edges as diamonds.
Given a n x n grid, there are n? — 2n diamonds. Diamonds are numbered from
left to right, from top to bottom, see Figure 2. This brings us to the second type
of variables.

1 if diamond dj, has color ¢
Yk, 0 otherwise

The colored edges can be partitioned into border edges (those directly next
to zero edges) and center edges (those not directly next to zero edges). Set
Chorder consists of all colors of border edges and set Ceenter consists of all colors
of center edges. Likewise, diamonds are partitioned into two sets, one for the
border edges, called Dy order, and one for the center edges, called Deenter. Figure 2
shows the partition for a 6 x 6 grid. The disjunction of Cporger and Ceenter
could be empty, but that is not as a rule. The number of variables y; . equals
|Cborder| . |Dborder| + |Ccenter| . |Dcenter| . In case either |Cborder| or |Ccenter| is 1arge7
the number of required binary clauses will be enormous.

(Vo) AN Vo) A N\Ore V) A NG Ve for

c€Chborder c€Ccenter ¢, E€Chorder,c<c’ ¢,¢’€Chorder,c<c’

dk S Dborder
{dl S Dcenter (4)

Example 1. Given an edge-matching problem with Chorder = {blue, green, red}
and Ceenter = {Cyan, green, pink, yellow}. The following clauses will encode that
each diamond has exactly one color:

(yk,red \ Yr,green \ yk,blue) A

— — — _ _ _ dk S Dborder (5)
(yk,red \ yk,green) A (yk,red \ yk,blue) A (yk,green \ yk,blue)

(yk,cyan \ Yr,green \ Yk, pink \ yk,yellow) A
(gk,cyan v gk,green) A (yk,cyan v gk,pink) A (gk,cyan N yk,yellow) A dk € Dcenter
(gk,green \ yk,pink) A (yk,green \ yk,yellow) A (yk,pink \ yk,yellow)

(6)

4 Essential Clauses

This section deals with the question of how to connect the mapping variables
x;,; with the colored diamond variables ¥ .. The encoding presented here is one
of many alternatives. This one uses only a few clauses per mapping variable z; ;.
All constraints have the format “if p; is mapped on g; ..., then dj, has color ¢”. Or
as clause (Z; ; V... Vyg.c). The number of these clauses and their sizes depend on
the type of piece p;. Besides corner and border pieces (discussed in Section 4.1),
the center pieces are grouped in seven types (see Section 4.2).

4.1 Corner and Border Pieces

First the easy part. Recall that the zero edges are known. So, corner and border
pieces can only be placed on a square with a specific rotation. Therefore, only
one binary clause is required for each non-zero edge of the center and border
pieces.

Example 2. Given a corner piece pp with a red east edge and a blue south edge
which should be placed on a n x n grid (see Figure 2). Then the eight clauses
below should be added (per corner piece depending on the colors). Notice that
q1,9n, Gn2—n+1, qn2 are the corresponding corner squares.

(EA,l \ yl,red) A (EA,l \ yn,blue) A

(EA,n \ y2n—1,red) A (EA,n \ yn—l,blue) A

(EA,ngfnJrl \ y2n274n+2,red) A (EA,n27n+1 \ y2n273n+2,blue) A
(EA,n2 \ y2n2—2n,red) A (EA,WP \ y2n2—3n+1,blue)

Similarly, given a border piece pg with a pink east edge, a yellow south edge and
a green west edge, that should be placed on the same grid, the following clauses
should be added for j € {1,...,n —2}:

(EB,jJrl \ yj,green) A (EB,jJrl \ ijrnJrl,yel]ow) A
(EB,j—i-l vV yj—i-l,pink) A (EB,nj-l—l \ y(2n71)j+n,green) A
(EB,nj—i-l vV y(2n71)j+1,yellow) A (EB,nj-l—l \ y(2n71)jfn+1,pink) A
(TBm(j+2)—1 V Y(2n—1)j,green) AN (TBn(+2)-1 V Y@n—1)j+n—1,yellow) A
(TB,n(+2)—1 VY Yen—1)(+1),pink) A (TBj4n2—nt1 V Yj+2n2—3n+2,green) A

(EB,nz—n-i—l \ yj+2n2—4n+2,yellow) A (EB,j-l—n?—n—i-l \ yj+2n2—3n+2,pink)

Concluding, for each variable x; ; with p; € Peorner We only need two binary
clauses, while for each x; ; with p; € Pyorder, We need three binary clauses. The
next section will discuss which clauses to add for those z; ; with p; € Peenter-

4.2 Center Pieces

Given the choice of the variables presented in Section 3, the encoding of corner
and border pieces (as above) is quite straight-forward. However, encoding the

center pieces efficiently is much more tricky. The crux is that if a certain mapping
variable z; ; of a center piece is true, we cannot directly color the corresponding
diamonds?. We need to know how p; is rotated (0°,90°,180°, or 270°).

Rotation can be encoded using two kinds of clauses: positive rotation clauses
and negative rotation clauses. First, positive rotation clauses consist of only
positive literals y . and the negative mapping literal T; ;. These clauses force a
subset of the corresponding diamonds to be colored in correspondence with one
of the edges. The number of these clauses and their sizes depend on how many
times a color occurs on a piece. If a color occurs only once then this is encoded
as a single clause of length five. If all edges have the same color then a binary
clause is required per edge. In the other cases, these clauses have length three
and the number depends on the relative location of the edges with the same
color. All positive rotation clauses are used in the proposed encoding.

Second, for negative rotation clauses, all literals are negated except for one
literal yi .. The negated literals represent the conditions to force diamond dj, to
color c¢. Most negative rotation clauses are ternary clauses. For instance, Z1,5 V
Y7 yellow V Ys,red, Which could be read as “if p; is mapped on g5 and dy is yellow,
then dg is red”. In case a piece contains three or four different colors, some
negative rotation clauses are required to make the encoding valid.

Center pieces can be partitioned into seven types: 1) All edges have the same
color; 2) three edges have the same color; 3) two neighbouring pairs of edges
have the same color; 4) both opposite pairs of edges have the same color; 5) one
neighbouring pair of edges has the same color; 6) one opposite pair of edges has
the same color; 7) all edges have a different color. The number of clauses that
should be added for each variable z; ; depends on the type of piece p; — ranging
from 4 (type 1) to 20 (type 7). Figure 3 lists the combination of clauses that
should be added per type of each piece.

Notice that the positive rotation clauses of length five are not listed in Fig-
ure 3 for types 5, 6, and 7. First, piece type 5 does not need the long positive
rotation clauses because the shown clauses are enough to force a valid encoding.
For piece types 6 and 7 it is required to add at least of these long clauses. We
omitted it in Figure 3, because there is a choice — anyone of them will make
the encoding valid. To make the encoding independent of the choice, as stated
before, all the positive rotation clauses will be used.

5 Redundant Clauses

Translation of edge-matching problems into CNF as presented in Sections 3
and 4 is the smallest one that came to mind. This translation is such that each
satisfying assignment corresponds with a unique valid positioning of the pieces.
Moreover, the translation is satisfiable if and only if there exists a valid placement
of the the original problem.

2 Expect for the special case in which all edges have the some color (and the same
sign, for signed problems).

Type Implications Clauses
1 —)‘ (Ti,is V' Yo5,plue)’
v (Tins V. Y2ablue V Yioblue)’
(Ti,is V' Y2ablue V' Y25,blue)
9 T, , ,
) { (@i,15 V' Yiored V Y2dred
—_— V' Yasred V Y30,red)
— _ a
3 —l (Ti,5 V' Y2a,blue V' Y25,blue)
‘ (Ti,is V. Yiored V. Y30,red)
4 (Tis V. Yioblue vV Y2aplue)1
(Tins V' Yoswed V. Y3ored)’
— (Tins V Poayeliow V Y30red)
5 (1 \ (Ti,15 V Y2a,yetiow V' Yz red)’
(Ti,is V' Y2a,blue V' Y25,blue)
(Ti,15 V' Tioblue V Y25 blue
\% y24,yellow)b

— v Eles

6 _T (fi:15
h

(Ti,15

(Ti,15

(Ti,15

(Ti,15

V' Yos yellow
V' Ya5,red
V Y19,blue

\4 g24,green
\ le,blue
V' Y5 red

\4 g30,yellow

V' Y25, red)b
\ y24,yellow)b
V' Y24, blue)b

b
V Y19,blue

)
V Y25,red)
)
)

S

\ Y30,yellow

b
\% Y24 ,green

* two clauses apply permutation {(y10,c,¥25,c), (¥25,c, ¥30,¢)s (¥30,c, Y24,c); (Y24,¢, Y19,¢) }

to obtain the other one.

? four clauses; apply permutation {(y19,c, Y25.c), (¥25.c, Y30,), (Y30,c, Y24.¢), (Y24.c, Y19.c) }

iteratively to obtain the other three.

Fig. 3. The translation of the seven types of center pieces to CNF. The most frequent
occurring color is represented by blue, followed by red, yellow and green. Each arrow
(implication) is encoded a (set of) clause(s). Black diamonds refer to the complement
of an edge. The last column shows one clause per arrow for a piece p; placed on gi5 on
a 6 x 6 grid. The corresponding diamonds are dig (north), das (east), dso (south), daa

(west).

10

Although the translation is sufficient, it may not be optimal in case one wants
to solve it with a SAT solver. With the addition of some (or even many) clauses
and variables, some SAT solvers may find a solution much faster. This section
discusses two extensions of the compact translation. Both represent additional
knowledge about the problem and require only some extra clauses.

5.1 Forbidden Color Clauses

Once a diamond is given a certain color, then several pieces are not allowed to
be placed on the corresponding squares. This knowledge can be added to the
formula with several binary clauses. For each diamond, if assigned to a color,
then all pieces without that color (on at least one of its edges) cannot be placed
on one of the two corresponding squares.

Example 3. Given a piece pc with one blue edge, two pink edges and a red
edge. Say we want to place it on square ¢15 and the dsq is one of the correspond-
ing diamonds and Ceenter = {blue, cyan, green, orange, pink, red}. The forbidden
color clauses would be:

(50715 v gBO,cyan) A (50715 v gBO,green) A (50715 v gSO,orange) (7)

Notice that, provided the encoding of corner and border pieces as described in
Section 4.1, these clauses only make sense for center pieces. Let C(p;) be the set
of colors of piece p; and g be the smallest index of the corresponding square of
diamond dy, and ¢ the largest index of the corresponding square.

/\ (ji,q,f \/gk,color) A /\ (fi,qk? vyk,color) for pi € Pcentem dk € Dcenter (8)
COloreccenter\c(pi) CO]OreCcenter\C(p'i)

Several assignments that are implicitly violated by the compact translation,
become explicitly violated by the forbidden color clauses. For instance, two pieces
cannot be placed on neighbouring squares if they do not have at least one edge
in common, because the diamond between these squares cannot be colored. In
the compact translation, not all rotation clauses can be satisfied in that situa-
tion, although the SAT solver may not see it, yet. However, with the additional
forbidden color clauses this directly results in a conflict.

The disadvantage of adding forbidden color clauses, as with all types of addi-
tional clauses, is that the encoding will require more resources. Especially when
the number of center colors is large, the number of forbidden color clauses will
be enormous.

5.2 Explicit One-on-One Mapping

Recall that diamonds are explicitly forced to have exactly one-color which in turn
implicitly forces each piece on exactly one square. Optionally, we can extend

11

the translation by adding it explicitly. A straight-forward translation of this
enforcement is:

(Ei,j V jz’,l) for Di € Peorner and q5,q € Qcorner and j< l (9)
(Ei,j \ Ei,l) for pi € Pborder and q;5,q1 € Qborder andj <l (10)
(Ei,j vV Ei,l) for pi € Pcenter and q;5, 41 € chnter andj <l (11)

Notice that the number of additional clauses by this extension is O(|Peenter|?)-
Recall that for unbounded edge-matching problems, all pieces are in P.epter, SO
the addition is much cheaper for bounded problems. However, if the problem is
large enough, say |Peenter| > 40, the number of additional clauses will exceed
the number of original clauses. Yet, one cannot conclude that this addition is
counterproductive (in terms of solving speed).

6 Results

This section offers some results of the proposed translations of edge-matching
problems to CNF on a test set of bounded unsigned edge-matching problems.
Four instances arise from the clue puzzles by Tomy called cluex. Additionally,
eight problems were generated with various sizes (a), number of border colors
(b) and number of center colors (c) called em-a-b-c. The smaller five generated
instances have relatively many colors yielding only few solutions, while the larger
three instances have few colors and therefore many solutions. For each instance
from the test set we constructed four different encodings:

— Feompact: The compact translation as described in Section 3 and 4;

— Fibeolors: The forbidden color clauses (Section 5.1) added to Feompact;

— Fexplicit: The explicit one-on-one mapping (Section 5.2) added to Feompact;
— Fan: All presented clauses, the union of Fycolors and Fexplicit-

Table 1 offers several properties of the test set instances. Next to the names,
the second column lists the size (rows X columns) of the grid. Although, we
explained the translations using square grids, they can be used for rectangu-
lar grids as well. The third column shows the number of colors in the format
(|ICborder|, |Ceenter|)- The fourth column shows the number of variables used for
all encodings. The number of clauses of Feompact, and the number of the addi-
tional knowledge clauses are listed in the last three columns.

Only two state-of-the-art SAT solvers are used for the experiments: picosat [1]
and ubcsat [10]. The former is a complete solver — it can also prove that no
solution exits — while the latter is a local search solver. Initially, more solvers
were used, but the results of complete solvers were strongly related, as were those
of various incomplete ones. Therefore, only the strongest solver (based on earlier
experiments) of each category was selected. The picosat solver was faster than
minisat [4], probably due to use of rapid restarts in the former. For the ubcsat

12

Table 1. Properties of the selected benchmarks. The number of variables is denoted
by #variables- The last columns offer the size of the formulas expressed in the number
of (additional) clauses.

name size colors #variables |‘7:compact| |‘7:fbcolors| |‘7:explicit|
cTuel 6x6 (4,3 728 3638 704 13364
clue2 6 x 12 , 2904 23570 +9120 441808
clue3 6 x6 , 788 3836 +1792 43864
clue4d 6 x 12 2936 23574 +9280 441808

em-7-3-6 7T
em-7-4-8 7Tx7
em-7-4-9 7Tx7
em-8-4-5 8x8
em-9-3-5 9x9
em-11-3-4 11 x 11
em-12-2-4 12 x 12
em-14-7-3 14 x 14

1473 11563 +7500 +11324
1617 14513 411400 +11324
1677 15063 +13800 +11324
2420 22340 411232 429328
3857 39932 +19796 +68232
8713 99699 429808 4285144
12584 155712 +47200 +526224
24356 305744 +41475 41536792

=10 Wt R N oot ot s
W Ot ol 00 O s

—~ o~~~ |~~~
o — D D — —

solver, one can select from many different stochastic local search algorithms.
From those algorithms ddfw [6] appeared to be the fastest one on the smaller
instances of the test set. Therefore, this algorithm® was selected.

Each solver was run on each formula with ten seeds. The execution times
differed significantly for those seeds, for both picosat and ubcsat. Therefore, the
results show besides the average computational costs also the variance. In case
at least five seeds took more than an hour, > 3600 is listed.

The most striking result is that the complete solver picosat is unable to solve
most benchmarks in the test set when the explicit one-on-one mapping clauses
are not added, see Table 2. Although these clauses are redundant, they appear
crucial to solve the problem. Only the four clue puzzles can be solved without
these clauses, although clue2 and clued are solved considerably faster with
them.

The results of the incomplete solver ubcsat shown in Table 3 are much more
ambivalent. In contrast to picosat, the most elaborate translation hardly seems
the optimal encoding. Yet, only em-7-3-6 is solved fast using the compact en-
coding. The smaller generated instances (with relatively few solutions) are faster
solved by adding the redundant forbidden color clauses, while for the larger ones
(with many solutions) the explicit one-on-one mapping clauses appear useful.
Apparently, redundant clauses can guide the search for incomplete SAT solvers
as well.

Yet, despite the weakness shown on the translation without the additional
clauses, the (complete) picosat appears the best overall choice. When the compact
translation is extended with both sets of additional clauses, of picosat outper-
forms ubcsat on the harder instances. Moreover, the results suggest that extend-
ing the translation with even more additional knowledge could further improve
the performance.

6 Using the default settings with runs = 1,000, cut-off = 1,000,000

1

Table 2. Computational costs (in seconds) to solve the test set using picosat.

name fcompact ffbcolors fexplicit fall

cluel 011 (0.02) 0.10 (0.00) 0.10 (0.00) 0.10 (0.00)
clue2 506.44 (364.19) 164.84 (49.87) 275 (1.68) 0.95 (0.37)
clue3 022 (0.12) 012 (0.04) 0.10 (0.00) 0.10 (0.00)
clued 1527.54 (536.34) 269.77 (84.72) 1.90 (2.13) 0.54 (0.07)
em-7-3-6 | >3600 - >3600 — 140.00 (135.18) 34.91 (27.18)
em-7-4-8 > 3600 - >3600 — 1132.54 (1054.23) 852.32 (890.52)
em-7-4-9 | >3600 - >3600 - 4594 (43.75) 41.89 (55.94)
em-8-4-5 | >3600 - >3600 - 209.35 (187.79) 86.58 (67.23)
em-9-3-5 > 3600 - > 3600 — 501.81 (220.31) 152.81 (121.13)
em-11-3-4 | > 3600 - >3600 - 16348 (99.87) 51.68 (35.50)
em-12-2-4 > 3600 - > 3600 — 249.66 (151.65) 88.36 (81.92)
em-14-7-3 | >3600 -~ >3600 - 80.24 (49.73) 32.58 (17.91)

Table 3. Computational costs (in seconds) to solve the test set using ubcsat.

3

name fcompact ffbcolors fexplicit fall
cluel 0.04 (0.03) 004 (0.02) 0.02 (0.01) 0.02 (0.01)
clue2 178 (1.40) 137 (121) 0.19 (0.04) 021 (0.11)
clue3 0.06 (0.06) 0.08 (0.06) 0.03 (0.02) 0.04 (0.02)
clued 138 (0.89) 1.69 (1.38) 0.33 (0.19) 0.38 (0.31)
em-7-3-6 60.73 (17.65) 138.23 (134.30) 670.65 (701.69) 225.70 (78.76)
em-7-4-8 2376.62 (2169.16) 1732.65 (1801.32) > 3600 - > 3600 -
em-7-4-9 | 1690.02 (1815.71) 1284.47 (1502.43) > 3600 - >3600 —
em-8-4-5 | 155.62 (180.88) 80.54 (74.25) 381.91 (309.00) 128.88 (135.49)
em-9-3-5 1258.10 (1492.35) 177.36 (138.91) 1928.79 (2352.45) 839.40 (870.74)
em-11-3-4 | 82.73 (35.38) 34.16 (5.10) 2.65 (1.30) 3.78 (1.85)
em-12-2-4 | 154.99 (27.92) 3252 (17.88) 2.32 (L.70) 4.41 (1.89)
em-14-7-3 | 145.72 (21.20) 48.97 (23.19) 11.02 (7.99) 44.72 (39.55)

14

7 Conclusions and Future Work

This paper presented a compact translation of edge-matching problems into
CNF, as well as several extensions. The compact translation rarely resulted in
the fastest performance, both for complete and incomplete SAT solvers. For com-
plete solvers, the extensions even appeared crucial to solve the harder instances.
Yet, these results are not very surprising and mostly show the extend of the
importance of redundant clauses.

On the other hand, it is harder to explain why redundant clauses also guide
the search for incomplete SAT solvers. Arguably, any performance gain due
to adding redundant clauses could be interpreted as a flaw of the local search
algorithm — redundant clauses only require additional resources. More research
is needed to explain these results.

The focus of this paper, both the presentation and the experiments, is on
bounded unsigned edge-matching problems. Translating unbounded and / or
signed problems into CNF can be done in a similar manner. Future experiments
will have to show whether SAT solvers can be used to solve these problems, such
as Rubik’s Tangle, too.

Within the domain of edge-matching problems, there remains the enormous
challenge of constructing a translation of the Eternity II puzzle that could be
solved with a SAT solver. The proposed encoding is merely a first step in this
direction. A possible next step is to determine which other knowledge could be
added using redundant clauses.

Regarding the big picture, the challenge arises how to translate a problem into
CNF in general. The presented results suggest that adding redundant clauses can
significantly reduce the computational costs. Therefore, further research on the
use of redundant clauses may provide insight in how to meet this challenge. Also,
the results show that the optimal encoding will not only depend on properties of
a given problem, but also on the preferred solver, since complete and incomplete
solvers will require different translations.

Acknowledgments

The author would like to thank Sean Weaver and the anonymous reviewers for
their valueble comments.

References

1. Armin Biere. PicoSAT Essentials. Journal on Satisfiability, Boolean Modeling and
Computation 4 (2008), pp. 75-97.

2. Erik D. Demaine and Martin L. Demaine. Jigsaw Puzzles, Edge Matching, and
Polyomino Packing: Connections and Complexity. Special issue on Computational
Geometry and Graph Theory: The Akiyama-Chvatal Festschrift. Graphs and Com-
binatorics 23 (Supplement), June 2007, pages 195-208.

10.

15

. M. R. Dransfield, L. Liu, V. W. Marek and M. Truszczynski. Satisfiability and
Computing van der Waerden Numbers. In The Electronic Journal of Combina-
torics. Vol. 11 (1), (2004).

Niklas Eén and Niklas Sérensson, An extensible SAT-solver, In Giunchiglia and
Tacchella (eds). Theory and applications of satisfiability testing, 6th international
conference, SAT 2003. Santa Margherita Ligure, Italy, may 5-8, 2003 selected re-
vised papers, Lecture Notes in Computer Science 2919 (2004), pp. 502-518.
Jacques Haubrich. Compendium of Card Matching Puzzles. Self-published, May
1995. Three volumes.

Abdelraouf Ishtaiwi, John Thornton, Abdul Sattar, Duc Nghia Pham: Neighbour-
hood Clause Weight Redistribution in Local Search for SAT. CP 2005 (2005), pp.
T72-T76.

Jodo P. Marques-Silva and Inés Lynce. Towards Robust CNF Encodings of Cardi-
nality Constraints. CP’07, Lecture Notes in Computer Science 4741 (2007).
Rogier Poldner. MINIZSAT: A semi SAT-based pseudo-Boolean solver. MSc thesis
TU Delft (2008).

Pierre Schaus and Yves Deville. Hybridization of CP and VLNS for Eternity II.
Journées Francophones de Programmation par Contraintes (JEPC’08) (2008).
Dave A.D. Tompkins and Holger H. Hoos. UBCSAT : An implementation and
experimentation environment for SLS algorithms for SAT and MAX-SAT. Lecture
Notes in Computer Science 3542 (2005), pp. 306-320.

