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What makes some scientific problems hard and others easy? There are many answers to this question, such
as the level of abstraction and the amount of computation required to obtain a solution. One thing is for certain:
there is no shortage of problems that are hard by any metric, and these problems can bring even the greatest minds
to their knees. Luckily, mankind is not alone in its quest for knowledge; it created itself a powerful companion—the
computer. While humans are great at many aspects of problem solving, we are no match for computers in a range
of ways, including precise logical reasoning. Such reasoning is crucial in industry and academia, for instance to
ensure that computer systems work exactly as intended, in fields ranging from health care to finance to aviation.
Together, man and machine can form a partnership with skills that go far beyond what either of them is capable of
individually. I believe in a future where they work closely together to tackle the hard problems we so desperately
crave to solve. In fact, I am already contributing to that future.

For example, I have co-developed an automated-reasoning approach that was able to solve the Pythagorean
Triples Problem [8], a long-standing mathematical problem whose solution received substantial media coverage:
Nature News [17] and dozens of other media outlets around the world reported on what they called the “the largest
math proof ever”—a 200-terabyte computer-generated proof. I followed up on this result by computing the fifth
Schur Number [4] (a combinatorial challenge that remained open for a century) and the smallest known unit-
distance graph with chromatic number five. The latter result was published in Quanta Magazine [18], reprinted by
Wired, and reported on in international newspapers. I have also collaborated with people from software engineering
and bioinformatics to produce logic-based tools that advanced the state of the art in their respective fields.

But these examples just show the potential. My goal is to solve many hard open problems arising from scien-
tific and industrial challenges, and to help others to do so. To realize this goal, I plan to focus on the following
research topics: (1) boosting the trustworthiness of automated-reasoning tools via independently checkable certifi-
cates; (2) understanding automated reasoning and its results; (3) mechanizing abstract reasoning; (4) developing
representations that enable efficient reasoning; and (5) reasoning in the cloud.

Trusted Computing

Fully automated reasoning tools, which are frequently used in industry to determine the presence or absence of
bugs in hardware or software, have become significantly more powerful in the last two decades. They are now
able to solve long-standing open problems. But these tools are often highly complex, which raises the question of
whether we can trust their results. This question is particularly important when automated-reasoning tools are
used to determine the correctness of safety-critical systems. Here, correctness means that there exists no input
that violates the safety requirements. So we need to be sure that the entire space of inputs has been explored.

To deal with this issue, automated-reasoning tools are often required to provide an easily checkable output that
certifies the correctness of their answers—a so-called proof. Proof production and validation have been studied for
problems in propositional logic since the early 2000s, but the suggested solutions failed to become mainstream.
The main hurdle was that proofs were either too big or that checking them was too costly. Together with my co-
authors, I developed a proof system that bridges the gap between compact representation and efficient validation
of proofs [5]. This proof system is now supported by a large number of state-of-the-art tools and it has been used
to provide proofs for several open mathematical problems, including the Erdős Discrepancy Problem [16] and the
Boolean Pythagorean Triples Problem [8]. Moreover, formally-verified tools can check the correctness of these
proofs [2, 19]. Our proof system and the corresponding proof checkers have led to a decrease of observed bugs in
automated-reasoning tools and to an increase of trust in their output. In the future, I plan to lift our proof system
to richer logics such as first-order logic and popular SMT theories, since bugs in the corresponding solvers are
known to be widespread [1]. I have already started to lift our proof system to quantified Boolean formulas (QBF),
where it can be used to certify the correctness of virtually all common preprocessing techniques. One of my NSF
grants focuses on finalizing this QBF proof system and providing a formally-verified proof checker. Also, insights
from the QBF proof system have contributed to the development of new QBF reasoning techniques [10]. I expect
that similar proof systems for SMT and first-order logic will also enable improved solving methods.
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In the coming years, automated reasoning is poised to solve hard problems that have been open for many
decades. Mathematical challenges that may be feasible for automated techniques are, for instance, Ramsey Number
Five, the Collatz conjecture, and the Chromatic Number of the Plane. The solutions of these problems may reveal
crucial insights that might otherwise be overlooked. However, even if this is not the case, we can be confident that
they are correct because we can validate them with trustworthy systems.

Reasoning and Understanding

Human proofs and computer-generated proofs differ in many aspects. An argument often heard is that human proofs
provide us with understanding whereas computer-generated proofs merely show the correctness of a statement.
While there is some truth to this argument, it is also true that modern proof-checking tools can actually provide
us with many important insights into the nature of a problem. For instance, many proof checkers can tell us which
parts of a problem specification were involved in a particular proof. This can, for example, play a role when a
proof of a software-verification problem shows that a certain line of code is not reachable, because the checker can
help us extract the program parts that prevent the line from being reachable. Also, other important information
such as so-called Craig interpolants can be obtained from automatically-generated proofs [21]. I envision that this
is just the tip of the iceberg when it comes to mining proofs.

Two new research directions are emerging: minimizing proofs and extracting understandable arguments from
proofs. Automatically generated proofs of hard problems are typically huge and impossible to understand in
practice (an example is the 2-petabytes proof of Schur Number Five [4]). This is caused by the weak proof systems
used for reasoning. It is well known that more advanced reasoning mechanisms—which can be expressed in stronger
proof systems—allow for exponentially smaller proofs. One approach for proof minimization is to “delta debug”
proofs, that is, to remove as many proof parts as possible by using more advanced reasoning mechanisms. Initial
experiments show that this method can shrink proofs significantly. Another approach is to solve a problem multiple
times, each time jump-starting the solver with valuable information extracted from proofs. Shortening an existing
proof is much easier than finding a proof. Also, we can distill vital decisions from a proof and use these decisions to
guide the search in a subsequent run. Machine learning techniques could be very helpful here. Ultimately, I would
like to transform proofs into humanly understandable arguments. Such arguments could provide us with insights
into how problems were solved, which in turn could allow mathematicians to construct smaller proofs. Moreover,
it would be an important contribution to the rising field of Explainable Artificial Intelligence.

Mechanizing Abstract Reasoning

The success of automated reasoning presents us with an interesting peculiarity: while modern solving tools can
routinely handle gigantic real-world problems, they often fail miserably on supposedly easy problems. Their poor
performance is frequently caused by the weakness of their underlying proof systems—which only allow very specific
kinds of low-level reasoning—while humans can often solve these problems easily by reasoning on a more abstract
level. Although there exist strong proof systems that allow more abstract kinds of reasoning, their success is limited
in practice as they do not seem to lend themselves to automation.

To deal with this issue, I have been co-developing a new proof system that not only generalizes strong existing
proof systems, but that is also well-suited for mechanization. This line of work was recognized with best paper
awards at CADE’17 [6], HVC’17 [7], and IJCAR’18 [14]. Our new proof system turned out to be surprisingly
strong, even without the introduction of new abstractions or definitions, which is a key feature of short arguments
presented in the proof-complexity literature. There exist short arguments in this proof system for many well-known
problems that are hard for existing automated-reasoning approaches. These problems include the so-called pigeon
hole formulas, Tseitin formulas, and mutilated chessboard problems. Exploiting our new proof system’s potential
for automation, we later implemented a new decision procedure that finds these short arguments automatically [7].

Automated approaches can find arguments that humans never thought of, simply by reasoning on a different
problem representation. We observed this many times while analyzing automatically generated solutions. So the
key to solving problems that require some form of abstract reasoning is not the ability to simulate human thinking,
but to equip the machine with appropriate reasoning capabilities to find its own short arguments.

Over half a century, the research regarding proof systems focused on the existence of short(er) arguments in one
proof system compared to another proof system without addressing the issue of how to compute these arguments.
To solve hard problems, I expect that we need to shift the focus to the computability of short arguments and
develop stronger and stronger proof systems together with new decision procedures and heuristics. Our new proof
system is promising, although I consider it just a first step in a very exciting new research direction.
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Reasoning-Enabling Representations

A common approach in automated reasoning is to translate a given problem statement into propositional logic and
then solve the resulting formula with a dedicated solver. As the quality of the translation has a big impact on the
solver performance, it is no coincidence that solvers are highly successful in the field of hardware verification: digital
electronic circuits have a direct translation to propositional logic which is often adequate for solving. However, the
same is not true for many other applications. For example, a former colleague tried to use off-the-shelf tools to solve
problems from software-model synthesis, but his approach suffered from bad computational performance. I helped
him develop a translation that was much more compact than the (published) translations he initially applied. Our
resulting tool reduced the solving times for central benchmarks of the field to mere seconds. Moreover, it won the
StaMinA competition 2010 where it beat existing, problem-specific approaches by a wide margin [12]. I have also
been studying how to automatically fix translations so that non-experts can achieve strong solver performance on
their applications. This line of work resulted in a technique that improves the performance of reasoning engines
on extremely hard bioinformatics benchmarks—used in competitive events—by two orders of magnitude [20].

Many important questions are related to proving properties of software. Unfortunately, software-related ques-
tions are more complicated than hardware-related questions. Fully translating them into propositional logic is
therefore often impossible, and if it is possible, it can lead to formulas that are too large for any solver. A possible
approach to solve these problems is to use solvers for more specific logics such as SMT (Satisfiability Modulo
Theories). However, many software-related questions are even too hard for SMT solvers or any other existing
approach. One example is the question of whether or not a given function terminates. I envision that many of
these questions, which are undecidable in general, can be answered using the right finitization of the search space.
A promising finitization approach is the matrix interpretation method, which was able to solve various open termi-
nation problems [3]. In a recently awarded NSF grant, we explore how the famous Collatz conjecture—also known
as the 3n + 1 problem—could be solved by the matrix interpretation method. The Collatz conjecture, which has
been open for many decades, asks if a simple recursive function terminates. Preliminary results of our work show
that our finitization approach can solve some weaker variants of the Collatz conjecture (which were too hard for
alternative methods), although the full conjecture is expected to be significantly harder.

Reasoning in the Cloud

Supercomputers offer enormous potential to solve hard reasoning problems. However, to capitalize on this potential,
we need to find ways to distribute computation evenly over many different cores, which is far from trivial. I co-
developed a new parallel solving paradigm, called Cube-and-Conquer [9] (best paper award HVC’11), that has
been successful in realizing this goal for long-standing open problems such as the Boolean Pythagorean Triples
problem [8] (best paper award SAT’16) and the computation of the fifth Schur Number [4]. Both problems are part
of Ramsey theory, a branch of mathematics that studies the emergence of patterns within structures. For many
problems in Ramsey theory, there may not exist reasonably short proofs that could be found by a single computer,
and the same likely holds for other problems—such as safety-related questions—too. Automated reasoning in the
cloud might therefore be a viable option to solve these problems.

The Cube-and-Conquer paradigm realized linear speedups on both the Pythagorean Triples problem and the
Schur Number five problem, even when using thousands of cores to solve them. In other words, it was able to
distribute the computations in such a way that the speedup depended linearly on the number of cores employed,
thus making efficient use of parallelism. In a nutshell, Cube-and-Conquer partitions a problem into a large number
(sometimes even billions) of subproblems using heuristics that reason about the entire search space. It then handles
these subproblems with dedicated techniques that can solve them quickly. Cube-and-Conquer can be a promising
technology for future parallel reasoning. However, to achieve peak performance, the method still requires expert
knowledge to configure certain parameters. To remove this obstacle, I will focus on adaptive algorithms (“optimize
parameters during search”) and automated tuning [13] (“optimize parameters before search”). My solvers use
several adaptive algorithms [11, 9] which Donald Knuth called “elegant” in his latest book [15]. These algorithms
were the most essential contributions that allowed my solvers to win many awards at the international solver
competitions. I plan to develop adaptive algorithms for all major parameters in Cube-and-Conquer. Additionally,
I want to enhance the paradigm such that it can efficiently count or enumerate all solutions of a given problem,
thereby making it applicable for various interesting problems in cryptanalysis and system design.

I envision a future in which automated reasoning will be a cloud service that embodies the human-computer
partnership to solve easy and hard problems. This service will not only be able to answer many important questions
in industry and academia; it will also allow external validation of enormous proofs and provide explanations that
help us understand its results.
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