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Chromatic Number of the Plane

The Hadwiger-Nelson problem:
How many colors are required to color the plane such that each
pair of points that are exactly 1 apart are colored differently?

The answer must be three or more because three points can
be mutually 1 apart—and thus must be colored differently.
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Bounds since the 1950s

The Moser Spindle graph shows the lower bound of 4

A coloring of the plane showing the upper bound of 7
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First progress in decades

Recently enormous progress:

Lower bound of 5 [DeGrey ’18]

based on a 1581-vertex graph

This breakthrough started a
polymath project

Improved bounds of the fractional
chromatic number of the plane

We found smaller graphs with SAT:

874 vertices on April 14, 2018

803 vertices on April 30, 2018

610 vertices on May 14, 2018
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Validation

Check 1: Are two given points exactly 1 apart? For example:(
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Our method: An approach based on Groebner basis theory
developed by Armin Biere, Manuel Kauers, Daniela Ritirc

Check 2: Given a graph G , has it chromatic number k?

Our method: Construct two Boolean formulas: one asking
whether G can be colored with k − 1 colors (must be UNSAT)
and one asking whether G can be colored with k colors (SAT).
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Computer-Aided Mathematics

Fields Medalist Timothy Gowers stated that mathematicians
would like to use three kinds of technology [Big Proof 2017]:

Proof Assistant Technology
• Prove any lemma that a graduate student can work out

Proof Search Technology
• Automatically determine whether a conjecture holds
• This talk: Find small counter-examples

Proof Checking Technology
• Mechanized validation of all details
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Extracting Subgraphs from a Proof of Unsatisfiability

The validation method to check whether a graph has (at least)
chromatic number k construct a SAT formula asking whether
the graph G can be colored with k − 1 colors.

The resulting formula is unsatisfiable.

Most SAT solvers can emit a proof of unsatisfiability.

Proof checkers can extract an unsatisfiable core of the
problem, which represents a subgraph of G .
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Clausal Proofs of Unsatisfiability

Formula

≡ ≡ ≡ ≡

⊥

⊥

Proof

Checking the redundancy of a clause in polynomial time

Clausal proofs are easy to emit from modern SAT solvers

A clausal proof usually covers many resolution proofs
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Proof Checking Techniques Advances

Proof checking techniques have improved significantly in
recent years.

Clausal proofs of petabytes is size can now be validated.

Long-standing open math problems —including the Erdős
discrepancy problem, the Boolean Pythagorean triples
problem, and Schur number five— have solved with SAT and
their proofs have been constructed and validated.

Efficient validation can even be achieved with a formally
verified checker.
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Backward Proof Checking: Remove Redundancy

original formula

core

backward checking

forward checking

⊥
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OptimizeProof

The order of the clauses in the proof and the order of the
literals in clauses have a big impact on reduced proof.

Optimize the proof by checking it multiple times;

Each iteration uses the reduced proof; and

Clauses are literals are shuffled.

Shuffling of clauses is somewhat limited:

A clause must occur after all clauses on which it depends;

A clause must occur before all clauses that depend on it.

The OptimizeProof procedure repeats proof reduction until the
size no longer decreases.
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Impact of the Quality of the Proof
The order of the clauses influences the size of the proof

Solve the problem multiple times with different clause order

Select the smallest proof for proof optimization

Left the smallest proof (100 random clause orders) and right
the largest proof and 20 iterations of the OptimizeProof method
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size of proof of unsatisfiability

the size of the proof correlates with the size of the core
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TrimFormulaPlain

Input: formula F
Output: an unsatisfiable core of F

1 Fcore := F

2 do

3 P := Solve (Fcore)

4 P := OptimizeProof (P , Fcore)

5 Fcore := ExtractCore (P , Fcore)

6 while (progress)

7 return Fcore

problem: useful clauses may be removed from Fcore

marijn@cmu.edu 16 / 29



TrimFormulaInteract

Input: formula F
Output: an unsatisfiable core of F

1 Fcore := F

2 do

3 P := Solve (Fcore)

4 P := OptimizeProof (P , Fcore)

5 P := OptimizeProof (P , F )

6 Fcore := ExtractCore (P , F )

7 while (progress)

8 return Fcore

solution: useful clauses can be pulled back in Fcore
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Graph Operations

Two operations are use to construct bigger and bigger graph:

Minkowski sum of A and B (A⊕ B): {a+ b | a ∈ A, b ∈ B}
Two rotated copies of a graph with a common point

Example

Let A = {(0, 0), (1, 0)} and B = {(0, 0), (1/2,
√
3/2)}

Figure: From left to right: UD-graphs A, B, A⊕B, and the Moser Spindle.
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Small graphs in Q[
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Graph Hi is the 6-wheel
with all edges of length i .

Graph H ′i is a copy of Hi

rotated by 90 degrees.
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Graph G2167
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Impact of the Trimming Algorithms

We started with G2167 and reduced it using the proof trimming
algorithms: TrimProofInteract outperforms TrimProofPlain.
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The smallest graph with the desired properties: 393 vertices

We added 136 vertices to remove all 4-colorings
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Graph G529
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Conclusions and Future Work

Aubrey de Grey showed that the chromatic number of the
plane is at least 5 using a 1581-vertex unit-distance graph.

SAT technology can not only validate the result, but also
reduce the size of the graph.

Our proof minimization techniques were able to construct a
529-vertex unit-distance graph with chromatic number 5.

Open questions regarding unit-distance graphs:

What it is the smallest graph with chromatic number 5?

Can we compute a graph that is human-understandable?

Is there such a graph with chromatic number 6 (or even 7)?
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Improve the Upper Bound?

A 7-coloring with one color covering 0.3% of the plane.
[Pritikin 1998]

Can SAT techniques be used to improve the upper bound?
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A Page of God’s Book on Theorems

“For many years now I am convinced that the chro-
matic number will be 7 or 6. One day, Paul Erdős
said that God has an endless book that contains all
the theorems and best of their evidence, and to some
He shows it for a moment. If I had been awarded such
an honor and I would have had a choice, I would have
asked to look at the page with the problem of the
chromatic number of the plane. And you?”

Alexander Soifer
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