
Encoding Redundancy for
Satisfaction-Driven Clause Learning

Marijn J.H. Heule Benjamin Kiesl Armin Biere

The Problem

Although SAT solvers can often handle gigantic formulas,
they sometimes fail miserably on seemingly easy problems.

2 / 24

Outline

Background

Contribution

3 / 24

Outline

Background

Contribution

4 / 24

SAT Solving in Practice: Gigantic Search Trees

• SAT: Given a propositional formula, is it satisfiable?

• Formulas usually in CNF: (x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (z ∨ z̄)

• Prototypical NP-complete problem.

å No known algorithm for SAT that runs in polynomial time.

• Search tree for only seven variables (leaves ⇔ assignments):

• Modern solvers often deal with millions of variables and clauses.

5 / 24

SAT Solving in Practice: Gigantic Search Trees

• SAT: Given a propositional formula, is it satisfiable?

• Formulas usually in CNF: (x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (z ∨ z̄)

• Prototypical NP-complete problem.

å No known algorithm for SAT that runs in polynomial time.

• Search tree for only seven variables (leaves ⇔ assignments):

• Modern solvers often deal with millions of variables and clauses.

5 / 24

SAT Solving in Practice: Gigantic Search Trees

• SAT: Given a propositional formula, is it satisfiable?

• Formulas usually in CNF: (x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (z ∨ z̄)

• Prototypical NP-complete problem.

å No known algorithm for SAT that runs in polynomial time.

• Search tree for only seven variables (leaves ⇔ assignments):

• Modern solvers often deal with millions of variables and clauses.

5 / 24

SAT Solving in Practice: Gigantic Search Trees

• SAT: Given a propositional formula, is it satisfiable?

• Formulas usually in CNF: (x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (z ∨ z̄)

• Prototypical NP-complete problem.

å No known algorithm for SAT that runs in polynomial time.

• Search tree for only seven variables (leaves ⇔ assignments):

• Modern solvers often deal with millions of variables and clauses.

5 / 24

SAT: Problem Solved?

• Pigeonhole Principle: If n pigeons are put into n − 1 holes,
then at least one hole must contain two pigeons.

• My little nephew could figure this out.

• What if we encode it into SAT and pass it to a solver?

6 / 24

SAT: Problem Solved?

• Pigeonhole Principle: If n pigeons are put into n − 1 holes,
then at least one hole must contain two pigeons.

• My little nephew could figure this out.

• What if we encode it into SAT and pass it to a solver?

6 / 24

SAT: Problem Solved?

• Pigeonhole Principle: If n pigeons are put into n − 1 holes,
then at least one hole must contain two pigeons.

• My little nephew could figure this out.

• What if we encode it into SAT and pass it to a solver?

6 / 24

SAT Solver: 21 Pigeons Into 20 Holes?

“Arguably the single most studied combinatorial principle
in all of proof complexity.” [Nordström, SIGLOG News ’15]

7 / 24

SAT Solver: 21 Pigeons Into 20 Holes?

“Arguably the single most studied combinatorial principle
in all of proof complexity.” [Nordström, SIGLOG News ’15]

7 / 24

Seemingly Easy, Awfully Hard: Not Only the Pigeons

• There exist many seemingly easy formulas that are awfully hard
for modern SAT solvers.

• Formulas are often unsatisfiable (⇒ co-NP).

• Proof complexity can explain why some of them are so hard:

• Some formulas have only resolution proofs of exponential size.

• Modern solvers are usually based on Conflict-Driven Clause
Learning (CDCL), which is based on the resolution proof system.

• CDCL solvers basically construct a resolution proof during solving.

å They need exponential time to solve these formulas.

8 / 24

Seemingly Easy, Awfully Hard: Not Only the Pigeons

• There exist many seemingly easy formulas that are awfully hard
for modern SAT solvers.

• Formulas are often unsatisfiable (⇒ co-NP).

• Proof complexity can explain why some of them are so hard:

• Some formulas have only resolution proofs of exponential size.

• Modern solvers are usually based on Conflict-Driven Clause
Learning (CDCL), which is based on the resolution proof system.

• CDCL solvers basically construct a resolution proof during solving.

å They need exponential time to solve these formulas.

8 / 24

Seemingly Easy, Awfully Hard: Not Only the Pigeons

• There exist many seemingly easy formulas that are awfully hard
for modern SAT solvers.

• Formulas are often unsatisfiable (⇒ co-NP).

• Proof complexity can explain why some of them are so hard:

• Some formulas have only resolution proofs of exponential size.

• Modern solvers are usually based on Conflict-Driven Clause
Learning (CDCL), which is based on the resolution proof system.

• CDCL solvers basically construct a resolution proof during solving.

å They need exponential time to solve these formulas.

8 / 24

Seemingly Easy, Awfully Hard: Not Only the Pigeons

• There exist many seemingly easy formulas that are awfully hard
for modern SAT solvers.

• Formulas are often unsatisfiable (⇒ co-NP).

• Proof complexity can explain why some of them are so hard:

• Some formulas have only resolution proofs of exponential size.

• Modern solvers are usually based on Conflict-Driven Clause
Learning (CDCL), which is based on the resolution proof system.

• CDCL solvers basically construct a resolution proof during solving.

å They need exponential time to solve these formulas.

8 / 24

Seemingly Easy, Awfully Hard: Not Only the Pigeons

• There exist many seemingly easy formulas that are awfully hard
for modern SAT solvers.

• Formulas are often unsatisfiable (⇒ co-NP).

• Proof complexity can explain why some of them are so hard:

• Some formulas have only resolution proofs of exponential size.

• Modern solvers are usually based on Conflict-Driven Clause
Learning (CDCL), which is based on the resolution proof system.

• CDCL solvers basically construct a resolution proof during solving.

å They need exponential time to solve these formulas.

8 / 24

There is no Easy Way

• No matter how much engineering effort we put into a CDCL
solver, it will never be able solve the hard formulas!

• The exponential gap stems from an inherent theoretical restriction.

• What is needed to jump over this gap?

1. a proof system that is stronger than resolution yet still
mechanizable: PR proof system [Heule, K, Biere; CADE ’17].

2. a SAT solving paradigm harnessing the strength of PR:
satisfaction-driven clause learning [Heule, K, Seidl, Biere; HVC ’17].

9 / 24

There is no Easy Way

• No matter how much engineering effort we put into a CDCL
solver, it will never be able solve the hard formulas!

• The exponential gap stems from an inherent theoretical restriction.

• What is needed to jump over this gap?

1. a proof system that is stronger than resolution yet still
mechanizable: PR proof system [Heule, K, Biere; CADE ’17].

2. a SAT solving paradigm harnessing the strength of PR:
satisfaction-driven clause learning [Heule, K, Seidl, Biere; HVC ’17].

9 / 24

There is no Easy Way

• No matter how much engineering effort we put into a CDCL
solver, it will never be able solve the hard formulas!

• The exponential gap stems from an inherent theoretical restriction.

• What is needed to jump over this gap?

1. a proof system that is stronger than resolution yet still
mechanizable: PR proof system [Heule, K, Biere; CADE ’17].

2. a SAT solving paradigm harnessing the strength of PR:
satisfaction-driven clause learning [Heule, K, Seidl, Biere; HVC ’17].

9 / 24

There is no Easy Way

• No matter how much engineering effort we put into a CDCL
solver, it will never be able solve the hard formulas!

• The exponential gap stems from an inherent theoretical restriction.

• What is needed to jump over this gap?

1. a proof system that is stronger than resolution yet still
mechanizable: PR proof system [Heule, K, Biere; CADE ’17].

2. a SAT solving paradigm harnessing the strength of PR:
satisfaction-driven clause learning [Heule, K, Seidl, Biere; HVC ’17].

9 / 24

There is no Easy Way

• No matter how much engineering effort we put into a CDCL
solver, it will never be able solve the hard formulas!

• The exponential gap stems from an inherent theoretical restriction.

• What is needed to jump over this gap?

1. a proof system that is stronger than resolution yet still
mechanizable: PR proof system [Heule, K, Biere; CADE ’17].

2. a SAT solving paradigm harnessing the strength of PR:
satisfaction-driven clause learning [Heule, K, Seidl, Biere; HVC ’17].

9 / 24

Satisfaction-Driven Clause Learning (SDCL): General Idea

• CDCL learns clauses that are implied.

• SDCL only requires learned clauses to be redundant (not implied):

Definition

A clause C is redundant with respect to a formula F if F and
F ∧ C are equisatisfiable.

• Only allow clauses that fulfill an efficiently decidable redundancy
criterion: propagation redundancy (PR) [Heule, K, Biere; CADE ’17]

• “mother of all efficiently decidable redundancy criteria”.

å Addition of redundant clauses can prune the search tree.

10 / 24

Satisfaction-Driven Clause Learning (SDCL): General Idea

• CDCL learns clauses that are implied.

• SDCL only requires learned clauses to be redundant (not implied):

Definition

A clause C is redundant with respect to a formula F if F and
F ∧ C are equisatisfiable.

• Only allow clauses that fulfill an efficiently decidable redundancy
criterion: propagation redundancy (PR) [Heule, K, Biere; CADE ’17]

• “mother of all efficiently decidable redundancy criteria”.

å Addition of redundant clauses can prune the search tree.

10 / 24

Satisfaction-Driven Clause Learning (SDCL): General Idea

• CDCL learns clauses that are implied.

• SDCL only requires learned clauses to be redundant (not implied):

Definition

A clause C is redundant with respect to a formula F if F and
F ∧ C are equisatisfiable.

• Only allow clauses that fulfill an efficiently decidable redundancy
criterion: propagation redundancy (PR) [Heule, K, Biere; CADE ’17]

• “mother of all efficiently decidable redundancy criteria”.

å Addition of redundant clauses can prune the search tree.

10 / 24

Satisfaction-Driven Clause Learning (SDCL): General Idea

• CDCL learns clauses that are implied.

• SDCL only requires learned clauses to be redundant (not implied):

Definition

A clause C is redundant with respect to a formula F if F and
F ∧ C are equisatisfiable.

• Only allow clauses that fulfill an efficiently decidable redundancy
criterion: propagation redundancy (PR) [Heule, K, Biere; CADE ’17]

• “mother of all efficiently decidable redundancy criteria”.

å Addition of redundant clauses can prune the search tree.

10 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples:

(x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example:

(x̄) ∧ (ȳ) ∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples:

(x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example:

(x̄) ∧ (ȳ) ∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples:

(x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example:

(x̄) ∧ (ȳ) ∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples:

(x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example:

(x̄) ∧ (ȳ) ∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples: (x̄)

(ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example:

(x̄) ∧ (ȳ) ∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples: (x̄) (ȳ)

(x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example:

(x̄) ∧ (ȳ) ∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples: (x̄) (ȳ) (x̄ ∨ ȳ)

(y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example:

(x̄) ∧ (ȳ) ∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples: (x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄)

(x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example:

(x̄) ∧ (ȳ) ∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples: (x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example:

(x̄) ∧ (ȳ) ∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples: (x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example:

(x̄) ∧ (ȳ) ∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples: (x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example:

(x̄) ∧ (ȳ) ∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples: (x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example: (x̄)

∧ (ȳ) ∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples: (x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example: (x̄) ∧ (ȳ)

∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples: (x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example: (x̄) ∧ (ȳ) ∧ (x̄ ∨ ȳ)

∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples: (x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example: (x̄) ∧ (ȳ) ∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄)

∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Clause Addition ↔ Pruning

• Clause addition prunes the search tree of satisfying assignments.

• Example: The clause (x) prunes all branches where x is false.

• Other Examples: (x̄) (ȳ) (x̄ ∨ ȳ) (y ∨ z̄) (x ∨ x̄)

• Addition of multiple clauses combines all the “clause prunings”.

• Example: (x̄) ∧ (ȳ) ∧ (x̄ ∨ ȳ) ∧ (y ∨ z̄) ∧ (x ∨ x̄)

x

y

z z̄

ȳ

z z̄

x̄

y

z z̄

ȳ

z z̄

11 / 24

Conflict-Driven Clause Learning (CDCL)

• By Marques-Silva and Sakallah [ICCAD ’96] as well as Moskewicz,
Madigan, Zhao, Zhang, and Malik [DAC ’01].

• Key ideas:

• Simplify the formula with unit propagation; then assign a variable.
Repeat until the formula is solved.

• Learn clauses to avoid ”bad” assignments in the future.

UnitPropagate()

LearnClause()

BackJump() UNSAT

AssignVariable()

SAT

conflict no conflict

clause = ⊥clause 6= ⊥ all variables assigned

not all variables assigned

12 / 24

Conflict-Driven Clause Learning (CDCL)

• By Marques-Silva and Sakallah [ICCAD ’96] as well as Moskewicz,
Madigan, Zhao, Zhang, and Malik [DAC ’01].

• Key ideas:

• Simplify the formula with unit propagation; then assign a variable.
Repeat until the formula is solved.

• Learn clauses to avoid ”bad” assignments in the future.

UnitPropagate()

LearnClause()

BackJump() UNSAT

AssignVariable()

SAT

conflict no conflict

clause = ⊥clause 6= ⊥ all variables assigned

not all variables assigned

12 / 24

Conflict-Driven Clause Learning (CDCL)

• By Marques-Silva and Sakallah [ICCAD ’96] as well as Moskewicz,
Madigan, Zhao, Zhang, and Malik [DAC ’01].

• Key ideas:

• Simplify the formula with unit propagation; then assign a variable.
Repeat until the formula is solved.

• Learn clauses to avoid ”bad” assignments in the future.

UnitPropagate()

LearnClause()

BackJump() UNSAT

AssignVariable()

SAT

conflict no conflict

clause = ⊥clause 6= ⊥ all variables assigned

not all variables assigned

12 / 24

Conflict-Driven Clause Learning (CDCL)

• By Marques-Silva and Sakallah [ICCAD ’96] as well as Moskewicz,
Madigan, Zhao, Zhang, and Malik [DAC ’01].

• Key ideas:

• Simplify the formula with unit propagation; then assign a variable.
Repeat until the formula is solved.

• Learn clauses to avoid ”bad” assignments in the future.

UnitPropagate()

LearnClause()

BackJump() UNSAT

AssignVariable()

SAT

conflict

no conflict

clause = ⊥clause 6= ⊥ all variables assigned

not all variables assigned

12 / 24

Conflict-Driven Clause Learning (CDCL)

• By Marques-Silva and Sakallah [ICCAD ’96] as well as Moskewicz,
Madigan, Zhao, Zhang, and Malik [DAC ’01].

• Key ideas:

• Simplify the formula with unit propagation; then assign a variable.
Repeat until the formula is solved.

• Learn clauses to avoid ”bad” assignments in the future.

UnitPropagate()

LearnClause()

BackJump() UNSAT

AssignVariable()

SAT

conflict

no conflict

clause = ⊥clause 6= ⊥

all variables assigned

not all variables assigned

12 / 24

Conflict-Driven Clause Learning (CDCL)

• By Marques-Silva and Sakallah [ICCAD ’96] as well as Moskewicz,
Madigan, Zhao, Zhang, and Malik [DAC ’01].

• Key ideas:

• Simplify the formula with unit propagation; then assign a variable.
Repeat until the formula is solved.

• Learn clauses to avoid ”bad” assignments in the future.

UnitPropagate()

LearnClause()

BackJump() UNSAT

AssignVariable()

SAT

conflict

no conflict

clause = ⊥clause 6= ⊥

all variables assigned

not all variables assigned

12 / 24

Conflict-Driven Clause Learning (CDCL)

• By Marques-Silva and Sakallah [ICCAD ’96] as well as Moskewicz,
Madigan, Zhao, Zhang, and Malik [DAC ’01].

• Key ideas:

• Simplify the formula with unit propagation; then assign a variable.
Repeat until the formula is solved.

• Learn clauses to avoid ”bad” assignments in the future.

UnitPropagate()

LearnClause()

BackJump() UNSAT

AssignVariable()

SAT

conflict no conflict

clause = ⊥clause 6= ⊥

all variables assigned

not all variables assigned

12 / 24

Conflict-Driven Clause Learning (CDCL)

• By Marques-Silva and Sakallah [ICCAD ’96] as well as Moskewicz,
Madigan, Zhao, Zhang, and Malik [DAC ’01].

• Key ideas:

• Simplify the formula with unit propagation; then assign a variable.
Repeat until the formula is solved.

• Learn clauses to avoid ”bad” assignments in the future.

UnitPropagate()

LearnClause()

BackJump()

UNSAT

AssignVariable()

SAT

conflict no conflict

clause = ⊥

clause 6= ⊥

all variables assigned

not all variables assigned

12 / 24

Conflict-Driven Clause Learning (CDCL)

• By Marques-Silva and Sakallah [ICCAD ’96] as well as Moskewicz,
Madigan, Zhao, Zhang, and Malik [DAC ’01].

• Key ideas:

• Simplify the formula with unit propagation; then assign a variable.
Repeat until the formula is solved.

• Learn clauses to avoid ”bad” assignments in the future.

UnitPropagate()

LearnClause()

BackJump() UNSAT

AssignVariable()

SAT

conflict no conflict

clause = ⊥clause 6= ⊥ all variables assigned

not all variables assigned

12 / 24

Conflict-Driven Clause Learning (CDCL)

• By Marques-Silva and Sakallah [ICCAD ’96] as well as Moskewicz,
Madigan, Zhao, Zhang, and Malik [DAC ’01].

• Key ideas:

• Simplify the formula with unit propagation; then assign a variable.
Repeat until the formula is solved.

• Learn clauses to avoid ”bad” assignments in the future.

UnitPropagate()

LearnClause()

BackJump() UNSAT

AssignVariable()

SAT

conflict no conflict

clause = ⊥clause 6= ⊥ all variables assigned

not all variables assigned

12 / 24

Satisfaction-Driven Clause Learning (SDCL)

• Key idea: if unit propagation does not derive a conflict, try to
prune (part of) the current assignment from the search tree.

UnitPropagate()

LearnClause()

BackJump() UNSAT

TryPruning()

AssignVariable()

SAT

conflict no conflict

clause = ⊥clause 6= ⊥

all variables assigned

not all variables assigned

can prune

cannot prune

• Learned clauses are not necessarily implied (PR clauses).

13 / 24

Satisfaction-Driven Clause Learning (SDCL)

• Key idea: if unit propagation does not derive a conflict, try to
prune (part of) the current assignment from the search tree.

UnitPropagate()

LearnClause()

BackJump() UNSAT

TryPruning()

AssignVariable()

SAT

conflict

no conflict

clause = ⊥clause 6= ⊥

all variables assigned

not all variables assigned

can prune

cannot prune

• Learned clauses are not necessarily implied (PR clauses).

13 / 24

Satisfaction-Driven Clause Learning (SDCL)

• Key idea: if unit propagation does not derive a conflict, try to
prune (part of) the current assignment from the search tree.

UnitPropagate()

LearnClause()

BackJump() UNSAT

TryPruning()

AssignVariable()

SAT

conflict no conflict

clause = ⊥clause 6= ⊥

all variables assigned

not all variables assigned

can prune

cannot prune

• Learned clauses are not necessarily implied (PR clauses).

13 / 24

Satisfaction-Driven Clause Learning (SDCL)

• Key idea: if unit propagation does not derive a conflict, try to
prune (part of) the current assignment from the search tree.

UnitPropagate()

LearnClause()

BackJump() UNSAT

TryPruning()

AssignVariable()

SAT

conflict no conflict

clause = ⊥clause 6= ⊥

all variables assigned

not all variables assigned

can prune

cannot prune

• Learned clauses are not necessarily implied (PR clauses).

13 / 24

Satisfaction-Driven Clause Learning (SDCL)

• Key idea: if unit propagation does not derive a conflict, try to
prune (part of) the current assignment from the search tree.

UnitPropagate()

LearnClause()

BackJump() UNSAT

TryPruning()

AssignVariable()

SAT

conflict no conflict

clause = ⊥clause 6= ⊥

all variables assigned

not all variables assigned

can prune

cannot prune

• Learned clauses are not necessarily implied (PR clauses).

13 / 24

Satisfaction-Driven Clause Learning (SDCL)

• Key idea: if unit propagation does not derive a conflict, try to
prune (part of) the current assignment from the search tree.

UnitPropagate()

LearnClause()

BackJump() UNSAT

TryPruning()

AssignVariable()

SAT

conflict no conflict

clause = ⊥clause 6= ⊥

all variables assigned

not all variables assigned

can prune

cannot prune

• Learned clauses are not necessarily implied (PR clauses).

13 / 24

Satisfaction-Driven Clause Learning (SDCL)

• Key idea: if unit propagation does not derive a conflict, try to
prune (part of) the current assignment from the search tree.

UnitPropagate()

LearnClause()

BackJump() UNSAT

TryPruning()

AssignVariable()

SAT

conflict no conflict

clause = ⊥clause 6= ⊥

all variables assigned

not all variables assigned

can prune

cannot prune

• Learned clauses are not necessarily implied (PR clauses).

13 / 24

How to Check if the Search Tree Can be Pruned

• When can we prune? Encode question into SAT!

• Solver produces a simple formula that is satisfiable if the current
assignment can be pruned.

• Originally (“positive reduct”) [Heule, K, Seidl, Biere; HVC ’17]:
Take all satisfied clauses and remove unassigned literals, then add
the clause that is blocked by the current assignment.

• Solver then calls a “child solver” to solve the simpler formula.

• Problem: Positive reduct only works on pigeonhole formulas but
not on other hard formulas.

å Wanted: Better encodings for pruning!

14 / 24

How to Check if the Search Tree Can be Pruned

• When can we prune? Encode question into SAT!

• Solver produces a simple formula that is satisfiable if the current
assignment can be pruned.

• Originally (“positive reduct”) [Heule, K, Seidl, Biere; HVC ’17]:
Take all satisfied clauses and remove unassigned literals, then add
the clause that is blocked by the current assignment.

• Solver then calls a “child solver” to solve the simpler formula.

• Problem: Positive reduct only works on pigeonhole formulas but
not on other hard formulas.

å Wanted: Better encodings for pruning!

14 / 24

How to Check if the Search Tree Can be Pruned

• When can we prune? Encode question into SAT!

• Solver produces a simple formula that is satisfiable if the current
assignment can be pruned.

• Originally (“positive reduct”) [Heule, K, Seidl, Biere; HVC ’17]:
Take all satisfied clauses and remove unassigned literals, then add
the clause that is blocked by the current assignment.

• Solver then calls a “child solver” to solve the simpler formula.

• Problem: Positive reduct only works on pigeonhole formulas but
not on other hard formulas.

å Wanted: Better encodings for pruning!

14 / 24

How to Check if the Search Tree Can be Pruned

• When can we prune? Encode question into SAT!

• Solver produces a simple formula that is satisfiable if the current
assignment can be pruned.

• Originally (“positive reduct”) [Heule, K, Seidl, Biere; HVC ’17]:
Take all satisfied clauses and remove unassigned literals, then add
the clause that is blocked by the current assignment.

• Solver then calls a “child solver” to solve the simpler formula.

• Problem: Positive reduct only works on pigeonhole formulas but
not on other hard formulas.

å Wanted: Better encodings for pruning!

14 / 24

How to Check if the Search Tree Can be Pruned

• When can we prune? Encode question into SAT!

• Solver produces a simple formula that is satisfiable if the current
assignment can be pruned.

• Originally (“positive reduct”) [Heule, K, Seidl, Biere; HVC ’17]:
Take all satisfied clauses and remove unassigned literals, then add
the clause that is blocked by the current assignment.

• Solver then calls a “child solver” to solve the simpler formula.

• Problem: Positive reduct only works on pigeonhole formulas but
not on other hard formulas.

å Wanted: Better encodings for pruning!

14 / 24

How to Check if the Search Tree Can be Pruned

• When can we prune? Encode question into SAT!

• Solver produces a simple formula that is satisfiable if the current
assignment can be pruned.

• Originally (“positive reduct”) [Heule, K, Seidl, Biere; HVC ’17]:
Take all satisfied clauses and remove unassigned literals, then add
the clause that is blocked by the current assignment.

• Solver then calls a “child solver” to solve the simpler formula.

• Problem: Positive reduct only works on pigeonhole formulas but
not on other hard formulas.

å Wanted: Better encodings for pruning!

14 / 24

Background

Contribution

15 / 24

Encodings for Stronger Pruning: Some Preliminaries

• F |α denotes the application of the assignment α to F (remove all
clauses satisfied by α and then remove all literals falsified by α)

• For an assignment α = a1 . . . an, we define ᾱ = (ā1 ∨ · · · ∨ ān).

• touchedα(C) denotes the subclause of C that is assigned by α.

• Notion of implication via unit propagation:

• Clauses: F `1 C iff unit propagation derives a conflict on F ∧ C̄ .

• Formulas: F `1 G iff F `1 C for all C ∈ G .

16 / 24

Encodings for Stronger Pruning: Some Preliminaries

• F |α denotes the application of the assignment α to F (remove all
clauses satisfied by α and then remove all literals falsified by α)

• For an assignment α = a1 . . . an, we define ᾱ = (ā1 ∨ · · · ∨ ān).

• touchedα(C) denotes the subclause of C that is assigned by α.

• Notion of implication via unit propagation:

• Clauses: F `1 C iff unit propagation derives a conflict on F ∧ C̄ .

• Formulas: F `1 G iff F `1 C for all C ∈ G .

16 / 24

Encodings for Stronger Pruning: Some Preliminaries

• F |α denotes the application of the assignment α to F (remove all
clauses satisfied by α and then remove all literals falsified by α)

• For an assignment α = a1 . . . an, we define ᾱ = (ā1 ∨ · · · ∨ ān).

• touchedα(C) denotes the subclause of C that is assigned by α.

• Notion of implication via unit propagation:

• Clauses: F `1 C iff unit propagation derives a conflict on F ∧ C̄ .

• Formulas: F `1 G iff F `1 C for all C ∈ G .

16 / 24

Encodings for Stronger Pruning: Some Preliminaries

• F |α denotes the application of the assignment α to F (remove all
clauses satisfied by α and then remove all literals falsified by α)

• For an assignment α = a1 . . . an, we define ᾱ = (ā1 ∨ · · · ∨ ān).

• touchedα(C) denotes the subclause of C that is assigned by α.

• Notion of implication via unit propagation:

• Clauses: F `1 C iff unit propagation derives a conflict on F ∧ C̄ .

• Formulas: F `1 G iff F `1 C for all C ∈ G .

16 / 24

New Contribution: Filtered Positive Reduct

• The filtered positive reduct is a subset of the positive reduct:

Definition

Let F be a formula and α an assignment. Then, the filtered
positive reduct fα(F) of F and α is the formula G ∧ ᾱ where
G = {touchedα(D) | D ∈ F and F |α 6`1 untouchedα(D)}.

Theorem

If the filtered positive reduct fα(F) is satisfiable, then F and F ∧ ᾱ
are equisatisfiable.

å Works very well in practice (see later)!

• Example: F = (x ∨ y) ∧ (x̄ ∨ y) ∧ (ȳ ∨ z) and α = x .

• filtered positive reduct fα(F) = (x̄)

⇒ satisfiable ⇒ can prune α

• positive reduct pα(F) = (x)∧ (x̄)

⇒ unsatisfiable ⇒ can’t prune α

17 / 24

New Contribution: Filtered Positive Reduct

• The filtered positive reduct is a subset of the positive reduct:

Definition

Let F be a formula and α an assignment. Then, the filtered
positive reduct fα(F) of F and α is the formula G ∧ ᾱ where
G = {touchedα(D) | D ∈ F and F |α 6`1 untouchedα(D)}.

Theorem

If the filtered positive reduct fα(F) is satisfiable, then F and F ∧ ᾱ
are equisatisfiable.

å Works very well in practice (see later)!

• Example: F = (x ∨ y) ∧ (x̄ ∨ y) ∧ (ȳ ∨ z) and α = x .

• filtered positive reduct fα(F) = (x̄)

⇒ satisfiable ⇒ can prune α

• positive reduct pα(F) = (x)∧ (x̄)

⇒ unsatisfiable ⇒ can’t prune α

17 / 24

New Contribution: Filtered Positive Reduct

• The filtered positive reduct is a subset of the positive reduct:

Definition

Let F be a formula and α an assignment. Then, the filtered
positive reduct fα(F) of F and α is the formula G ∧ ᾱ where
G = {touchedα(D) | D ∈ F and F |α 6`1 untouchedα(D)}.

Theorem

If the filtered positive reduct fα(F) is satisfiable, then F and F ∧ ᾱ
are equisatisfiable.

å Works very well in practice (see later)!

• Example: F = (x ∨ y) ∧ (x̄ ∨ y) ∧ (ȳ ∨ z) and α = x .

• filtered positive reduct fα(F) = (x̄)

⇒ satisfiable ⇒ can prune α

• positive reduct pα(F) = (x)∧ (x̄)

⇒ unsatisfiable ⇒ can’t prune α

17 / 24

New Contribution: Filtered Positive Reduct

• The filtered positive reduct is a subset of the positive reduct:

Definition

Let F be a formula and α an assignment. Then, the filtered
positive reduct fα(F) of F and α is the formula G ∧ ᾱ where
G = {touchedα(D) | D ∈ F and F |α 6`1 untouchedα(D)}.

Theorem

If the filtered positive reduct fα(F) is satisfiable, then F and F ∧ ᾱ
are equisatisfiable.

å Works very well in practice (see later)!

• Example: F = (x ∨ y) ∧ (x̄ ∨ y) ∧ (ȳ ∨ z) and α = x .

• filtered positive reduct fα(F) = (x̄)

⇒ satisfiable ⇒ can prune α

• positive reduct pα(F) = (x)∧ (x̄)

⇒ unsatisfiable ⇒ can’t prune α

17 / 24

New Contribution: Filtered Positive Reduct

• The filtered positive reduct is a subset of the positive reduct:

Definition

Let F be a formula and α an assignment. Then, the filtered
positive reduct fα(F) of F and α is the formula G ∧ ᾱ where
G = {touchedα(D) | D ∈ F and F |α 6`1 untouchedα(D)}.

Theorem

If the filtered positive reduct fα(F) is satisfiable, then F and F ∧ ᾱ
are equisatisfiable.

å Works very well in practice (see later)!

• Example: F = (x ∨ y) ∧ (x̄ ∨ y) ∧ (ȳ ∨ z) and α = x .

• filtered positive reduct fα(F) = (x̄)

⇒ satisfiable ⇒ can prune α

• positive reduct pα(F) = (x)∧ (x̄)

⇒ unsatisfiable ⇒ can’t prune α

17 / 24

New Contribution: Filtered Positive Reduct

• The filtered positive reduct is a subset of the positive reduct:

Definition

Let F be a formula and α an assignment. Then, the filtered
positive reduct fα(F) of F and α is the formula G ∧ ᾱ where
G = {touchedα(D) | D ∈ F and F |α 6`1 untouchedα(D)}.

Theorem

If the filtered positive reduct fα(F) is satisfiable, then F and F ∧ ᾱ
are equisatisfiable.

å Works very well in practice (see later)!

• Example: F = (x ∨ y) ∧ (x̄ ∨ y) ∧ (ȳ ∨ z) and α = x .

• filtered positive reduct fα(F) = (x̄)

⇒ satisfiable ⇒ can prune α

• positive reduct pα(F) = (x)∧ (x̄)

⇒ unsatisfiable ⇒ can’t prune α

17 / 24

New Contribution: Filtered Positive Reduct

• The filtered positive reduct is a subset of the positive reduct:

Definition

Let F be a formula and α an assignment. Then, the filtered
positive reduct fα(F) of F and α is the formula G ∧ ᾱ where
G = {touchedα(D) | D ∈ F and F |α 6`1 untouchedα(D)}.

Theorem

If the filtered positive reduct fα(F) is satisfiable, then F and F ∧ ᾱ
are equisatisfiable.

å Works very well in practice (see later)!

• Example: F = (x ∨ y) ∧ (x̄ ∨ y) ∧ (ȳ ∨ z) and α = x .

• filtered positive reduct fα(F) = (x̄) ⇒ satisfiable ⇒ can prune α

• positive reduct pα(F) = (x)∧ (x̄)

⇒ unsatisfiable ⇒ can’t prune α

17 / 24

New Contribution: Filtered Positive Reduct

• The filtered positive reduct is a subset of the positive reduct:

Definition

Let F be a formula and α an assignment. Then, the filtered
positive reduct fα(F) of F and α is the formula G ∧ ᾱ where
G = {touchedα(D) | D ∈ F and F |α 6`1 untouchedα(D)}.

Theorem

If the filtered positive reduct fα(F) is satisfiable, then F and F ∧ ᾱ
are equisatisfiable.

å Works very well in practice (see later)!

• Example: F = (x ∨ y) ∧ (x̄ ∨ y) ∧ (ȳ ∨ z) and α = x .

• filtered positive reduct fα(F) = (x̄) ⇒ satisfiable ⇒ can prune α

• positive reduct pα(F) = (x)∧ (x̄)

⇒ unsatisfiable ⇒ can’t prune α

17 / 24

New Contribution: Filtered Positive Reduct

• The filtered positive reduct is a subset of the positive reduct:

Definition

Let F be a formula and α an assignment. Then, the filtered
positive reduct fα(F) of F and α is the formula G ∧ ᾱ where
G = {touchedα(D) | D ∈ F and F |α 6`1 untouchedα(D)}.

Theorem

If the filtered positive reduct fα(F) is satisfiable, then F and F ∧ ᾱ
are equisatisfiable.

å Works very well in practice (see later)!

• Example: F = (x ∨ y) ∧ (x̄ ∨ y) ∧ (ȳ ∨ z) and α = x .

• filtered positive reduct fα(F) = (x̄) ⇒ satisfiable ⇒ can prune α

• positive reduct pα(F) = (x)∧ (x̄) ⇒ unsatisfiable ⇒ can’t prune α

17 / 24

Even Stronger Pruning: PR Reduct

• PR reduct (don’t try to understand this):

Definition

Let F be a formula and α an assignment. Then, the PR reduct
prα(F) of F and α is the formula G ∧ C where C is the clause that
blocks α and G is the union of the following sets of clauses where
all the si are new variables:

{x̄p ∨ x̄n | x ∈ var(F) \ var(α)},

{s̄i ∨ touchedα(Di) ∨ untouchedα(Di)
p | Di ∈ F},

{Ln ∨ si | Di ∈ F and L ⊆ untouchedα(Di)

such that F |α 6`1 untouchedα(Di) \ L}.

18 / 24

Even Stronger Pruning: PR Reduct (continued)

• Allows for even stronger pruning than the filtered positive reduct.

• Precisely characterizes propagation redundancy.

å Extremely general redundancy notion (NP-hard).

• Has other nice theoretical properties.

• Doesn’t work well in practice

å Constructing and solving take too long.

19 / 24

Even Stronger Pruning: PR Reduct (continued)

• Allows for even stronger pruning than the filtered positive reduct.

• Precisely characterizes propagation redundancy.

å Extremely general redundancy notion (NP-hard).

• Has other nice theoretical properties.

• Doesn’t work well in practice

å Constructing and solving take too long.

19 / 24

Even Stronger Pruning: PR Reduct (continued)

• Allows for even stronger pruning than the filtered positive reduct.

• Precisely characterizes propagation redundancy.

å Extremely general redundancy notion (NP-hard).

• Has other nice theoretical properties.

• Doesn’t work well in practice

å Constructing and solving take too long.

19 / 24

Even Stronger Pruning: PR Reduct (continued)

• Allows for even stronger pruning than the filtered positive reduct.

• Precisely characterizes propagation redundancy.

å Extremely general redundancy notion (NP-hard).

• Has other nice theoretical properties.

• Doesn’t work well in practice

å Constructing and solving take too long.

19 / 24

Evaluation: SDCL in Practice

• SDCL solver, called SaDiCaL (by Armin Biere).

• implemented from scratch, efficient CDCL part, simple.

• SaDiCaL can produce short PR proofs of formulas for which
CDCL solvers require exponential time:

• pigeonhole principle,

• Tseitin formulas over expander graphs, and

• mutilated chessboard formulas.

• Three of the most popular formula families hard for resolution.

• Proofs validated by formally verified proof checkers.

• Robust w.r.t. scrambling for Tseitin formulas and mutilated
chessboards.

20 / 24

Evaluation: SDCL in Practice

• SDCL solver, called SaDiCaL (by Armin Biere).

• implemented from scratch, efficient CDCL part, simple.

• SaDiCaL can produce short PR proofs of formulas for which
CDCL solvers require exponential time:

• pigeonhole principle,

• Tseitin formulas over expander graphs, and

• mutilated chessboard formulas.

• Three of the most popular formula families hard for resolution.

• Proofs validated by formally verified proof checkers.

• Robust w.r.t. scrambling for Tseitin formulas and mutilated
chessboards.

20 / 24

Evaluation: SDCL in Practice

• SDCL solver, called SaDiCaL (by Armin Biere).

• implemented from scratch, efficient CDCL part, simple.

• SaDiCaL can produce short PR proofs of formulas for which
CDCL solvers require exponential time:

• pigeonhole principle,

• Tseitin formulas over expander graphs, and

• mutilated chessboard formulas.

• Three of the most popular formula families hard for resolution.

• Proofs validated by formally verified proof checkers.

• Robust w.r.t. scrambling for Tseitin formulas and mutilated
chessboards.

20 / 24

Evaluation: SDCL in Practice

• SDCL solver, called SaDiCaL (by Armin Biere).

• implemented from scratch, efficient CDCL part, simple.

• SaDiCaL can produce short PR proofs of formulas for which
CDCL solvers require exponential time:

• pigeonhole principle,

• Tseitin formulas over expander graphs, and

• mutilated chessboard formulas.

• Three of the most popular formula families hard for resolution.

• Proofs validated by formally verified proof checkers.

• Robust w.r.t. scrambling for Tseitin formulas and mutilated
chessboards.

20 / 24

Evaluation: SDCL in Practice

• SDCL solver, called SaDiCaL (by Armin Biere).

• implemented from scratch, efficient CDCL part, simple.

• SaDiCaL can produce short PR proofs of formulas for which
CDCL solvers require exponential time:

• pigeonhole principle,

• Tseitin formulas over expander graphs, and

• mutilated chessboard formulas.

• Three of the most popular formula families hard for resolution.

• Proofs validated by formally verified proof checkers.

• Robust w.r.t. scrambling for Tseitin formulas and mutilated
chessboards.

20 / 24

Evaluation: SDCL in Practice

• SDCL solver, called SaDiCaL (by Armin Biere).

• implemented from scratch, efficient CDCL part, simple.

• SaDiCaL can produce short PR proofs of formulas for which
CDCL solvers require exponential time:

• pigeonhole principle,

• Tseitin formulas over expander graphs, and

• mutilated chessboard formulas.

• Three of the most popular formula families hard for resolution.

• Proofs validated by formally verified proof checkers.

• Robust w.r.t. scrambling for Tseitin formulas and mutilated
chessboards.

20 / 24

Experimental Data: Pigeonhole Principle

Formula MLBT Plain Pos. Red. F. Red

hole20 > 3600 > 3600 0.26 0.49
hole30 > 3600 > 3600 1.96 4.03
hole40 > 3600 > 3600 9.02 19.54
hole50 > 3600 > 3600 28.63 65.90

• MLBT – MapleLCMDistChronoBT (winner SAT Competition 2018)

• Plain – SaDiCaL in CDCL mode

21 / 24

Experimental Data: Tseitin Formulas

Formula MLBT Plain Pos. Red. F. Red

Urquhart-s3-b1 2.95 16.31 > 3600 0.02
Urquhart-s3-b2 1.36 2.82 > 3600 0.03
Urquhart-s3-b3 2.28 2.08 > 3600 0.03
Urquhart-s3-b4 10.74 7.65 > 3600 0.03

Urquhart-s4-b1 86.11 > 3600 > 3600 0.32
Urquhart-s4-b2 154.35 183.77 > 3600 0.11
Urquhart-s4-b3 258.46 129.27 > 3600 0.16
Urquhart-s4-b4 > 3600 > 3600 > 3600 0.14

Urquhart-s5-b1 > 3600 > 3600 > 3600 1.27
Urquhart-s5-b2 > 3600 > 3600 > 3600 0.58
Urquhart-s5-b3 > 3600 > 3600 > 3600 1.67
Urquhart-s5-b4 > 3600 > 3600 > 3600 2.91

22 / 24

Experimental Data: Mutilated Chessboards

Formula MLBT Plain Pos. Red. F. Red

mchess 15 51.53 2480.67 > 3600 13.14
mchess 16 380.45 2115.75 > 3600 15.52
mchess 17 2418.35 > 3600 > 3600 25.54
mchess 18 > 3600 > 3600 > 3600 43.88

23 / 24

Summary

• SAT solving paradigm for hard unsatisfiable formulas: SDCL

• New encodings allow for stronger pruning:

• Filtered positive reduct works well in practice.

• PR reduct characterizes propagation redundancy but doesn’t
work well in practice.

• Solver SaDiCaL produces checkable proofs of formula families
that are popular for being extremely hard.

• Next step: SDCL for hard problems from cryptanalysis?

24 / 24

Summary

• SAT solving paradigm for hard unsatisfiable formulas: SDCL

• New encodings allow for stronger pruning:

• Filtered positive reduct works well in practice.

• PR reduct characterizes propagation redundancy but doesn’t
work well in practice.

• Solver SaDiCaL produces checkable proofs of formula families
that are popular for being extremely hard.

• Next step: SDCL for hard problems from cryptanalysis?

24 / 24

Summary

• SAT solving paradigm for hard unsatisfiable formulas: SDCL

• New encodings allow for stronger pruning:

• Filtered positive reduct works well in practice.

• PR reduct characterizes propagation redundancy but doesn’t
work well in practice.

• Solver SaDiCaL produces checkable proofs of formula families
that are popular for being extremely hard.

• Next step: SDCL for hard problems from cryptanalysis?

24 / 24

Summary

• SAT solving paradigm for hard unsatisfiable formulas: SDCL

• New encodings allow for stronger pruning:

• Filtered positive reduct works well in practice.

• PR reduct characterizes propagation redundancy but doesn’t
work well in practice.

• Solver SaDiCaL produces checkable proofs of formula families
that are popular for being extremely hard.

• Next step: SDCL for hard problems from cryptanalysis?

24 / 24

Summary

• SAT solving paradigm for hard unsatisfiable formulas: SDCL

• New encodings allow for stronger pruning:

• Filtered positive reduct works well in practice.

• PR reduct characterizes propagation redundancy but doesn’t
work well in practice.

• Solver SaDiCaL produces checkable proofs of formula families
that are popular for being extremely hard.

• Next step: SDCL for hard problems from cryptanalysis?

24 / 24

Summary

• SAT solving paradigm for hard unsatisfiable formulas: SDCL

• New encodings allow for stronger pruning:

• Filtered positive reduct works well in practice.

• PR reduct characterizes propagation redundancy but doesn’t
work well in practice.

• Solver SaDiCaL produces checkable proofs of formula families
that are popular for being extremely hard.

• Next step: SDCL for hard problems from cryptanalysis?

24 / 24

	Background
	Contribution

