From Clauses to Klauses

Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant

Carnegie Mellon University

CAV 2024

From Clauses to Klauses

Conjunctive Normal Form (CNF): conjunction of clauses

 $(\mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_3) \land \dots$

Standard input to satisfiability (SAT) solvers for 30+ years

From Clauses to Klauses

Conjunctive Normal Form (CNF): conjunction of clauses

 $(\mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_3) \land \dots$

Standard input to satisfiability (SAT) solvers for 30+ years

Cardinality Conjunctive Normal Form (KNF): conjunction of cardinality constraints (klauses)

$$(x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \ge 3) \land \dots$$

- Extend input for more flexibility in solving
- Incremental change without sacrificing general usage

Cardinality Constraints Extend Clauses

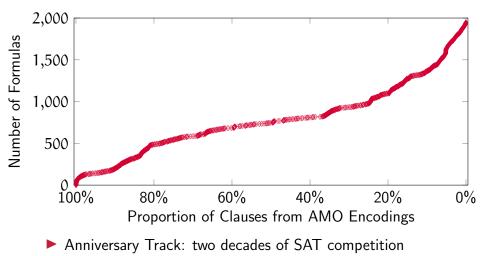
A clause can be represented as a cardinality constraint

$$(x_1 \lor x_2 \lor x_3) = (x_1 + x_2 + x_3 \ge 1)$$

- Comparison operators (=, >, ≥, <, ≤) can be represented with one or two ≥ constraints
- At-Most-One (AMO): at most one literal is true

$$AMO(x_1, x_2, x_3) = (x_1 + x_2 + x_3 \le 1) = (\overline{x}_1 + \overline{x}_2 + \overline{x}_3 \ge 2)$$

AMO Cardinality Constraints in Competition Formulas



▶ 36% of 5,300 formulas with AMO of size 5 or larger

Historic Motivations for Cardinality Input

- Easier for users to create problems
 - Complex encoding types (e.g. modulus k-totalizer) error-prone
- Can use stronger reasoning techniques
 - e.g., PHP from exponential to linear solving
- Smaller formulas
 - e.g., Magic Squares 6×6 : 4k constraints \rightarrow 600k clauses
- Faster constraint propagation
 - e.g., AMO can propagate everything in single step

Historic Motivations for Cardinality Input

- Easier for users to create problems
 - Complex encoding types (e.g. modulus k-totalizer) error-prone
- Can use stronger reasoning techniques
 - e.g., PHP from exponential to linear solving
- Smaller formulas
 - e.g., Magic Squares 6×6 : 4k constraints \rightarrow 600k clauses
- Faster constraint propagation
 - e.g., AMO can propagate everything in single step

Failed to replace CDCL-based CNF solvers for general use

- Clausal reasoning: optimizations, heuristics, inprocessing
- Clausal encodings: better clause learning, shorter proofs

Cardinality Input for CDCL: an Incremental Change

CNF: CDCL

• Auxiliary variables to encode high-level constraints $AMO(x_1, x_2, x_3, x_4, x_5) \rightarrow AMO(x_1, x_2, x_3, y) \land AMO(\overline{y}, x_4, x_5)$ Cardinality Input for CDCL: an Incremental Change

CNF: CDCL

• Auxiliary variables to encode high-level constraints $AMO(x_1, x_2, x_3, x_4, x_5) \rightarrow AMO(x_1, x_2, x_3, y) \land AMO(\overline{y}, x_4, x_5)$

KNF: Cardinality-CDCL

- Lift inprocessing, proof checking, constraint propagation
- Leverage auxiliary variables with clausal encodings
- ► No stronger reasoning, no separate propagation engine

Contributions

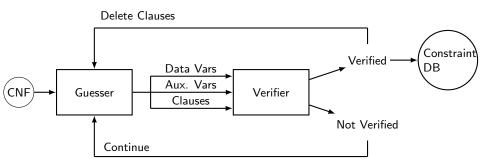
Long Term Goal: User generated KNF formulas

- Problem specific encoding optimizations
- Efficient KNF proof checking
- ▶ More paradigms: local search, MaxSAT, parallel solving

Short Term Goal: Backwards compatibility with CNF

- Cardinality constraint extraction producing KNF
- Multiple configurations for KNF solving
- End-to-end proof checking for KNF extraction and solving

Cardinality Constraint Extraction Framework



Guess a candidate cardinality constraint

Verify the constraint structure by constructing a BDD and filter out non-constraints

Extractor Comparison on PySAT AMO Encodings

Table: Size 10 AMO on 8 PySAT encodings. \checkmark if complete AMO is extracted.

Tool	Pair	SCnt	CNet	SNet	Tot	mTot	mkTot	Lad
GUESS-AND-VERIFY	\checkmark	Х						
LINGELING	\checkmark	Х	Х	Х	Х	Х	Х	Х
Riss	\checkmark	Х	Х	Х	Х	Х	Х	Х

- ▶ LINGELING and RISS only find smaller sub constraints
- BDD verifier works for general cardinality constraints
- Need more sophisticated heuristics for guesser

Cardinality Constraint Solving Options

NATIVE:

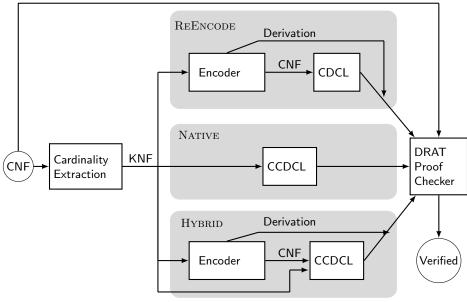
- Propagate natively on cardinality constraints (CCDCL)
 - Extends CDCL watch-pointers and conflict analysis
 - Faster propagation, no aux. variables generally better on SAT

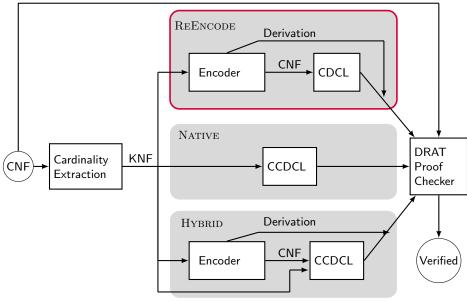
REENCODE:

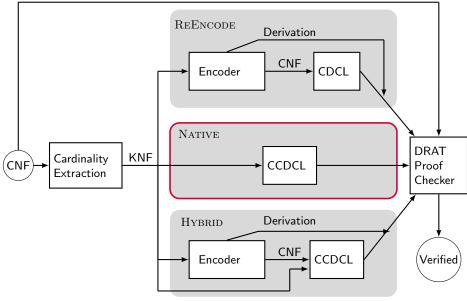
- Encode cardinality constraints into clauses
 - Encoded constraints generally better on UNSAT

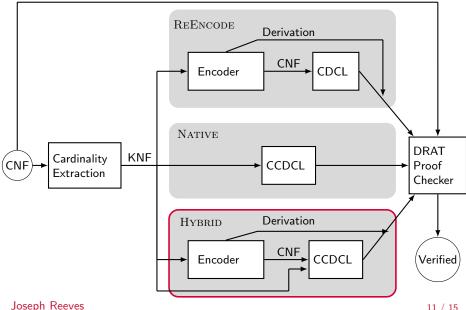
HYBRID:

- ► Combination of NATIVE and REENCODE
 - Reencoded clauses kept throughout solving
 - Native propagation enabled half of the time
 - Good for both SAT and UNSAT instances



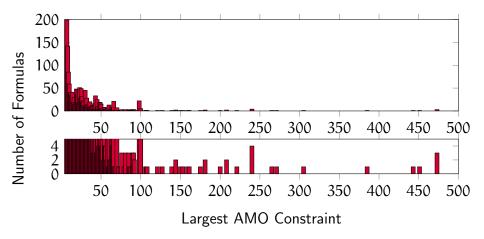






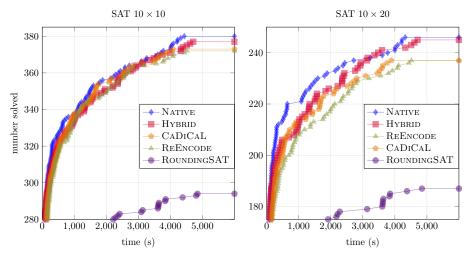
11 / 15

Extracting AMO Constraints on Competition Formulas



- planning (473), petrinet (451), edge-matching (140)
- ▶ Runtime average 69s, 78% below 15s

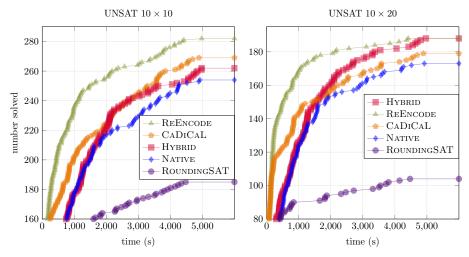
Solving Extracted Satisfiable Formulas



▶ 10 × 10: 933 formulas with at least 10 AMOs of size \geq 10

► 10 × 20: 587 formulas with at least 10 AMOs of size \geq 20 Joseph Reeves 13 / 15

Solving Extracted Unsatisfiable Formulas



REENCODE displays strength of auxiliary variables

► HYBRID suffers overhead from mode switching Joseph Reeves

Conclusion

- KNF input requires moderate changes to a SAT solver
- Combining clausal encodings and native propagation good for SAT and UNSAT problems
- Apply solver to KNF problems too large for CNF encoding
 Computational geometry, e.g., point-discrepancy problem

Conclusion

- KNF input requires moderate changes to a SAT solver
- Combining clausal encodings and native propagation good for SAT and UNSAT problems
- Apply solver to KNF problems too large for CNF encoding
 Computational geometry, e.g., point-discrepancy problem

We'd like to hear about cardinality constraint problems you'd like to solve!