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From Clauses to Klauses

Conjunctive Normal Form (CNF): conjunction of clauses

(x1 ∨ x2 ∨ x3)∧ . . .

I Standard input to satisfiability (SAT) solvers for 30+ years

Cardinality Conjunctive Normal Form (KNF): conjunction
of cardinality constraints (klauses)

(x1 + x2 + x3 + x4 + x5 + x6 ≥ 3)∧ . . .

I Extend input for more flexibility in solving

I Incremental change without sacrificing general usage
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Cardinality Constraints Extend Clauses

I A clause can be represented as a cardinality constraint

(x1 ∨ x2 ∨ x3) = (x1 + x2 + x3 ≥ 1)

I Comparison operators (=, >,≥, <,≤) can be represented
with one or two ≥ constraints

I At-Most-One (AMO): at most one literal is true

AMO(x1, x2, x3) = (x1 + x2 + x3 ≤ 1) = (x1 + x2 + x3 ≥ 2)
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AMO Cardinality Constraints in Competition Formulas
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I Anniversary Track: two decades of SAT competition

I 36% of 5,300 formulas with AMO of size 5 or larger
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Historic Motivations for Cardinality Input

I Easier for users to create problems
I Complex encoding types (e.g. modulus k-totalizer) error-prone

I Can use stronger reasoning techniques
I e.g., PHP from exponential to linear solving

I Smaller formulas
I e.g., Magic Squares 6× 6: 4k constraints → 600k clauses

I Faster constraint propagation
I e.g., AMO can propagate everything in single step

Failed to replace CDCL-based CNF solvers for general use

I Clausal reasoning: optimizations, heuristics, inprocessing

I Clausal encodings: better clause learning, shorter proofs
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Cardinality Input for CDCL: an Incremental Change

CNF: CDCL

I Auxiliary variables to encode high-level constraints

AMO(x1, x2, x3, x4, x5) → AMO(x1, x2, x3, y)∧AMO(y, x4, x5)

KNF: Cardinality-CDCL

I Lift inprocessing, proof checking, constraint propagation

I Leverage auxiliary variables with clausal encodings

I No stronger reasoning, no separate propagation engine

Joseph Reeves 6 / 15
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Contributions

Long Term Goal: User generated KNF formulas

I Problem specific encoding optimizations

I Efficient KNF proof checking

I More paradigms: local search, MaxSAT, parallel solving

Short Term Goal: Backwards compatibility with CNF

I Cardinality constraint extraction producing KNF

I Multiple configurations for KNF solving

I End-to-end proof checking for KNF extraction and solving
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Cardinality Constraint Extraction Framework
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I Guess a candidate cardinality constraint

I Verify the constraint structure by constructing a BDD
and filter out non-constraints
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Extractor Comparison on PySAT AMO Encodings

Table: Size 10 AMO on 8 PySAT encodings. X if complete AMO is extracted.

Tool Pair SCnt CNet SNet Tot mTot mkTot Lad

Guess-and-Verify X X X X X X X X
Lingeling X X X X X X X X

Riss X X X X X X X X

I Lingeling and Riss only find smaller sub constraints

I BDD verifier works for general cardinality constraints

I Need more sophisticated heuristics for guesser
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Cardinality Constraint Solving Options

Native:
I Propagate natively on cardinality constraints (CCDCL)

I Extends CDCL watch-pointers and conflict analysis

I Faster propagation, no aux. variables generally better on SAT

ReEncode:
I Encode cardinality constraints into clauses

I Encoded constraints generally better on UNSAT

Hybrid:
I Combination of Native and ReEncode

I Reencoded clauses kept throughout solving

I Native propagation enabled half of the time

I Good for both SAT and UNSAT instances
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Cardinality Solving and Proof Checking for CNF
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Extracting AMO Constraints on Competition Formulas
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I planning (473), petrinet (451), edge-matching (140)

I Runtime average 69s, 78% below 15s

Joseph Reeves 12 / 15



Solving Extracted Satisfiable Formulas
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I 10×10: 933 formulas with at least 10 AMOs of size ≥ 10

I 10× 20: 587 formulas with at least 10 AMOs of size ≥ 20
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Solving Extracted Unsatisfiable Formulas
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I ReEncode displays strength of auxiliary variables

I Hybrid suffers overhead from mode switching
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Conclusion

I KNF input requires moderate changes to a SAT solver

I Combining clausal encodings and native propagation good
for SAT and UNSAT problems

I Apply solver to KNF problems too large for CNF encoding
I Computational geometry, e.g., point-discrepancy problem

We’d like to hear about cardinality constraint problems you’d
like to solve!
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