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Abstract. We describe a theorem prover that is used in the Why2-
Atlas tutoring system for the purposes of evaluating the correctness of
a student’s essay and for guiding feedback to the student. The weighted
abduction framework of the prover is augmented with various heuristics
to assist in searching for a proof that maximizes measures of utility and
plausibility. We focus on two new heuristics we added to the theorem
prover: (a) a specificity-based cost for assuming an atom, and (b) a rule
choice preference that is based on the similarity between the graph of
cross-references between the propositions in a candidate rule and the
graph of cross-references between the set of goals. The two heuristics are
relevant to any abduction framework and knowledge representation that
allow for a metric of specificity for a proposition and cross-referencing of
propositions via shared variables.

1 Introduction

1.1 Why2-Atlas overview

The Why2-Atlas tutoring system is designed to encourage students to write their
answers to qualitative physics problems along with detailed explanations to sup-
port their arguments [1]. For the purpose of eliciting more complete explanations
the system attempts to provide students with substantive feedback that demon-
strates understanding of a student’s essay. A sample problem and a student’s
explanation for it is shown in Figure 1.

The sentence level understanding module in Why2-Atlas parses a student’s
essay into a first-order predicate representation [2]. The discourse-level under-
standing module then resolves temporal and nominal anaphora within the rep-
resentation [3] and uses a theorem prover that attempts to generate a proof,
treating propositions in the resolved representation as a set of goals, and the
problem statement as a set of given facts. An informal example proof for a frag-
ment of the essay in Figure 1 is shown in Figure 2. The proof is interpreted as
a model of the reasoning the student used to arrive at the arguments in the es-
say, and provides a diagnosis when the arguments are faulty in a fashion similar
to [4,5]. For example, the proof in Figure 2 indicates that the student may have



Question: Suppose a man is in a free-falling elevator and is holding his keys motionless
right in front of his face. He then lets go. What will be the position of the keys relative
to the man’s face as time passes? Explain.

Explanation: The keys are affected by gravity which pulls them to the elevator
floor, because the keys then have a combined velocity of the freefall and the effect
of gravity. If the elevator has enough speed the keys along with my head would be
pressed against the ceiling of the elevator, because the acceleration of the elevator car
along with me and the keys would overwhelm the gravitational pull.

Fig. 1. The statement of the problem and an example explanation.

[Step #[Proposition [Justification
1 before the release, the keys have been in contact with given
the man, and the man has been in contact with the elevator
2 at the moment of release, velocity of the keys is equal bodies in contact over a time
to velocity of the elevator interval have same velocities
3 after the release, nothing is touching the keys given
4 after the release, the keys are in freefall if there is no any contact then
the body is in freefall
5 after the release, the keys’ acceleration is not equal *elevator is not in freefall
to the elevator’s acceleration
6 after the release, the keys” velocity is not equal if initial velocity is the same
to the elevator’s velocity and accelerations are different
the final velocities are different
7 the keys touch the ceiling of the elevator if the keys’ velocity is smaller
than the elevator’s velocity,
the keys touch the ceiling

Fig. 2. An informal proof of the excerpt “The keys would be pressed against the
ceiling of the elevator” (From the essay in Figure 1). The buggy assumption is
preceded by an asterisk.

wrongly assumed that the elevator is not in freefall. A highly plausible wrong
assumption in the student’s reasoning triggers an appropriate tutoring action [6].

The theorem prover, called Tacitus-lite+, is a derivative of SRI’s Tacitus-
lite that, among other extensions, incorporates sorts (sorts will be described in
Section 2.3) [7, p. 102]. We further adapted Tacitus-lite4 to our application by
(a) adding meta-level consistency checking, (b) enforcing a sound order-sorted
inference procedure, and (c) expanding the proof search heuristics. In the rest of
the paper we will refer to the prover as Tacitus-lite when talking about features
present in the original SRI release, and as Tacitus-lite4 when talking about more
recent extensions.

The goal of the proof search heuristics is to maximize (a) the measure of
plausibility of the proof as a model of a student’s reasoning and (b) the measure
of utility of the proof for generating tutoring feedback. The measure of plausibil-
ity can be evaluated with respect to the misconceptions that were identified as
present in the essay by the prover and by a human expert. A more precise plau-
sibility measure may take into account plausibility of the proof as a whole. The
measure of utility for the tutoring task can be interpreted in terms of relevance



of the tutoring actions (triggered by the proof) to the student’s essay, whether
the proof was plausible or not.

A previous version of Tacitus-lite4+ was evaluated as part of the Why2-Atlas
evaluation studies, as well as on its own. The stand-alone evaluation uses man-
ually constructed propositional representation of essays, to measure the perfor-
mance of the theorem prover (in terms of the recognition of misconceptions in
the essay) on ‘gold’ input [8]. The results of the latter evaluation were encour-
aging enough for us to continue development of the theorem proving approach
for essay analysis.

1.2 Related work

In our earlier paper [9] we argued that statistical text classification approaches
that treat text as an unordered bag of words (e.g. [10,11]) do not provide a
sufficiently deep understanding of the logical structure of the student’s essay
that is essential for our application. Structured models of conceptual knowledge,
including those based on semantic networks and expert systems, are described
in [12]. Another structured model, Bayesian belief networks, is a popular tool for
learning and representing student models [13, 14]. By appropriately choosing the
costs of propositions in rules, weighted abductive proofs can be interpreted as
Bayesian belief networks [15, 4]. In general, the costs of propositions in abductive
theorem proving do not have to adhere to probabilistic semantics, providing
greater flexibility while also eliminating the need to create a proper probability
space. On the other hand, the task of choosing a suitable cost semantics in
weighted abduction remains a difficult problem and it is out of scope of this
paper.

Theorem provers have been used in tutoring systems for various purposes, e.g.
for building the solution space of a problem [16] and for question answering [17],
to mention a few. Student modeling from the point of view of formal methods
is reviewed in [18]. An interactive construction of a learner model that uses a
theorem proving component is described in [19].

In this paper we focus on the recent additions to the set of proof search
heuristics for Tacitus-lite4: a specificity-sensitive assumption cost and a rule
choice preference that is based on the similarity between the graph of cross-
references between the propositions in a candidate rule and the graph of cross-
references between the set of goals. The paper is organized as follows: Section 2
introduces knowledge representation aspects of the prover; Section 3 defines the
order-sorted abductive inference framework and describes the new proof search
heuristics; finally, a summary is given in Section 4.

2 Knowledge representation for qualitative mechanics

In addition to the domain knowledge that is normally represented in qualitative
physics frameworks (e. g. [20]), a natural language tutoring application requires



a representation of possibly erroneous student beliefs that captures the differ-
ences between beliefs expressed formally and informally, as allowed by natural
language. The process of building a formal representation of the problem can be
described in terms of envisionment and idealization.

2.1 Envisionment and idealization

The internal (mental) representation of the problem plays a key role in prob-
lem solving among both novices and experts [21,22]. The notion of an internal
representation, described in [22] as “objects, operators, and constraints, as well
as initial and final states,” overlaps with the notion of envisionment [23], i.e.
the sequence of events implied by the problem statement. While envisionment
can be expressed as a sequence of events in common-sense terms, a further step
towards representing the envisionment in formal physics terms (bodies, forces,
motion) is referred to as idealization [8].

For example, consider the problem in Figure 1. A possible envisionment is:
(1) the man is holding the keys (elevator is falling); (2) the man releases the keys;
(3) the keys move up with respect to the elevator and hit the elevator ceiling.

The idealization would be:

Bodies: Keys, Man, Elevator, Earth.

Forces: Gravity, Man holding keys

Motion: Keys’ downward velocity is smaller than the downward velocity of
the elevator.

Because envisionment and idealization are important stages for constructing
an internal representation, they fall under the scope of Why2-Atlas’ tutoring.
However, reasoning about the multitude of possible envisionments would require
adding an extensive amount of common-sense knowledge to the system. To by-
pass this difficulty, we consider problems that would typically have few likely
envisionments. Fortunately (for the knowledge engineers), there is a class of in-
teresting qualitative physics problems that falls into this category. We therefore
developed a knowledge representation that is capable of representing common
correct and erroneous propositions at both the levels of envisionment and ideal-
ization.

2.2 Qualitative mechanics ontology

The ontology is designed to take advantage of the additional capability provided
by an order-sorted language (described in Section 2.3). Namely, constants and
variables, corresponding to physical quantities (e. g. force, velocity), physical
bodies (man, earth) and agents (air) are associated with a sort symbol. The
domains of the predicate symbols are restricted to certain sorts (so that each
argument position has a corresponding sort symbol). These associations and
constraints constitute an order-sorted signature [24].

The ontology consists of the following main concept classes: bodies, physical
quantities, states, time, relations, as well as their respective slot-filler concepts.
For details of the ontology we refer the reader to [8].



((acceleration al keys vertical 7d-mag

?d-mag-num nonzero 7mag-num neg ?dir-num 7d-dir ?tl ?t2)
(Quantitylb Id Regular-body Axial D-mag

D-mag-num Mag-zero Mag-num Dir Dir-num D-dir Time Time))
((due-to di al ph1l) (Due-to Id Id Id))
((phenomenon phl gravity) (Phenomenon Id Field-interaction))

Fig. 3. Representation for “The keys have a downward acceleration due to grav-
ity.” The atoms are paired with their sorted signatures.

2.3 Order-sorted first-order predicate language

We adopted first-order predicate logic with sorts [24] as the representation lan-
guage. Essentially, it is a first-order predicate language that is augmented with
an order-sorted signature for its terms and predicate argument places. For the
sake of computational efficiency and since function-free clauses are the natural
output of the sentence-level understanding module (see Section 1), we do not
implement functions, instead we use cross-referencing between atoms by means
of shared variables. There is a single predicate symbol M; for each i-place rela-
tion. For this reason predicate symbols are omitted in the actual representation.
Each atom is indexed with a unique identifier, a constant of sort Id. The identi-
fiers, as well as variable names, can be used for cross-referencing between atoms.
For example, the proposition “The keys have a downward acceleration due to
gravity” is represented as shown in Figure 3, where al, d1, and phl are atom
identifiers. For this example we assume (a) a fixed coordinate system, with a
vertical axis pointing up (thus Dir value is neg); (b) that the existence of an
acceleration is equivalent to existence of a nonzero acceleration (thus Mag-zero
value is nonzero).

2.4 Rules

As we mentioned in Section 2.1, it is important to have rules about both envi-
sionment and idealization when modeling students’ reasoning. The idealization
of the canonical envisionment is represented as a set of givens for the theorem
prover, namely rules of the form — a. A student’s reasoning may contain false
facts, including an erroneous idealization and envisionment, and erroneous infer-
ences. The former are represented via buggy givens and the latter are represented
via buggy rules. Buggy rules normally have their respective correct counterparts
in the rule base. Certain integrity constraints apply when a student model is
generated, based on the assumption that the student is unlikely to use correct
and buggy versions of a rule (or given) within the same argument.

An example of a correct rule, stating that “if the velocity of a body is zero
over a time interval then its initial position is equal to its final position”, is
shown in Figure 4. Note that the rules are extended Horn clauses, namely the
head of the rule is an atom or a conjunction of multiple atoms.



((velocity vl 7body 7comp 7d-mag
?d-mag-num zero 7mag-num ?dir ?7dir-num ?d-dir ?tl 7t2)
(Quantitylb Id Body Comp D-mag
D-mag-num Mag-zero Mag-num Dir Dir-num D-dir Time Time))
=
((position pl 7body ?comp 7d-magl
?d-mag-numl ?mag-zerol ?mag-numl ?dirl ?dir-numl ?d-dirl 7tl 7t1)
(Quantitylb Id Body Comp D-mag
D-mag-num Mag-zero Mag-num Dir Dir-num D-dir Time Time))
((position p2 7body ?comp ?7d-magl
?7d-mag-numl 7mag-zerol ?mag-numl ?dirl ?dir-numl ?d-dirl 7t2 7t2)
(Quantitylb Id Body Comp D-mag
D-mag-num Mag-zero Mag-num Dir Dir-num D-dir Time Time))

Fig. 4. Representation for the rule “If the velocity of a body is zero over a time
interval then its initial position is equal to its final position.”

3 Abductive reasoning

3.1 Order-sorted abductive logic programming

Similar to [25] we define the abductive logic programming framework as a triple
(T, A, I), where T is the set of givens and rules, A is the set of abducible atoms
(potential hypotheses) and I is a set of integrity constraints. Then an abductive
explanation of a given set of sentences G (observations) consists of (a) subset
A of abducibles A such that TU A F G and T'U A satisfies I together with
(b) the corresponding proof of G. Since an abductive explanation is generally
not unique, various criteria can be considered for choosing the most suitable
explanation (see Section 3.2).

An order-sorted abductive logic programming framework (T'; A’,I'} is an ab-
ductive logic programming framework with all atoms augmented with the sorts
of their argument terms (so that they are sorted atoms) [8]. Assume the follow-
ing notation: a sorted atom is of the form p(x1,...,x,) : (11,...,7s), where the
term z; is of the sort 7;. Then, in terms of unsorted predicate logic, formula
dz p(x) : (1) can be written as 3z p(x) A 7(x). For our domain we restrict the
sort hierarchy to a tree structure that is naturally imposed by set semantics and
that has the property 3z 7,(z) A 7j(z) — (7 < 75) V (15, < 1), where 7; < 75 is
equivalent to Vz 7;(z) — 7;(z).

Tacitus-lite+ does backward chaining using the order-sorted version of modus
ponens:

(x/,zl) : (7—5)7-6)

p(z,y) : (11, 72) « q(x,2) : (73,74)

T5 XT3, T6 = T4 (1)
p(z',y") : (min(7s,71), 72)

)




3.2 Proof search heuristics

In building a model of the student’s reasoning, our goal is to simultaneously
increase a function of measures of utility and plausibility. The utility measure
is an estimate of the utility of the choice of a particular proof for the tutoring
application given a plausibility distribution on a set of alternative proofs. The
plausibility measure indicates which explanation is the most likely.

For example, even if a proof does not exactly coincide with the reasoning the
student used to arrive at a particular conclusion that she stated in her essay, the
proof may be of a high utility value, provided it correctly indicates the presence of
certain misconceptions in the student’s reasoning. However, generally plausible
explanations have a high utility value and we deploy a number of heuristics to
increase the plausibility of the proof.

Weighted abduction One of the characteristic properties of abduction is that
atoms can be assumed as hypotheses, without proof. Normally it is required
that the set of assumptions is minimal, in the sense that no proper subset of it
is sufficient to explain the observation (or, in other words, to prove the goals).
While this preference allows us to compare two explanations when one is a subset
of another, weighted abduction provides a method to grade explanations so we
can compare two arbitrary explanations.

Tacitus-lite extends the weighted abductive inference algorithm described in
[26] for the case where rules are expressed as Horn clauses to the case where
rules are expressed as extended Horn clauses, namely the head of a rule is an
atom or a conjunction of atoms. Each conjunct p; from the body of the rule has
a weight w; associated with it:

PPN AP Sy A ATy

The weight is used to calculate the cost of abducing p;, instead of proving
it, via the formula cost(p;) = cost(g) - w;, where g is the goal atom that has
been proved via the rule at a preceding step (by unifying, say, with atom r;).
The costs of the observations are supplied with the observations as input to the
prover.

Given a subgoal or observation atom to be proven, Tacitus-lite takes one of
three actions; (a) assumes the atom at the cost associated with it; (b) unifies it
with an atom that is either a fact or has already been proven or is another goal
(in the latter case the cost of the resultant atom is counted once in the total cost
of the proof, as the minimum of the two costs); (c) attempts to prove it with a
rule. Tacitus-lite calls the action (b) factoring.

To account for the fact that in the order-sorted abductive framework a rule
can generate new goals of various specificity (depending on the goals that were
unified with the head of the rule), we adjust the weight of the assumed atom
according to the sorts of its terms: a more general statement is less costly to
assume, but a more specific statement is more costly. For example, the rule from
Figure 4 can be applied to prove the goal “(Axial, or total) position of ?body3



has magnitude 7mag-num3”:
((position p3 7body3 ?7comp3 7d-mag3
?7d-mag-num3 7mag-zero3 ?mag-num3 ?dir3 ?dir-num3 ?d-dir3 7t3 ?7t3)
(Quantitylb Id Body Axial D-mag
D-mag-num Mag-zero Mag-num Dir Dir-num D-dir Time Time)),

which generates the subgoal “(Axial or total) velocity of ?body3 is zero”:
((velocity v2 7body3 7comp3 ?7d-mag2
?7d-mag-num2 zero 7mag-num2 7dir2 7dir-num2 ?7d-dir2 7t3 7t4)
(Quantitylb Id Body Axial D-mag
D-mag-num Mag-zero Mag-num Dir Dir-num D-dir Time Time))

The same rule can be applied to prove the more specific goal “Horizontal
position of ?body3 has magnitude ?mag-num3”:
((position p4 7body3 horizontal 7d-mag3
?7d-mag-num3 ?7mag-zero3 7mag-num3 ?dir3 ?dir-num3 ?7d-dir3 7t3 7t3)
(Quantitylb Id Body Axial D-mag
D-mag-num Mag-zero Mag-num Dir Dir-num D-dir Time Time)),

and will generate the more specific subgoal “Horizontal velocity of ?body3 is
zero”:
((velocity v3 ?body3 horizontal ?d-mag?2
?d-mag-num2 zero ?mag-num2 7dir2 7dir-num2 ?d-dir2 ?7t3 7t4)
(Quantitylb Id Body Axial D-mag
D-mag-num Mag-zero Mag-num Dir Dir-num D-dir Time Time))

Since the variables are assumed to be existentially quantified, in accordance
with the sort semantics (see Section 3.1), the latter, more specific subgoal implies
the former subgoal. Also, according to the ordered version of modus ponens (1),
more rules can be used to prove the more general atom, increasing the chances
for the atom to be proven, rather than assumed. These considerations suggest
that it should be less costly to assume more general atoms than more specific
atoms. The cost adjustment for the assumptions is implemented by computing
a metric of specificity for the sorted signature of each assumed atom.

Rule choice heuristics Although the rules in Tacitus-lite are applied to prove
individual goal atoms, a meaningful proposition usually consists of a few atoms
cross-referenced via shared variables (see Section 2.3). When a rule is used to
prove a particular goal atom, (a) a unifier is applied to the atoms in the head
and the body of the rule; (b) atoms from the head of the rule are added to the
list of proven atoms; and (c) atoms from the body of the rule are added to the
list of goals. Consequently, suppose there exists a unifier f that unifies both (a)
a goal atom ¢; with an atom r; from the head of the rule R : py Aps — r1 Arg
so that g; can be proved with R via modus ponens, and (b) a goal atom g
with an atom 79 from the head of the rule R so that g5 can be proved via R.



Then, proving goal g; via R (and applying 6 to ¢g; and r1) adds the atom 750
to the list of provens thus allowing for its potential factoring with goal gs. In
effect, a single application of a rule in which its head atoms match multiple goal
atoms can result in proving multiple goal atoms via a number of subsequent
factoring steps. This property of the prover is consistent (a) with backchaining
using modus ponens (1), and (b) with the intuitive notion of cognitive economy,
namely that the shortest (by the total number of rule applications) proofs are
usually considered good by domain experts.

Moreover, if an atom p;6 in the body of R can be unified with a goal gs0,
then the application of rule R will probably not result in an increase of the total
cost of the goals due to the new goal p16, since it is possible to factor it with
g3 and set the cost of the resultant atom as the minimum of the costs of p;6
and g3f. In other words, applying a rule where multiple atoms in its head and
body match multiple goal atoms is likely to result in a faster reduction of the
goal list, and therefore a shorter final proof.

The new version of Tacitus-lite+ extends the previous rule choice heuristics
described in [9] with rule choice based on the best match between the set of
atoms in a candidate rule and the set of goal atoms. To account for the structure
of cross-references between the atoms, a labeled graph is constructed offline for
every rule, so that the atoms are vertices labeled with respective sorted signatures
and the cross-references are edges labeled with pairs of respective argument
positions. Similarly a labeled graph is built on-the-fly for the current set of goal
atoms. The rule choice procedure involves comparison of the goal graph and
graphs of candidate rules so that the rule that maximizes the graph matching
metric is preferred.

The match metric between two labeled graphs is based on the size of the
largest common subgraph (LCSG). We have implemented the decision-tree-based
LCSG algorithm proposed in [27]. The advantage of this algorithm is that the
time complexity of its online stage is independent of the size of the rule graph:
if n is the number of vertices in the goal graph, then the time complexity of the
LCSG is O(2"n3).

Since the graph matching includes independent subroutines for matching ver-
tices (atoms with sorted signatures) and matching edges (cross-referenced atom
arguments), the precision of both match subroutines can be varied to balance the
trade-off between search precision and efficiency of the overall matching proce-
dure. Currently we are evaluating the performance of the theorem prover under
various settings.

4 Conclusion

We described an application of theorem proving for analyzing student’s essays
in the context of an interactive tutoring system. While formal methods have
been applied to student modeling, there are a number of challenges to overcome:
representing varying levels of formality in student language, the limited scope of
the rule base, and limited resources for generating explanations and consistency



checking. In our earlier paper [9] we argued that a weighted abduction theorem
proving framework augmented with appropriate proof search heuristics provides
a necessary deep-level understanding of a student’s reasoning. In this paper we
describe the recent additions to our proof search heuristics that have the goal of
improving the plausibility of the proofs as models of students’ reasoning as well
as the computational efficiency of the proof search.
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