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Localization and Navigation of the CoBots Over

Long-term Deployments
Joydeep Biswas and Manuela M. Veloso

Abstract—For the last three years, we have developed and
researched multiple collaborative robots, CoBots, which have
been autonomously traversing our multi-floor buildings. We
pursue the goal of long-term autonomy for indoor service mobile
robots as the ability for them to be deployed indefinitely while
they perform tasks in an evolving environment. The CoBots
include several levels of autonomy, and in this paper we focus
on their localization and navigation algorithms. We present the
Corrective Gradient Refinement (CGR) algorithm, which refines
the proposal distribution of the particle filter used for localization
with sensor observations using analytically computed state space
derivatives on a vector map. We also present the Fast Sampling
Plane Filtering (FSPF) algorithm that extracts planar regions
from depth images in real time. These planar regions are then
projected onto the 2D vector map of the building, and along
with the laser rangefinder observations, used with CGR for
localization. For navigation, we present a hierarchical planner,
which computes a topological policy using a graph representation
of the environment, computes motion commands based on the
topological policy, and then modifies the motion commands to
side-step perceived obstacles. The continuous deployments of the
CoBots over the course of one and a half years have provided us
with logs of the CoBots traversing more than 130km over 1082

deployments, which we publish as a dataset consisting of more
than 10 million laser scans. The logs show that although there
have been continuous changes in the environment, the robots
are robust to most of them, and there exist only a few locations
where changes in the environment cause increased uncertainty
in localization.

1. INTRODUCTION

We pursue the goal of long-term autonomy for indoor

service mobile robots, as the ability for the robots to

be deployed indefinitely in an evolving environment. Our

Collaborative Robots (CoBots) autonomously perform tasks

on multiple floors of our office building, including escort-

ing visitors, giving tours, and transporting objects. Two

CoBots have been deployed in our building since 2010,

and for the period of September 2011 to January 2013,

they have logged data while autonomously traversing more

than 130km over 1082 deployments and a total run time

of 182 hours. The CoBot robots rely on the tight integra-

tion of a number of autonomous components, including a

symbiotic human-robot relationship [Rosenthal et al., 2010],

[Rosenthal and Veloso, 2012], the capability of seeking infor-

mation from the web [Samadi et al., 2012], and the core local-

ization and navigation algorithms [Biswas and Veloso, 2010],
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Fig. 1: The two CoBots, CoBot1 (left) and CoBot2 (right) that

have been deployed in our office environment since September

2011.

[Biswas et al., 2011], [Biswas and Veloso, 2012] that enable

the robot to traverse the environment without human su-

pervision or chaperoning. In this article, we focus on the

localization and navigation algorithms that enable the CoBots

to reliably operate autonomously over time, as demonstrated

by the analysis of the extensive sensor logs that have collected.

The localization and navigation algorithms we contribute are

general to any mobile robot equipped with similar sensing

modalities. The sensor logs comprise, to the best of our

knowledge, the largest (in terms of number of observations,

distance traversed, and duration) data set of an autonomous

indoor mobile robot to date, and we make them publicly

available1 in the hope that they will prove valuable to the

researchers in the robotics community.

The CoBots (Fig. 1) are four-wheeled omnidirectional

robots, 2 purposefully simple, equipped with an inexpensive

1Logs of CoBots’ deployments may be downloaded from:
http://www.cs.cmu.edu/∼coral/cobot/data.html

2The CoBot robots were designed and built by Michael Licitra, mlici-
tra@cmu.edu, with the base being inspired by the hardware of the CMDragons
small-size soccer robots [Bruce et al., 2007], also designed and built by
Licitra.

http://www.cs.cmu.edu/~coral/cobot/data.html
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short-range laser rangefinder sensor, and an inexpensive depth

camera. An on-board tablet provides the computational plat-

form to run the complete algorithms for sensing and control,

and also provides a graphical and speech-based interface for

users.

For their localization and navigation, the CoBots

sense the environment through depth cameras and laser

rangefinders. The depth images observed by the depth

camera are filtered by Fast Sampling Plane Filtering

(FSPF) [Biswas and Veloso, 2012] to extract points that

correspond to planar regions. A 2D vector map is used to

represent the long-term features (like walls and permanent

fixtures) in the environment as line segments. The localization

algorithm uses an analytic ray cast of the vector map to find

correspondences between the line segments in the map and the

observations including plane-filtered points from depth images

and laser rangefinder observations. These correspondences

are then used to update the predicted location of the

robot (also including odometry) using Corrective Gradient

Refinement (CGR) [Biswas et al., 2011]. CGR extends

Monte-Carlo Localization (MCL) [Dellaert et al., 1999] by

using analytically computed state-space derivatives of the

observation model to refine the proposal distribution prior to

the observation update.

The navigation algorithm on the CoBots uses a two-level

hierarchy. At the high level, the algorithm uses a topological

graph of the traversable paths in the environment to plan a

topological policy for a given destination. This topological

policy is converted to motion commands using the “Next

Maximal Action” algorithm [Biswas and Veloso, 2010]. At

the low level, the motion commands are modified by the

obstacle avoidance algorithm to side-step around obstacles

by making use of the omnidirectional drive capability of the

CoBots.

This article is organized as follows. Section 2 reviews

related work on localization and navigation algorithms used

for indoor mobile robots, and robots that have been deployed

in the past in human environments. Section 3 describes the

Fast Sampling Plane Filtering (FSPF) algorithm used to extract

planar points from depth images, Section 4 describes the

analytic ray casting algorithm used to find correspondences

between observations and the map, and Section 5 describes the

Corrective Gradient Refinement (CGR) algorithm used to com-

pute location estimates of the robot based on the observations

and their correspondences with the map. Section 6 presents the

hierarchical navigation algorithm of CoBot. Section 7 presents

the long-term deployments of the CoBots, the sensor logs

collected in the process, and provides instructions on how to

obtain this dataset. Section 9 concludes with a summary of

lessons learnt from the deployments of CoBot, and directions

for future work.

2. RELATED WORK

We first briefly review the state of the art in robot localiza-

tion and mapping, robots deployed in human environments,

approaches to long-term autonomy of robots, and publicly

available datasets for long-term autonomy. We then contrast

the related work with our approach, and highlight the contri-

butions of this article.

1. Localization and Mapping

Kalman Filter [Kalman, 1960] and Monte Carlo

Localization (MCL) [Dellaert et al., 1999] based algorithms

comprise the vast majority of localization algorithms

used in practice today. Due to the nonlinear nature of

robot localization, Kalman Filter based algorithms use

one of several nonlinear variants [Lefebvre et al., 2004].

Sensor modalities used with these algorithms include

geometric beacons [Leonard and Durrant-Whyte, 1991],

SONAR [Jetto et al., 1999], and laser rangefinder

[Roumeliotis and Bekey, 2000]. Monte Carlo Localization

(MCL) [Dellaert et al., 1999] represents the probability

distribution of the robot’s location with a set of discrete

samples that are propagated through a probabilistic prediction

function based on a motion model of the robot, and either

the observed odometry or command actions, followed by

a observation based weighting function and a resample

step. The MCL algorithm, though successful in most cases,

suffers from a few limitations, including the inability to

scale efficiently between large variations in uncertainty, and

the difficulty of recovering from incorrect estimates (the

“kidnapped robot” problem). KLD-sampling [Fox, 2001]

extends MCL by dynamically varying the number of particles

used, based on the uncertainty as determined by the spread

of the proposal distribution. Sensor Resetting Localization

(SRL) [Lenser and Veloso, 2000] probabilistically injects

samples from the observation likelihood function into

the proposal distribution when the observation likelihood

drops, thereby allowing faster recovery from the kidnapped

robot problem than MCL. Corrective Gradient Refinement

(CGR) [Biswas et al., 2011] uses analytically computed

state-space derivatives of the observation model to refine the

proposal distribution prior to the observation update, thus

allowing the samples to sample densely along directions of

high uncertainty while confining the samples along directions

of low uncertainty.

Many approaches to Simultaneous Localization and

Mapping (SLAM) have been proposed to date and surveyed

[Thrun et al., 2002], [Durrant-Whyte and Bailey, 2006],

[Bailey and Durrant-Whyte, 2006]. The Rao-Blackwellized

Particle Filter (RBPF) [Doucet et al., 2000] in particular has

been shown to be successful in solving the SLAM problem

by decoupling the robot’s trajectory from the estimate of the

map, and sampling only from the trajectory variables while

maintaining separate estimators for the map for each sample.

Graph SLAM [Thrun and Montemerlo, 2006] represents the

trajectory of the robot as a graph with nodes representing the

historic poses of the robot and map features, and edges to

represent relations between the nodes based on odometry and

matching observations.

2. Robots Deployed In Human Environments

Shakey the robot [Nilsson, 1984] was the first robot to ac-

tually perform tasks in human environments by decomposing
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tasks into sequences of actions. Rhino [Buhmann et al., 1995],

a robot contender at the 1994 AAAI Robot Competition and

Exhibition, used SONAR readings to build an occupancy grid

map [Elfes, 1989], and localized by matching its observations

to expected wall orientations. Minerva [Thrun et al., 1999]

served as a tour guide in a Smithsonian museum. It used laser

scans and camera images along with odometry to construct

two maps, the first being an occupancy grid map, the second

a textured map of the ceiling. For localization, it explicitly

split up its observations into those corresponding to the fixed

map and those estimated to have been caused by dynamic

obstacles. Xavier [Koenig and Simmons, 1998] was a robot

deployed in an office building to perform tasks requested by

users over the web. Using observations made by SONAR,

a laser striper and odometry, it relied on a Partially Ob-

servable Markov Decision Process (POMDP) to reason about

the possible locations of the robot, and to reason about the

actions to choose accordingly. A number of robots, Chips,

Sweetlips and Joe Historybot [Nourbakhsh et al., 2003] were

deployed as museum tour guides at the Carnegie Museum

of Natural History in Pittsburgh. Artificial fiducial markers

were placed in the environment to provide accurate location

feedback for the robots. The PR2 robot at Willow Garage

[Oyama et al., 2009] has been demonstrated over a number

of “milestones” where the robot had to navigate over 42 km

and perform a number of manipulation tasks. The PR2 used

laser scan data along with Inertial Measurement Unit (IMU)

readings and odometry to build an occupancy grid map using

GMapping [Grisetti et al., 2007], and then localized itself on

the map using KLD-sampling [Fox, 2001].

3. Long-Term Autonomy

Recognizing the need for robots to adapt to changes in the

environment in order to remain autonomous over extended

periods of time, a number of approaches have been proposed

to dynamically update the map of the environment over time.

One such approach is to maintain a history of local maps over

a number of time scales [Biber and Duckett, 2005]. The Inde-

pendent Markov Chain approach [Saarinen et al., 2012] main-

tains an occupancy grid with a Markov chain associated with

every bin to model their probabilities of remaining as well as

transitioning from occupied from unoccupied, and vice-versa.

Dynamic Pose Graph SLAM [Walcott-Bryant et al., 2012]

maintains a pose graph of all observations made by the

robot, and successively prunes the graph to remove old

observations invalidated by newer ones, thus keeping track

of an up-to-date estimate of the map. For long-term au-

tonomy using vision, the approach of “Visual Experiences”

[Churchill and Newman, 2012] uses a visual odometry algo-

rithm along with visual experiences (sets of poses and feature

locations), and successively builds a topological map as sets

of connected visual experiences.

4. Datasets for Long-Term Autonomy

To tackle the problems of long-term autonomy, datasets

of robots navigating in environments over extended periods

of time are invaluable, since they provide insight into the

actual challenges involved and also serve to evaluate the

strengths and limitations of existing algorithms. Gathering

such datasets is difficult since it requires robots to be deployed

over long periods of time, which would require considerable

human time unless the robots were autonomous. In addition

to the data itself, annotation of the data (such as ground

truth and places where the robot had errors) is crucial to

evaluating the success of algorithms geared towards long-

term autonomy. A five-week experiment at Örebro University,

Sweden3 [Biber and Duckett, 2009] provided a five-week long

dataset of a robot driven manually around in an office envi-

ronment, traversing 9.6 km, and over 100, 000 laser scans.

Datasets of a robot recording omni-directional images in an

office environment4, an office room5 and a lab environment6

were recorded at University of Lincoln [Dayoub et al., 2011].

5. Contrast and Summary of Contributions

Our approach to localization uses a vector map, which

represents long-term features in the environment as a set

of line segments, as opposed to occupancy grids or sets of

raw observations as used by other localization and SLAM

algorithms. We introduce the Corrective Gradient Refinement

(CGR) algorithm that extends Monte Carlo Localization and

allows efficient sampling of the localization probability distri-

bution by spreading out samples along directions of higher

uncertainty and consolidating the samples along directions

of lower uncertainty. We also introduce the Fast Sampling

Plane Filtering (FSPF) algorithm, a computationally efficient

algorithm for extracting planar regions from depth images.

CoBot’s localization uses CGR with these observed planar

regions, along with laser rangefinder observations. The FSPF-

CGR localization with a vector map is a novel approach

that we demonstrate on the CoBots. Although the CoBots

do not perform SLAM or track map changes online, the

localization and navigation algorithms that we present are

robust to most changes in the environment. We present an

extensive dataset of the robot autonomously navigating in the

building while performing tasks. To the best of our knowledge

this dataset is the longest publicly available dataset of an

autonomous indoor mobile robot, in terms of duration, distance

traversed, and volume of observations collected. In summary,

the contributions of this article include

1) the Fast Sampling Plane Filtering (FSPF) algorithm for

extracting planar regions from depth images,

2) the Corrective Gradient Refinement (CGR) algorithm,

which extends MCL and allows better sampling of the

localization probability distribution,

3) results from long-term deployments demonstrating the

robustness of the above algorithms, and

4) an extensive dataset of robot observations and run-time

estimates gathered by the CoBots over these deploy-

ments.

3https://ckan.lincoln.ac.uk/dataset/ltmro-4
4https://ckan.lincoln.ac.uk/dataset/ltmro-1
5https://ckan.lincoln.ac.uk/dataset/ltmro-2
6https://ckan.lincoln.ac.uk/dataset/ltmro-3

https://ckan.lincoln.ac.uk/dataset/ltmro-4
https://ckan.lincoln.ac.uk/dataset/ltmro-1
https://ckan.lincoln.ac.uk/dataset/ltmro-2
https://ckan.lincoln.ac.uk/dataset/ltmro-3
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3. FAST SAMPLING PLANE FILTERING

The CoBots use observations from on-board depth cameras

for both localization, as well as safe navigation. Depth cam-

eras provide, for every pixel, color and depth values. This

depth information, along with the camera intrinsics consisting

of horizontal field of view fh, vertical field of view fv ,

image width w and height h in pixels, can be used to

reconstruct a 3D point cloud. Let the depth image of size

w × h pixels provided by the camera be I , where I(i, j)
is the depth value of a pixel at location d = (i, j). The

corresponding 3D point p = (px, py, pz) is reconstructed using

the depth value I(d) as px = I(d)
(

j
w−1 − 0.5

)

tan
(

fh
2

)

,

py = I(d)
(

i
h−1 − 0.5

)

tan
(

fv
2

)

, pz = I(d).

With the limited computational resources on a mobile robot,

most algorithms (e.g., localization, mapping) cannot process

the full 3D point cloud at full camera frame rates in real

time. The naı̈ve solution would therefore be to sub-sample

the 3D point cloud, for example by dropping one out of N
points, or by dropping frames. Although this would reduce

the number of 3D points being processed, it would end up

discarding information about the scene. An alternative solution

is to convert the 3D point cloud into a more compact, feature-

based representation, like planes in 3D. However, computing

optimal planes to fit the point cloud for every observed 3D

point would be extremely CPU-intensive and sensitive to

occlusions by obstacles that exist in real scenes. The Fast

Sampling Plane Filtering (FSPF) algorithm combines both

ideas: it samples random neighborhoods in the depth image,

and in each neighborhood, it performs a RANSAC-based plane

fitting on the 3D points. Thus, it reduces the volume of the

3D point cloud, it extracts geometric features in the form of

planes in 3D, and it is robust to outliers since it uses RANSAC

within the neighborhood.

FSPF takes the depth image I as its input, and cre-

ates a list P of n 3D points, a list R of correspond-

ing plane normals, and a list O of outlier points that

do not correspond to any planes. Algorithm 1 outlines

the plane filtering procedure. It uses the helper subroutine

[numInliers, P̂ , R̂] ← RANSAC(d0, w
′, h′, l, ǫ), which per-

forms the classical RANSAC algorithm over the window of

size w′×h′ around location d0 in the depth image, and returns

inlier points and normals P̂ and R̂ respectively, as well as the

number of inlier points found. The configuration parameters

required by FSPF are listed in Table I.

FSPF proceeds by first sampling three locations d0,d1,d2
from the depth image (lines 9-11). The first location d0 is

selected randomly from anywhere in the image, and then d1
and d2 are selected from a neighborhood of size η around

d0. The 3D coordinates for the corresponding points p0, p1,

p2 are then computed (line 12). A search window of width

w′ and height h′ is computed based on the mean depth (z-

coordinate) of the points p0, p1, p2 (lines 14-16) and the

minimum expected size S of the planes in the world. Local

RANSAC is then performed in the search window. If more

than αinl inlier points are produced as a result of running

RANSAC in the search window, then all the inlier points are

Algorithm 1 Fast Sampling Plane Filtering

1: procedure PLANEFILTERING(I)

2: P ← {} ⊲ Plane filtered points

3: R← {} ⊲ Normals to planes

4: O ← {} ⊲ Outlier points

5: n← 0 ⊲ Number of plane filtered points

6: k ← 0 ⊲ Number of neighborhoods sampled

7: while n < nmax ∧ k < kmax do

8: k ← k + 1
9: d0 ← (rand(0, h− 1), rand(0, w − 1))

10: d1 ← d0 + (rand(−η, η), rand(−η, η))
11: d2 ← d0 + (rand(−η, η), rand(−η, η))
12: Reconstruct p0, p1, p2 from d0,d1,d2
13: r = (p1−p0)×(p2−p0)

||(p1−p0)×(p2−p0)||
⊲ Compute plane normal

14: z̄ = p0z+p1z+p2z

3
15: w′ = w S

z̄
tan(fh)

16: h′ = hS
z̄
tan(fv)

17: [numInliers, P̂ , R̂]← RANSAC(d0, w
′, h′, l, ǫ)

18: if numInliers > αinl then

19: Add P̂ to P
20: Add R̂ to R
21: numPoints ← numPoints + numInliers

22: else

23: Add P̂ to O
24: end if

25: end while

26: return P,R,O
27: end procedure

added to the list P , and the associated normals (computed

using a least-squares fit on the RANSAC inlier points) to

the list R. This algorithm runs a maximum of mmax times

to generate a list of maximum nmax 3D points and their

corresponding plane normals.

Parameter Value Description

nmax 2000 Maximum total number of filtered points
kmax 20000 Maximum number of neighborhoods to sample
l 80 Number of local samples
η 60 Neighborhood for global samples (in pixels)
S 0.5m Plane size in world space for local samples
ǫ 0.02m Maximum plane offset error for inliers
αin 0.8 Minimum inlier fraction to accept local sample

TABLE I: Configuration parameters for FSPF

Once the list of planar points P observed by the depth

camera has been constructed, these points, along with the

points observed by the laser rangefinder sensor, are matched to

the expected features on the map. The map representation, and

the observation models are the subjects of the next section.

4. VECTOR MAP AND ANALYTIC RAY CASTING

The map representation that we use for localization is a

vector map: it represents the environment as a set of line

segments (corresponding to the obstacles in the environ-

ment), as opposed to the more commonly used occupancy

grid [Elfes, 1989] based maps. The observation model there-

fore has to compute the line segments likely to be observed by
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the robot given its current pose and the map. This is done by

an analytic ray cast step. We introduce next the representation

of the vector map and the algorithm for analytic ray casting

using the vector map.

The map M used by our localization algorithm is a set

of s line segments li corresponding to all the walls in the

environment: M = {li}i=1:s. Such a representation may be

acquired by mapping (e.g., [Zhang and Ghosh, 2000]) or, as

in our case, taken from the architectural plans of the building.

Given this map and the pose estimate of the robot, to

compute the observation likelihoods based on observed planes,

the first step is to estimate the scene lines L which are

sections of the lines on the map likely to be observed. This

ray casting step is analytically computed using the vector map

representation.

The procedure to analytically generate a ray cast at lo-

cation x given the map M is outlined in Algorithm 2.

The returned result is the scene lines L: a list of non-

intersecting, non-occluded line segments visible by the robot

from the location x. This algorithm calls the helper procedure

TrimOcclusion(x, l1, l2, L), which accepts a location x, two

lines l1 and l2 and a list of lines L. TrimOcclusion trims line

l1 based on the occlusions due to the line l2 as seen from

the location x. The list L contains lines that yet need to be

tested for occlusions by l2. There are in general 4 types of

arrangements of l1 and l2, as shown in Fig. 2:

1) l1 is not occluded by l2. In this case, l1 is unchanged.

2) l1 is completely occluded by l2. l1 is trimmed to zero

length by TrimOcclusion.

3) l1 is partially occluded by l2. l1 is first trimmed to a

non occluded length, and if a second disconnected non

occluded section of l1 exists, it is added to L.

4) l1 intersects with l2. Again, l1 is first trimmed to a

non occluded length, and if a second disconnected non

occluded section of l1 exists, it is added to L.

Algorithm 2 Analytic Ray Cast Algorithm

1: procedure ANALYTICRAYCAST(M,x)

2: L̂←M
3: L← {}
4: for li ∈ L̂ do

5: for lj ∈ L do

6: TrimOcclusion(x, li, lj , L̂)
7: end for

8: if ||li|| > 0 then ⊲ li is partly non occluded

9: for lj ∈ L do

10: TrimOcclusion(x, lj , lj , L̂)
11: end for

12: L← L ∪ {li}
13: end if

14: end for

15: return L
16: end procedure

The analytic ray casting algorithm (Algorithm 2) proceeds

as follows: A list L̂ of all possible lines is made from the map

M . Every line li ∈ L̂ is first trimmed based on occlusions by

l2

l2

l2

l2

l1

l1

l1
l1

Case 1
Case 2

Case 3
Case 4

x

Fig. 2: Line occlusion cases. Line l1 is being tested for

occlusion by line l2 from location x. The occluded parts of l1
are shown in green, and the visible parts in red. The visible

ranges are bounded by the angles demarcated by the blue

dashed lines.

Fig. 3: An example result of analytic ray casting from the robot

location marked in orange. The lines in the final scene list L
are shown in red, the original, un-trimmed corresponding lines

in green, and all other lines on the map in blue.

lines in the existing scene list L (lines 5-7). If at least part

of l1 is left non occluded, then the existing lines in L̂ are

trimmed based on occlusions by li (lines 9-11) and li is then

added to the scene list L. The result is a list of non occluded,

non-intersecting scene lines in L. Fig. 3 shows an example

scene list on the real map.

Thus, given the robot pose, the set of line segments likely

to be observed by the robot is computed. Based on this list of

line segments, the points observed by the laser rangefinder and

depth image sensors are related to the map using the projected

point cloud model, which we introduce next.

Let the observed 2D points from the laser rangefinder

sensor, along with their estimated normals, be represented by

the lists PL and RL respectively. Since the map on which the

robot is localizing is in 2D, we project the 3D filtered point

cloud P and the corresponding plane normals R onto 2D to

generate a 2D point cloud PD along with the corresponding

normalized normals RD. Points that correspond to ground

plane detections are rejected at this step. Let the pose of the
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robot x be given by x = {x, y, θ}, the location and orientation

of the robot. The observable scene lines list L is computed

using an analytic ray cast. The observation likelihood p(y|x),
where the observation y are point clouds observed by the

laser rangefinder PL and the depth camera PD respectively, is

computed as follows:

1) For every point pLi in PL, line li (li ∈ L) is found such

that the ray in the direction of pLi − x1 and originating

from x1 intersects li.
2) Points for which no such line li can be found are

discarded.

3) Points pLi for which the corresponding normal estimates

rLi (from RL) differ from the normal to the line li by a

value greater than a threshold θmax are discarded.

4) The perpendicular distance dLi of pLi from the (extended)

line li is computed.

5) The perpendicular distance dDi of points pDi ∈ PD

(observed by the depth camera) from corresponding line

segments are similarly computed.

The total non-normalized observation likelihood p(y|x) is

then given by

p(y|x) =
(

nL
∏

i=1

exp

[

−
(dLi )

2

2fLσ2
L

]

)(

nD
∏

i=1

exp

[

−
(dDi )2

2fDσ2
D

]

)

. (1)

Here, σL and σD are the standard deviations of distance

measurements made by the laser rangefinder and the depth

camera respectively, and fL : fL > 1 and fD : fD > 1
are discounting factors to discount for the correlation between

observations. Although the observation likelihood function

treats each observed point independently, in reality every

observed point is correlated with its neighbors since they are

most likely to be observations of the same object, and hence

most likely to have similar values of di. Smaller values of fL
and fD result in more abrupt variations of p(y|x) as a function

of location x, while larger values produce smoother variations

of p(y|x). In our implementation we set fL and fD to the

number of points observed by the laser rangefinder and depth

camera sensor, respectively.

In Eq. 1, the observation likelihood function penalizes the

perpendicular error di between each observed point and the

lines on the map rather than the error along the ray of the

observation. This is because when surfaces are observed at

small angles of incidence, the error along the rays will be

significantly large even for small translation errors in the pose

estimate, while the small perpendicular errors in di more

accurately represent the small translation errors.

The observation likelihoods thus computed are used for

localization using the Corrective Gradient Refinement (CGR)

algorithm, which we describe next.

5. CORRECTIVE GRADIENT REFINEMENT

The belief of the robot’s location is represented as

a set of m weighted samples or particles, as in

MCL [Dellaert et al., 1999]: Bel(xt) =
{

xi
t, w

i
t

}

i=1:m
.

Recursive updates of the particle filter can be im-

plemented via a number of methods, notably among

which is the sampling/importance resampling method

(SIR) [Gordon et al., 1993]

In the MCL-SIR algorithm, m samples xi
t−

are drawn

with replacement from the prior belief Bel(xt−1) propor-

tional to their weights wi
t−1. These samples xi

t−
are used

as priors to sample from the motion model of the robot

p(xt|xt−1, ut−1) to generate a new set of samples xi
t that

approximates p(xt|xt−1, ut−1)Bel(xt−1). Importance weights

for each sample xi
t are then computed as

wi
t =

p(yt|x
i
t)

∑

i p(yt|x
i
t)
. (2)

Although SIR is largely successful, several issues may still

create problems:

1) Observations could be “highly peaked,” i.e. p(yt|x
i
t)

could have very large values for a very small subspace

ǫ and be negligible everywhere else. In this case, the

probability of samples xi overlapping with the subspace

ǫ is diminishingly small.

2) If the posterior is no longer being approximated well by

the samples xi, recovery is only possible by chance, if

the motion model happens to generate new samples that

better overlap with the posterior.

3) The required number of samples necessary to overcome

the aforementioned limitations scales exponentially in

the dimension of the state space.

The Corrective Gradient Refinement (CGR) algorithm ad-

dresses the aforementioned problems in a computationally

efficient manner. It refines samples locally to better cover

neighboring regions with high observation likelihood, even if

the prior samples had poor coverage of such regions. Since

the refinement takes into account the gradient estimates of the

observation model, it performs well even with highly peaked

observations. This permits CGR to track the location of the

robot with fewer particles than MCL-SIR.

CGR iteratively updates the past belief Bel(xt−1) using

observation yt and control input ut−1 as follows:

1) Samples of the belief Bel(xt−1) are propagated through

the motion model, p(xt|xt−1, ut−1) to generate a first

stage proposal distribution q0.

2) Samples of q0 are refined in r iterations which produce

intermediate distributions qi, i ∈ [1, r − 1] using the

gradients δ
δx
p(yt|x) of the observation model p(yt|x).

3) Samples of the last proposal distribution qr and the

first stage proposal distribution q0 are sampled using an

acceptance test to generate the final proposal distribution

q.

4) Samples xi
t of the final proposal distribution q are

weighted by corresponding importance weights wi
t, and

resampled with replacement to generate Bel(xt).

We explain the four steps of the CGR algorithm in detail.

1. The Predict Step

Let the samples of the past belief, Bel(xt−1) be given by

xi
t−1. These samples are then propagated using the motion

model of the robot to generate a new set of samples q0 =
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{

xi
q0

}

i=1:m
as xi

q0 ∼ p(xt|x
i
t−1, ut−1). This sample set q0

is called the first stage proposal distribution, and takes time

complexity O(m) to compute.

2. The Refine Step

The Refine step is central to the CGR algorithm. It corrects

sample estimates that contradict the observations yt, e.g.,

when the sensor observations indicate that the robot to be

in the center of the corridor, but the sample estimates are

closer to the left wall. This results in the CGR algorithm

sampling less along directions that have low uncertainty in the

observation model while preserving samples along directions

of high uncertainty.

For the CGR algorithm, estimates of the first order dif-

ferentials (the gradients) of the observation model, δ̂
δx
p(yt|x)

must to be computable. Given these gradients, the Refine step

performs gradient descent for r iterations with a step size η,

generating at iteration i the i-th stage proposal distribution.

Algorithm 3 outlines the Refine step.

Algorithm 3 The Refine step of CGR

1: Let q0 =
{

xj

q0

}

j=1:m
2: for i = 1 to r do

3: qi ← {}
4: for j = 1 to m do

5: xj

qi
← xj

qi−1 + η
[

δ̂
δx
p(yt|x)

]

x=x
j

qi−1

6: qi ← qi ∪ xj

qi

7: end for

8: end for

Performing multiple iterations of gradient descent allows

the estimates of the gradients of the observation model to be

refined between iterations, which results in higher accuracy.

After the Refine step, samples from the r-th stage distribu-

tion are compared to the samples from the first stage proposal

distribution by an acceptance test to generate the final proposal

distribution q, as we now present.

3. The Acceptance Test Step

To generate the final distribution q, Samples xi
qr from

the r-th stage distribution are probabilistically chosen over

the corresponding samples xi
q0 of the first stage distribution

proportional to the value of the acceptance ratio ri, as

ri = min

{

1,
p(yt|x

i
qr )

p(yt|xi
q0
)

}

. (3)

This Acceptance Test allows the algorithm to probabilisti-

cally choose samples that better match the observation model

p(yt|x). If the Refine step does not produce samples with

higher observation likelihood than the samples in the first

stage distribution, the final proposal distribution q will have a

mixture of samples from q0 and qr. Furthermore, if the Refine

step results in most samples having higher observation likeli-

hood than the samples in the first stage distribution, the final

proposal distribution q will consist almost entirely of samples

from qr. The acceptance test thus ensures that instantaneously

high weights due to possibly incorrect observations do not

overwhelm the Belief distribution in a single step.

Samples from the final proposal distribution q thus gener-

ated are weighted by importance weights, and resampled to

compute the latest belief Bel(xt) in the Update step.

4. The Update Step

The importance weights for the CGR algorithm are different

from those of the MCL-SIR algorithm, since in the CGR

algorithm, the proposal distribution q is not the same as the

samples of the motion model. To derive the expression for the

importance weights of the CGR algorithm, we first factor out

the belief update as:

Bel(xt) ∝ p(yt|xt)p(xt|ut−1, Bel(xt−1)) (4)

p(xt|ut−1, Bel(xt−1)) =
∫

p(xt|xt−1, ut−1)Bel(xt−1)dxt−1 (5)

The proposal distribution from which the belief Bel(xt) is

computed, is q. Hence, the non-normalized importance weights

wi
t for samples xi

t in q are given by:

wi
t =

p(yt|x
i
t)p(x

i
t|ut−1, Bel(xt−1))

q(xi
t)

(6)

In this expression, p(yt|x
i
t) is computed using the observa-

tion model (see Section 4) using the latest sensor observations

and the pose estimates for the different particles, and the terms

p(xi
t|ut−1, Bel(xt−1)) and q(xi

t) are computed by kernel

density estimates at the locations xi
t using the samples from q0

and q for support of the kernel density, respectively. The kernel

density function should be wide enough such that areas with a

high sample density do not bias the Belief update, but should

be narrow enough to preserve samples from visually different

locations. We use a Gaussian kernel with a 2σ value equal to

the radius of the robot. Since the importance weight accounts

for the motion model from the term p(xi
t|ut−1, Bel(xt−1))

as well as the refined proposal distribution (q(xi
t)), the CGR

algorithm avoids “peak following” behavior that contradicts

the motion model.

The samples in q are resampled in proportion

to their importance weights using low variance

resampling [Thrun et al., 2005] to obtain the samples

of the latest belief, Bel(xt). The update step has time

complexity O(m2). It is quadratic in the number of particles

since it requires computation of kernel density functions.

Thus, given the motion model p(xt|xt−1, ut−1), the obser-

vation model p(yt|x), the gradients of the observation model
δ
δx
p(yt|x) and the past belief Bel(xt−1), the CGR algorithm

computes the latest belief Bel(xt).

5. Localization Accuracy

To compare localization using CGR to MCL-SIR, we logged

sensor data while driving the robot around the map, traversing
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a path 374m long. The true robot location was manually

annotated by aligning the sensor scans to the map. This data

was then processed offline with varying number of particles

to compare success rates, accuracy and run times for CGR as

well as MCL-SIR. At the beginning of every trial, the particles

were randomly initialized with errors of up to ±4m and ±40◦.

The number of particles m was varied from 2 to 202, with 80
trials each for CGR and MCL-SIR for each value of m. The

value of r, the number of iterations in the Refine step was set

to 3 for all trials.
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Fig. 4: The offset errors from the true robot locations for the
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Fig. 5: The size of the 70% confidence intervals for the offset

errors for the MCL-SIR and CGR algorithms

Fig. 4 shows the mean localization errors for the two

algorithms for different numbers of particles. The graph shows

that localization using CGR is consistently more accurate than

when using MCL-SIR. In particular, localizing using CGR

with 20 particles has smaller mean errors than localizing using

MCL with even 200 particles.

Another advantage of the CGR algorithm over MCL-SIR

is that the CGR algorithm has lower variance across trials.

Fig. 5 shows the 70% confidence interval sizes for the two

algorithms, for different numbers of particles. The variance

across trials is consistently smaller for the CGR algorithm.

6. NAVIGATION

CoBot is capable of navigating on and between multiple

floors. To navigate between floors, CoBot pro-actively asks for

human assistance [Rosenthal and Veloso, 2012] to press the

elevator buttons. On a single floor, CoBot uses a hierarchical

two-level navigation planner. At the high level a topological

graph map is used to compute a policy, which is then converted

to a sequence of actions based on the current location of the

robot. At the low level, a local obstacle avoidance planner

modifies these actions to side-step perceived obstacles.

1. Topological Graph Planner

CoBot uses a graph based navigation planner

[Biswas and Veloso, 2010] to plan paths between locations

on the same floor of the building. The navigation graph G
is denoted by G = 〈V,E〉, V = {vi = (xi, yi, wi)}i=:nV

,

E = {ei = (vi1, vi2) : vi1, vi2 ∈ V }i=:nE
. The set of vertices

V consists of nV vertices vi = (xi, yi) that represent the

location of the ends and intersections of hallways. The set of

edges E consists of nE edges ei = (vi1, vi2) that represent

navigable paths of width wi between vertices vi1 and vi2.

Fig. 6 shows the navigation graph for a section of a floor in

the building.

Fig. 6: Navigation graph of a part of a floor in the building.

Vertices are shown in black squares, and connecting edges in

grey lines.

Given a destination location ld = (xd, yd, θd), the nav-

igation planner first finds the projected destination location

l′d = (x′d, y
′
d, θd) that lies on one of the edges in the graph.

This projected destination location is then used to compute

a topological policy using Dijkstra’s algorithm for the en-

tire graph [Biswas and Veloso, 2010]. The navigation planner

projects the current location l = (x, y, θ) onto the graph and

then executes the topological policy until the robot reaches the

edge on which l′d lies, and then drives straight to the location

ld. Thus, the navigation planner navigates between start and

end rooms given by the task executor.

2. Obstacle Avoidance

While executing the navigation plan, CoBot performs ob-

stacle avoidance based on the obstacles detected by the laser

rangefinder and depth cameras. This is done by computing

open path lengths available to the robot for different angular

directions. Obstacle checks are performed using the 2D points

detected by the laser rangefinder, and the down-projected

points in the plane filtered and outlier point clouds generated

by FSPF from the latest depth image.
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(a)

(b)

Fig. 7: Obstacle avoidance: The full 3D point cloud (a) and

(b) the sampled points (shown in color), along with the open

path limits (red boxes). The robot location is marked by the

axes.

Let P be the set of points observed by the laser rangefinder

as well as sampled from the latest depth image by FSPF. Let

r be the robot radius, θd the desired direction of travel, and

θ̂ a unit vector in the direction of θ. The open path length

d(θ) and the chosen obstacle avoidance direction θ∗ are hence

calculated as

Pθ =
{

p : p ∈ P ∧ ||p− p · θ̂|| < r
}

, (7)

d(θ) = min
p∈Pθ

(

max(0, ||p · θ̂|| − r)
)

, (8)

θ∗ = argmax
θ

(d(θ) cos(θ − θd)) . (9)

Fig. 7 shows an example scene with two tables and four

chairs that are detected by the depth camera. Despite randomly

sampling from the depth image, all the obstacles are correctly

detected, including the table edges. The computed open path

lengths from the robot location are shown by red boxes.

In addition to avoiding obstacles perceived by the laser

rangefinder and depth cameras, CoBot restricts its location

to virtual corridors of width wi for every edge ei. These

virtual corridors prevent the CoBots from being maliciously

shepherded into unsafe areas while avoiding obstacles. Fur-

thermore, our environment has numerous obstacles that are

invisible to the robot (Section 7.2), and the CoBots success-

fully navigate in the presence of such invisible hazards by

maintaining accurate location estimates, and by bounding their

motion to lie within the virtual corridors.

7. LONG-TERM DEPLOYMENTS OF THE COBOTS

Since September 2011, two CoBots have been au-

tonomously performing various tasks for users on multiple

floors of our building, including escorting visitors, transporting

objects, and engaging in semi-autonomous telepresence. We

present here the results of the autonomous localization and

navigation of the CoBots over their deployments.

1. Hardware

The CoBots are custom-built robots with four-wheel omni-

directional drive bases, each equipped with a Hokuyo URG-

04lx short-range laser rangefinder and a Microsoft Kinect

depth camera sensor. The laser rangefinders have a maximum

range of 4m and a viewing angle of 240◦, and are mounted at

ankle height on the drive bases. The depth camera sensors

are mounted at waist height, and are tilted downwards at

an angle of approximately 20◦ so as to be able to detect

any obstacles in the path of the robot. Both CoBots are

equipped with off-the-shelf commodity laptops with dual-core

Intel Core i5 processors, and the robot autonomy software

stack (localization, navigation, obstacle avoidance, task plan-

ner and server interface) share the computational resources

on the single laptop. CoBot2 has a tablet form-factor laptop,

which facilitates touch-based user interaction. For purposes of

telepresence, the CoBots have pan-tilt cameras mounted on

top of the robots.

2. Challenges

Over the course of their regular deployments, the CoBots

traverse the public areas in the building, encountering var-

ied scenarios (Fig. 8), and yet accurately reach task loca-

tions (Fig. 9). Using localization alone, the robot is repeatably

and accurately able to slow down before traversing bumps on

the floor (Fig. 8c), stop at the right location outside offices

(Fig. 9a-b) and the kitchen (Fig. 9c), as well as autonomously

get on and off the elevators in the building (Fig. 9d). There

are areas in the building where the only observable long-term

features are beyond the range of the robot’s sensors, requiring

the robot to navigate these areas by dead reckoning and still

update its location estimate correctly when features become

visible later. For safe navigation, the CoBots have to detect tall

chairs and tables undetectable to the laser rangefinder sensors

but visible to the depth cameras. Despite these challenges, the

CoBots remain autonomous in our environment, and rarely

require human intervention.
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(a) (b) (c) (d)

Fig. 8: Localization and navigation in varied scenarios, including (a) in an open area with glass walls, (b) while crossing a

bridge, (c) slowing down to cross a bump, and (d) negotiating a sharp turn.

(a) (b) (c) (d)

Fig. 9: Reliable robot positioning at task locations, including (a) outside an office door, (b) at a transfer location, (c) at the

kitchen, and (d) while taking the elevator.

3. Sensor Logs

The CoBots (over the course of their regular deployments)

have been logging sensor data, as well as the reported location

of the CoBots (as computed by the on-board localization

algorithms) and the locations where the localization was reset.

The sensor data logged include the observed robot odometry

and the laser rangefinder observations. The observed depth

images were not recorded due to storage space limitations on

the robot, but the CoBots relied on them both for localization

and safe navigation. These logs show that the CoBots have

traversed more than 131km autonomously over a total of

1082 deployments to date. The sensor logs and the maps

of the building are available for download from our website

http://www.cs.cmu.edu/∼coral/cobot/data.html. Table II sum-

marizes the contents of the sensor logs.

4. Results

The CoBots have autonomously navigated on floors 3−9 of

the Gates Hillman Center (GHC) and floor 4 of Newell Simon

Hall (NSH) at Carnegie Mellon University. Fig. 10 shows the

Property Value

Total duration 260 hrs
Total distance traversed 131 km
Total number of deployments 1082
Total number of laser rangefinder scans 10,387,769

TABLE II: Data of sensor logs over CoBots’ deployments

from September 2011 to January 2013.

combined traces of the paths traversed by the CoBots on the

different floors. Different floors were visited by the CoBots

with different frequencies, as listed in Table III.

Along with the raw sensor logs, the locations at which the

localization estimates of the CoBots were reset, were also

logged. Fig. 11shows the distribution of the locations where

the location of the CoBots had to be reset on floor GHC7.

These locations include the startup locations where the CoBots

were initialized, locations outside the elevators where the map

for localization was switched when the robot had determined

that it had successfully entered a different floor, and locations

where the localization estimates had to be manually reset due

to localization errors. By excluding the startup locations and

http://www.cs.cmu.edu/~coral/cobot/data.html
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Fig. 10: Combined traces of the paths traversed by the CoBots on floors GHC3− 6 (top row) and GHC7− 9, NSH4 (bottom

row). Locations on the map are color-coded by the frequency of visits, varying from dark blue (least frequently visited) to red

(most frequently visited). Since the CoBots visited each floor a different number of times, the color scales are different for

each floor.

Floor Times visited

GHC3 21
GHC4 50
GHC5 13
GHC6 95
GHC7 751
GHC8 52
GHC9 58
NSH4 42

TABLE III: Breakup of the times each floor was visited by

the CoBots.

map switch locations, and normalizing the reset counts at each

location by the number of times that the CoBots traversed

them, the error rate of the CoBots is computed, as a function

of location on the map. As Fig. 12 shows, the locations where

the CoBots occasionally require manual intervention are few

in number and clustered in specific areas. The region with the

highest error rate on floor GHC7 had 10 errors out of the 263
times the CoBots visited that region, for an error rate of 0.038.

Although there are many areas in the building with significant

differences between expected observations based on the map

and the actual observations, and also many areas with constant

changes due to changing locations of movable objects, only

a small number of them actually present difficulties for the

autonomy of the CoBots. We discuss the causes for these

infrequent failures in Section 8.2. We have not observed any

correlation between the lengths of paths traversed by the robot,

but as shown in Fig. 12, there is a correlation between certain

specific locations and localization errors.
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5. Failures

Over the course of deployments there have been a few un-

expected failures due to unforeseen circumstances. These were

caused by hardware failures, sensing failures and algorithmic

limitations. It is important to note that in all of these cases

except one, the failure mode of the robot was to stop safely and

send an email to the research group mentioning that the robot

had been unexpectedly stopped, and the estimated location

where this event occurred.
1) Hardware Failures: On CoBot1, we had one instance

before we started using the depth camera sensor, where the

laser rangefinder stopped functioning and returned maximum

ranges for all the angles. This led the robot to hit a wall corner

before a bystander pressed the emergency stop button on the

robot. Since this event, we have been investigating automated

approaches to detect un-modeled and unexpected errors by

monitoring the safe operational state space of the robot using

redundant sensors [Mendoza et al., 2012].

Our building has a number of connecting bridges with

expansion joints at the interfaces of these bridges (Fig. 8c).

When the CoBots run over the expansion joints at their normal

speed of 0.75m/s, occasionally there is a momentary break

of electrical contact to the USB ports on the computer, which

causes the Linux kernel to de-list the USB devices. The CoBot

bases are designed to halt if no new command is received

within 50ms, so when the USB ports get de-listed on the

computer, the robot comes to a halt. We circumvented this

problem by enforcing a maximum robot speed of 0.3m/s for

the navigation edges that straddle such bumps. Even though

the lengths of these edges with speed limits are just 0.5m long,

due to the accuracy of the localization, the CoBots always

correctly slow down before encountering the bumps and we

have not since encountered any problems crossing the bumps.
2) Sensing Errors: The laser rangefinders and depth cam-

eras on the CoBots are rated only for indoor use, and are not

rated for operation in direct sunlight. However, in some parts

of the buildings, at some specific seasons and times of the day,

the CoBots do encounter direct sunlight. The direct sunlight

saturates the sensor elements, causing them to return invalid

range readings. Our obstacle avoidance algorithm treats invalid

range readings from the laser rangefinder, and large patches

of invalid depth from the depth cameras as being equivalent

to minimum range. We chose to err on the side of caution in

this case, and when the CoBots detect invalid range or depth

readings, they come to a stop and wait. If the sensors do not

recover from saturation within 5 minutes, the CoBots email the

research group with the last location estimate, stating that they

have been stopped for more than 5 minutes without progress

towards their tasks.
3) Algorithmic Limitations: The long-term deployments of

the CoBots have been invaluable in testing the algorithms on

the robot in a wide number of scenarios. We have encountered

a few cases that are currently not addressed adequately by our

algorithm, and which motivate our ongoing research.

In one scenario, during an open house, CoBot2 was crossing

a bridge with glass walls and heat radiators near the floor.

The glass walls are invisible to both the laser rangefinder as

well as the depth camera sensors. The radiators, being poorly

reflective, are invisible to the depth camera sensors but visible

to the laser rangefinder for small angles of incidence. Given

the partial laser rangefinder observations, CGR was accurately

able to disambiguate the location of the robot perpendicular

to the glass walls, but when it neared the end of the bridge,

it was uncertain of the distance it had traversed along the

length of the bridge due to wheel slip. It observed a large

group of visitors at the end of the bridge, and the group as a

collective was mis-labelled as a vertical plane by FSPF. Since

the particle cloud overlapped with a location at the end of

the bridge that genuinely had a wall, the location estimates

incorrectly converged to that location. As a result, the robot

expected a corridor opening earlier, and came to a stop when

the obstacle avoidance detected that there was an obstacle (the

wall) in front of it.

This failure raises an important question: how should a robot

reason about what it is observing, and what objects are there

in the environment? Currently most localization, mapping and

SLAM algorithms are agnostic to what they are observing, but

not all observable objects in the environment provide useful

information for localization. Therefore, a robot should not add

observations of moving and movable objects, like humans,

bags and carts to its localization map, and if it observes such

objects, it should not try to match them to the map. In the

long run, a richer model of the world would clearly benefit

robot localization and mapping. In the short term, we resort to

measures like stricter outlier checks. A stricter plane fit check

for FSPF results in fewer false positives, but also causes false

negatives of planar surfaces with poorly reflective surfaces.

8. LESSONS LEARNT

The continued deployments of the CoBots have provided us

with valuable insights into the strengths and limitations of our

algorithms. We list the lessons learnt under the sub-categories

of Sensors, Localization, Navigation and System Integration.

1. Sensors

The CoBots are equipped with a laser rangefinder and a

depth camera sensor each, which have very different charac-

teristics.

The laser rangefinder provides range readings in millimeters

with an accuracy of about 1 − 5 cm depending on the

reflecting surface properties, and a wide field of view of 240◦.

As a relatively inexpensive laser rangefinder, its maximum

range is limited to 4m. The wide field of view allows the

robot to more effectively avoid obstacles, and the accurate

readings enable accurate localization. However, it is difficult

to distinguish between objects (e.g., a pillar vs. a person) with

the laser rangefinder alone, which leads to occasional false

data associations for localization. Furthermore, since the laser

rangefinder is fixed at a particular height, it is unable to detect

a number of obstacles like tall chairs and tables.

The depth camera sensor provides depth values with an

accuracy that degrades with distance (about 1cm at a depth

of 0.75m, degrading to about 4cm at a depth of 5m). The

field of view of the sensor is constrained to about 55◦
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Fig. 11: Locations on floor GHC7 where the localization

estimates of the CoBots were reset over all the deployments.

These include a) the startup locations of the CoBots, b)

locations where the CoBots switched maps after taking the

elevator, and c) locations with localization errors.

horizontally and 40◦ vertically. Due to its relatively nar-

row field of view, the depth camera sensor observes fewer

features for localization compared to the laser rangefinder,

resulting in higher uncertainty of localization. However, by

performing plane filtering on the depth images (Section 3),

map features like walls can easily be distinguished from

moving and movable objects like people and chairs, thus

dramatically reducing the number of false data associations

for localization [Biswas and Veloso, 2013]. The depth images

also allow the robot to effectively avoid hitting obstacles, like

chairs and tables with thin legs that are missed by the laser

rangefinder.

Neither the laser rangefinder, nor the depth camera sensors

on the CoBots, are rated for use in direct sunlight. As a

result, occasionally, when the CoBots encounter direct bright

sunlight, they detect false obstacles and the obstacle avoidance

algorithm brings the robots to a stop.

2. Localization

The sensors used for localization on the CoBots have limited

sensing range, and cannot observe the entire length of the

hallway that the CoBot is in, for most of the time. Therefore,

it is up to the localization algorithms to reason about the

Fig. 12: Error rates of localization for the CoBots on floor

GHC7. Locations with no errors (including locations not

visited) are shown in black, and the error rates are color-coded

from blue(lower error rates) to red(higher error rates).

uncertainty parallel to the direction of the hallway. This is

in stark contrast to a scenario where a robot with a long-

range sensor (like the SICK LMS-200 laser rangefinder, with

a maximum range of 80m) is able to observe the entire length

of every hallway (the longest hallway in the GHC building

is about 50m in length), and hence is able to accurately

compute its location with a single reading. The decision to use

inexpensive short-range sensors is partly motivated by cost,

since we wish to eventually deploy several CoBots, and also

because we wish to explore whether it is possible to have

our algorithms be robust to sensor limitations. Despite the

limitation of the sensor range, the CoBots repeatedly stop

at exactly the right locations in front of office doors, and

always follow the same path down hallways (when there are

no obstacles). In fact, in a number of hallways, the repeated

traversal of the CoBots along the exact same paths has worn

down tracks in the carpets.

The CGR algorithm (Section 5) is largely to credit for the

repeatable accuracy of localization. When traversing down

hallways, CGR correctly distributes particles along the di-

rection of the hallway (as governed by the motion model),

and correctly limits the spread of the particles perpendicular

to the hallway (due to the observations of the walls). This

effectively reduces the number of dimensions of uncertainty
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of localization from three (position perpendicular to the hall-

way, position parallel to the hallway, and orientation) to two

(position parallel to the hallway and the orientation), thus

requiring much fewer particles than would have been required

for the same degree of accuracy by MCL-SIR. CGR also

allows quicker recovery from uncertain localization when new

features become visible. For example, when travelling through

an area with few observable features, the particles will have a

larger spread, but when the robot nears a corridor intersection,

CGR is able to effectively sample those locations that match

the observations to the map, thus quickly converging to the

true location.

There are occasional errors in localization, and most of

these errors are attributed to erroneous data association of the

observations, as discussed earlier (Section 7.5.3). Open areas,

where most of the observations made by the robots consist

of movable objects, remain challenging for localization. In

such areas (like cafes, atria, and common study areas in our

buildings), even if the map were updated by the robot to reflect

the latest locations of the movable objects (e.g., chairs, tables,

bins), the next day the map would again be invalid once the

locations of the objects changed.

3. Navigation

In our experiences with extended deployment of the CoBots,

we have come to realize that a conservative approach to

navigation is more reliable in the long term as compared

to a more unconstrained and potentially hazardous approach.

In particular, the obstacle avoidance algorithm (Section 6)

uses a local greedy planner, which assumes that paths on

the navigation graph will always be navigable, and can only

be blocked by humans. As a result, the planner will not

consider an alternative route if a corridor has a lot of human

traffic, but will stop before the humans and ask to be excused.

Furthermore, due to the virtual corridors, the robot will not

seek to side-step obstacles indefinitely. While this might result

in longer stopped times in the presence of significant human

traffic, it also ensures that the robot does not run into invisible

obstacles (Section 7.2) in the pursuit of open paths. Although

there exist many hallways with glass walls, the robot has never

come close to hitting them, thanks to its reliable localization

and virtual corridors.

One drawback of the constrained navigation is that if the

localization estimates are off by more than half the width

of a corridor intersection (which is extremely rare, but has

occurred), the obstacle avoidance algorithm will prevent the

robot from continuing, perceiving the corner of the walls at the

intersection as an obstacle in its path. In such circumstances,

issuing a remote command to the robot (via its telepresence

interface) to turn and move to the side is sufficient for the robot

to recover its localization (by observing the true locations of

the walls), and hence the navigation as well.

4. System Integration

As an ongoing long-term project, the CoBots require sig-

nificant automation in order to ensure continued reliable

operation. During deployments, the CoBots are accessible

remotely via a telepresence interface that allow members of

the research group to examine the state of the robot from the

lowest (sensor) levels to the highest (task execution) levels.

When a CoBot is blocked for task execution due lack of human

responses to interaction, it automatically sends and email to

the research group mentioning its latest location estimate, task

status, and reason for being blocked.

The sensor feeds of the robot (except the depth camera

images, since they are too voluminous) are logged, along

with the estimated state of the robot, task list, and any

human interactions. During robot startup, several health and

monitoring checks are performed automatically on the robots,

including:

1) Auto-detecting the serial and USB ports being used

by all the devices, including the sensors and motor

controllers,

2) Checking that all the sensor nodes are publishing at the

expected rates,

3) Checking the extrinsic calibration of the sensors by

performing consistency checks and detection of the

ground plane,

4) Checking that the central task management server is

accessible and is responding to requests for task updates,

and

5) Verifying that the robot battery level is within safe limits.

There are several nightly scripts that execute on the robots as

well as the central server, including:

1) Compressing and transferring the deployment logs of the

day from each robot to the central server,

2) Running a code update on all the robots to pull the

latest version of the code from the central repository

and recompiling the code on the robot,

3) Processing the deployment logs on the server to generate

synopses of the locations visited, distance traversed, and

errors encountered (if any) during the day by all the

robots, and

4) Emailing the synopses of the day’s deployments to the

developers.

We are currently at the point where the physical intervention

required to manually unplug the charger from the robot is

the bottleneck in deploying the CoBots. Therefore we are

exploring designs for an automatic charging dock that will

be robust to small positioning errors of the robot, durable in

order to withstand thousands of cycles per year, and yet be

capable of transferring sufficient power to charge the robot

base as well as the laptop at the same time.

9. CONCLUSION

In this article, we have presented the localization and

navigation algorithms that enable the CoBots to reliably and

autonomously perform tasks on multiple floors of our build-

ings. The raw sensor observations made by the CoBots during

the long-term autonomous deployments have been logged,

and these logs of the CoBots demonstrate the robustness

of the localization and navigation algorithms over extensive

autonomous deployments. Despite the presence of dynamic
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obstacles and changes to the environment, the CoBots demon-

strate resilience to them, save some infrequent errors. These

errors are confined to a few areas, and we will be exploring

strategies for autonomously recovering from such instances in

the future.
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