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Abstract
In pickup and delivery problems (PDPs), vehicles
pickup and deliver a set of items under various con-
straints. We address the PDP with Transfers (PDP-T),
in which vehicles plan to transfer items between one
another to form more efficient schedules. We introduce
the Very Large Neighborhood Search with Transfers
(VLNS-T) algorithm to form schedules for the PDP-T.
Our approach allows multiple transfers for items at arbi-
trary locations, and is not restricted to a set of predefined
transfer points. We show that VLNS-T improves upon
the best known PDP solutions for benchmark problems,
and demonstrate its effectiveness on problems sampled
from real world taxi data in New York City.

Introduction
In a pickup and delivery problem (PDP), a set of vehicles
pick up and deliver a set of items. The goal is to deliver as
many items as possible at the lowest cost while obeying a set
of constraints, such as time windows and capacities. PDPs
are applicable to many scenarios, such as logistics problems,
delivery robots, and transportation problems.

In the PDP with Transfers (PDP-T), we consider trans-
ferring items between vehicles. Transfers expand the search
space of possible solutions exponentially, for a problem
that is already NP-hard. However, with transfers, lower
cost solutions can be found for many problems, as has
been previously shown (Masson, Lehuédé, and Péton 2013a;
Cortés, Matamala, and Contardo 2010).

We introduce the Very Large Neighborhood Search with
Transfers (VLNS-T) algorithm to solve the PDP-T. Similar
to the VLNS algorithm for the PDP (Ropke and Pisinger
2006), VLNS-T forms a schedule with simulated anneal-
ing, where “neighboring” states are found by removing a
randomized set of items from the proposed scheduled, then
reinserting the items into the schedule using a set of heuris-
tics. We introduce two new insertion heuristics which insert
transfers into the schedule, as well as an algorithm to de-
termine the execution times of actions in a schedule with
transfers while obeying all PDP-T constraints. We demon-
strate VLNS-T’s effectiveness on both benchmark instances
and problems generated from New York City taxi data.
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Related Work

The PDP has been solved optimally (Ropke, Cordeau, and
Laporte 2007; Lu and Dessouky 2004) , and with heuristics
(Lu and Dessouky 2006; Xu et al. 2003) and metaheuris-
tics such as tabu search (Nanry and Wesley Barnes 2000;
Li and Lim 2001), genetic algorithms (Jung and Haghani
2000), and VLNS (Ropke and Pisinger 2006).

Many large logistics systems, such as the airline indus-
try, rely on hub and spoke networks which in effect transfer
items between vehicles (Bryan and O’Kelly 2002). These
problems differ from the PDP-T in that an algorithm does
not plan for the transfers of individual items.

A related problem is the PDP with fixed “transshipment”
points, where vehicles drop off items for another vehicle to
pick up later. Researchers have found the optimal solution
(Cortés, Matamala, and Contardo 2010), introduced heuris-
tics (Mitrovic-Minic and Laporte 2006), and studied the ef-
fects of adding a single transshipment point (Nakao and
Nagamochi 2008). An approximation algorithm has been
introduced for the preemptive PDP, where objects may be
dropped off at pickup points and retrieved by other vehicles
later (Gørtz, Nagarajan, and Ravi 2009).

Transfers at any pickup or delivery location have been
considered in the construction of heuristics for the PDP-T
(Thangiah, Fergany, and Awan 2007; Shang and Cuff 1996).
Transfers at arbitrary locations have been considered for an
insertion heuristic for the dynamic PDP-T without time win-
dows (Bouros et al. 2011).

A VLNS-based algorithm to solve PDPs with transfers
has been previously proposed (Masson, Lehuédé, and Péton
2013b; 2013a; Masson, Lehuédé, and Péton 2014). Our
work differs in that we allow a single item to be transferred
multiple times, consider additional constraints such as max-
imum item transportation times and maximum route dura-
tions, allow transfers at any location, consider a cost for
transfers, and require both vehicles to be present simulta-
neously for a transfer.

VLNS-T builds upon our own previous work of devel-
oping algorithms for simplified variants of the PDP-T, both
for deploying autonomous indoor robots to pickup and de-
liver items with transfers and to solve ridesharing problems
(Coltin and Veloso 2012; 2013; 2014).



The Pickup and Delivery Problem with
Transfers

In a PDP, a set of vehicles v ∈ V must pick up and deliver a
set of items p ∈ P . Each vehicle v has:

• A starting location start(v), and ending location end(v).
The ending location may be ∅, a wildcard location indi-
cating that the vehicle may end anywhere.

• A capacity cap(v), the maximum quantity of items that
can be transported at one time.

• A velocity vvel, traveling a distance d takes time d/vvel.

• A time interval W (v) = [e (v) , l (v)] in which all actions
must be completed. l (v) may be∞.

• A maximum route duration mrd (v) v’s operation time
may not exceed, representing fuel or driver availability.

• A cost of transferring an item with the vehicle ct (v).

Each item m has the following properties:

• A starting location start(m) and ending location end(m).

• A pickup time window Wp (m) = [ep (m) , lp (m)] and
delivery time window Wd (m) = [ed (m) , ld (m)] in
which the item must be picked up and delivered in.

• An integer demand dem(m). The total demand currently
transported on a vehicle v cannot exceed cap(v).

• A maximum transport time mtt(m), the maximum time
between object pickup and delivery.

• A set of allowed vehicles AV(m) which can transport m.

• A time it takes to pick up the item δp (m), to deliver the
item δd (m), and to transfer the item δt (m).

The goal is to form a schedule, S, to deliver as many items
as possible at the lowest cost, where S = ∪v∈V Sv is a set of
schedules for all the vehicles. Sv = (Sv

1 , S
v
2 , . . . , S

v
n) is the

sequence of actions svi ∈ A executed in order by vehicle v.
Every action a ∈ A occurs at a location loc(a). The vehicle
arrives at time b (a) and executes a at time t (a) which must
fall in the interval W (a) = [e (a) , l (a)] and takes time δ (a)
to execute. The allowed action types in A are:

• START: The first action of every plan. If START = a, then
loc(a) = start(v), W (a) = W (v), δ (a) = 0.

• END: The final action of every plan. If END = a, then
loc(a) = end(v). W (a) = W (v), δ (a) = 0.

• PICKUP (m): Pick up item m. If PICKUP (m) = a:
loc(a) = start(m), W (a) = Wp (m), δ (a) = δp (a).

• DELIVER(m): Deliver item m. If DELIVER(m) = a:
loc(a) = end(m), W (a) = Wd (m), δ (a) = δd (a).

• RECEIVE(v2,m, l): A vehicle v1 receives m from v2
at location l. If RECEIVE(v2,m, l) = a: W (a) =
[ep (m) , ld (m)], δ (a) = δt (a).

• TRANSFER(v2,m, l): A vehicle v1 transfers m to v2 at l.
If TRANSFER(v2,m, l) = a: W (a) = [ep (m) , ld (m)],
δ (a) = δt (a). Sv2 has pair (a) = RECEIVE(v1,m, l)
and t (a) = t (pair (a)).

A valid schedule has each PICKUP result in a de-
livery, possibly through a sequence of transfers, without
violating any constraints. The objective is to minimize
cost(S) = αD(S) + β

∑
v∈V top(v) + γ|UND(S)| +∑

v∈V NT (Sv)ct (v) , where UND(S) is the set of unde-

livered items in S, top(v) = t
(
Sv
|Sv|

)
− t (Sv

1 ), NT (Sv) is
the number of transfers in Sv , and

D(S) =
∑
v∈V

|Sv|∑
i=2

d
(
loc(Sv

i−1), loc(Sv
i )
)

.

The objective minimizes the distance travelled, the time the
vehicles in operate, and the number of items not delivered.

Savings from Transfers
How much of an improvement in solution cost can we expect
to achieve from transfers? For any problem, we do know that
the cost of the optimal solution to the PDP-T is at most the
cost of the optimal PDP solution, since any valid solution
to the PDP is also a valid solution to the PDP-T. We can
bound the potential improvement due to transfers, but only
for certain classes of problems.
Theorem 1. For a PDP with only vehicle and item starting
points and destinations (with unbounded time windows and
capacities) the cost of the optimal PDP solution is at most
twice the cost of the optimal PDP-T solution in terms of total
distance (β = 0).

Proof. Let the schedule R be the optimal solution to the
PDP-T, without START or END actions. We give an algo-
rithm to form a schedule S such that cost(S) ≤ 2cost(R):
1) Initialize S such that ∀v ∈ V Sv = [], a schedule with
no actions. Set v = v1, a = Rv

1 , and q = [] (an empty
stack). 2) Mark a as visited. If a is not a transfer action,
append a to Sv . Otherwise, if a′ is the first unvisited action
inRv(pair(a)) (where v(a) is the vehicle that executes action
a) before pair (a), mark pair (a) as visited, push a to q, set
a = a′, and go to (2). If no such unvisited action a′ exists,
do nothing, skipping the transfer action. 3) If a is not the
last action in v’s schedule, proceed to (4). If q is not empty,
pop an action Rvj

i from q, set a = R
vj
i+1, and go to (2). Oth-

erwise, if q is empty, choose any vehicle n with unvisited
actions. Set a = Rn, v = n. If no such vehicle n exists, then
for all v ∈ V , prepend a START and append an END action
to Sv , and terminate. 4) Where a = R

vj
i , set a = R

vj
i+1. If a

is marked as visited and q contains an action from v’s sched-
ule, pop an action Rvj

i from q, set a = R
vj

i+1, and go to (2).
If a is marked as visited, go to (4), otherwise go to (2).

The algorithm creates a valid schedule that delivers all
items. Every action before a transfer action on any vehicle
is now executed on the same vehicle before all actions af-
ter the transfer, so every DELIVER action is preceded by the
corresponding PICKUP. If the actions in R are seen as nodes
in a graph, we traverse each edge in R at most twice in con-
structing S, so cost(S) ≤ 2cost(R).

Furthermore, PDP problems exist where the optimal so-
lutions with transfers is half the cost of the optimal solution
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Figure 1: Two vehicles deliver two items to two locations.
The cost to deliver the items is (a) 8 without transfers and
(b) 4 with transfers.

without transfers. See Figure 1. For problems with capacities
and time windows, this proof does not hold.

Transfers can have greater potential benefits with differ-
ent metrics, such as minimizing the delivery time. Consider
n vehicles at a hub which must deliver n items to distinct
locations a distance 1 away from the hub like spokes on a
wheel. All n items and a single vehicle begin a large distance
D from the central hub. Without transfers, the single vehicle
delivers all items at a distance and time cost of D + 2n− 1.
With transfers, the single vehicle takes all items to the hub
and transfers to the other vehicles for final delivery. The dis-
tance is reduced to D + n, and the delivery time becomes
D + 1, which approaches a factor of n improvement.

Solving the PDP-T
Our algorithm to search for solutions to the PDP-T consists
of three parts. From highest to lowest level, these are:

1. Very Large Neighborhood Search. The VLNS al-
gorithm uses simulated annealing to randomly choose
“neighboring” schedules and iteratively improve the
schedule. Neighboring schedules are formed by removing
random items and reinserting them with heuristics.

2. Greedy Item Insertion Heuristics. These heuristics in-
sert items into the schedule (potentially with transfers) to
find a new “neighboring” schedule.

3. Valid Schedule Determination. The insertion heuristics
generate a list of actions for each vehicle, but not their
execution times. Another routine computes the best times
for the actions and determines if the schedule is valid.

We discuss these components of the algorithm in order.

Very Large Neighborhood Search with Transfers
VLNS-T is based on the Adaptive VLNS algorithm for the
PDP without transfers (Ropke and Pisinger 2006), a variant
of simulated annealing in which the neighborhood of states
is “very large.” In this case we remove random items from
the schedule and then reinsert them with multiple heuristics
to find “neighbors.”

Algorithm 1 vlns(S): Form a schedule with VLNS from
starting schedule S.

1: Sbest ← S
2: T ← ω

− ln 0.5cost(S, γ = 0)
3: for i ∈ 1, .., N do
4: q ←rand. integer in [min(4, |P |),min(100, ξ|P |)]
5: R← random items(S, q)
6: S′ ← remove items(S,R)
7: S′ ← insert items(S′,UND(S))
8: if cost(S′) < cost(Sbest) then
9: Sbest ← S′

10: if random() < exp−(cost(S′)− cost(S))/T
then

11: S ← S′

12: T ← cT
return Sbest

Alg. 1 shows the VLNS-T algorithm. On each iteration,
a random number of items q are removed from the schedule
using one of several heuristics. Next, a second heuristic at-
tempts to insert items that are not part of the schedule. The
new schedule is accepted with a probability based on the
temperature, which decreases over time. The initial temper-
ature is based on the cost of the initial schedule, but with
γ = 0 to ignore undelivered items. We use the same param-
eter values as VLNS.

For the random item and insert item routines, the
VLNS algorithm is adaptive in the sense that it chooses from
sets of heuristics and learns over time which removal and
insertion heuristics are the most effective. For each inser-
tion or removal heuristic i, we compute a weight wj,i over
each adaptive “segment” j of length τ iterations of VLNS.
Removal and insertion heuristics are selected randomly in
proportion to their weight. Initially all heuristics have equal
weight. The weight is modified by a different amount de-
pending on whether the heuristic gives a new best overall
solution, a new solution better than the previous solution, or
a newly accepted solution worse than the current solution.

Removal Heuristics For random item, we use the three
heuristics introduced for VLNS: the Shaw removal heuristic,
the random removal heuristic, and the worst removal heuris-
tic (Ropke and Pisinger 2006).

The Shaw heuristic chooses items similar in distance,
time, and demand to remove based on a relatedness metric
which depends on location, time, and demand, choosing the
first item at random and the remainder in proportion to their
relatedness. The random removal heuristic simply selects q
distinct items at random to remove, with equal probability.
For the worst removal heuristic, items are selected for re-
moval at random in proportion to the difference in cost of
the current schedule and the current schedule with the item
in question removed. With this heuristic, items which are
more costly to deliver are more likely to be removed.

Insertion Heuristics Two greedy heuristics insert items
into the schedule with transfers. The first, split routes,
takes existing pickup and delivery item route segments from



a single vehicle and splits them with another vehicle. The
second, insert item with transfer, searches to in-
sert an item into the schedule with at most a single transfer.

Both heuristics are greedy but in different ways.
Each relies on another heuristic to insert item pickups
and deliveries into the schedule without transfers, the
same heuristic used for VLNS. This heuristic is called
greedy insert(items, regret, noise) and takes as pa-
rameters the items to insert, a value for the “regret,” which
is an integer, and an amount of noise to apply to the ob-
jective function. If we define ci,j as the jth best cost to
insert item i over all points to insert PICKUP and DELIV-
ERY actions, we iteratively choose item i to insert such that
ci,regret − ci,1 is maximized. VLNS-T chooses from a fam-
ily of split routes heuristics, with regrets of 1, 2, 3
and 4. For each value of regret, there are two choices of
noise: one with 0 noise and one with noise ηmax d(l1, l2)
where the noise is proportional to the maximum distance
between any two locations specified in the problem. When
we compute the cost in the greedy algorithm, we sample
from cost(S) ∼ max(0, N(cost(S), σ2)) to increase the
diversity of generated solutions. For further details regard-
ing greedy insert, see the original VLNS algorithm.

Greedy Insertion with Transfers
Given an initial schedule S and a set of items Mnew, our
goal is to return a schedule S′ of low cost with the items
Mnew added into S′. It is prohibitively expensive to search
over all possible schedules, so we use two greedy heuristics
which iteratively insert individual items at a time. First we
discuss a subroutines for inserting transfer points into ve-
hicle schedules before delving into the higher-level greedy
heuristics.

Transfer Insertion Both heuristics rely on the algorithm
insert split(S, v1, v2,m, Trec, Tsend, cbest) to insert
transfers into the schedule. This routine finds the lowest
cost schedule to transfer item m from vehicle v1 to vehi-
cle v2. Vehicle v1 receives item m with action Trec (either a
PICKUP or TRANSFER action) which must be inserted into
S, or with an action that is already part of the schedule, in
which case Trec = ∅. Likewise the action Tsend may be
a DELIVER or RECEIVE action to insert into Sv2 after the
new TRANSFER action, or ∅ if this action is already part of
the plan. The insert split algorithm searches over all
possible places to insert the new RECEIVE and TRANSFER
actions, as well as Trec and Tdeliver (if applicable), into S,

For each pair of insertion points for the new transfer ac-
tions, we compute the location of the transfer point with
find transfer point(a1, a2, b1, b2), which computes
a transfer point given the endpoints to two line segments,
a and b, between which the new transfer point is inserted
on the two vehicles’ schedules. On the Euclidean plane, we
return the lines’ intersection or the endpoints’ mean if they
do not intersect. This point is not necessarily the optimal
transfer point, which may depend on the timing of the two
vehicles’ actions, but it is a reasonable and computationally
inexpensive choice. A different method may be used to find
transfer points, such as choosing from a suitable list.

Algorithm 2 split routes(S,Mnew, r, σ
2): Insert

items Mnew into the schedule S, with the specified regret r
and noise σ2.
S ← greedy insert(S,Mnew, r, σ

2)
Mnew ←Mnew \ UND(S)
while |Mnew| > 0 do

Pop random item m from Mnew

Vm ← set of vehicles that transport m in S
Sb ← S, c← cost(S), cb ← N(c, σ2)
for v1 ∈ Vm, v2 ∈ V \ Vm do

S′ ← split single route(S, v1, v2,m, c −
cost(Sb))

c′ ← N(cost(S′), σ2)
if c′ < cb then

Sb ← S′, cb ← c′

if Sb 6= S then
S ← Sb, M ←M ∪ {m}

return S

For every considered set of action insertions, the satisfia-
bility of the proposed schedule’s time constraints is checked
with the update times algorithm, which is explained in
a later section. We also check that the new actions we in-
sert do not create a cycle of transfers such that the vehicles
deadlock. To check this, we start from the actions following
each of the two provided paired actions and move forward
through the schedule, checking that we do not later reach
one of the two initial actions again.

Greedy Route Splitting The first heuristic, shown in
Alg. 2, first greedily inserts items into the plan with-
out transfers. Then, it selects random items and greed-
ily inserts the best transfers into their schedules using
split single route. If a transfer can be inserted, we
attempt to insert more transfers recursively. Due to the
increased possibilities for where to insert transfers and
the consequential increase in computational cost, unlike
greedy insert, we split the route of one item at a time
instead of choosing the best split over all routes.

The subroutine split single route(S, v1, v2,m),
takes segments of each item’s route on individual vehi-
cles and “splits” those segments with other vehicles. For
example, if Sv1 has the actions a1 = PICKUP (m) and
a2 = DELIVER(m) (these could be transfer actions in-
stead), the heuristic attempts to make two insertions using
insert split. First, it attempts to remove a1 from Sv1 ,
insert RECEIVE(v2,m,) in its place, and add PICKUP (m)
and TRANSFER(v1,m,) into Sv2 . Second, it attempts to re-
move a2 from Sv1 , insert TRANSFER(v2,m,) instead, and
add RECEIVE(v1,m,) and DELIVER(m) to Sv2 .

Split Item Insertion For the second heuristic, instead
of adding transfers to existing item delivery routes, we
plan for a single transfer point from the beginning. We go
through the items in a random order, and attempt to insert
each in the schedule without transfers. We then apply the
insert split routine to see if a delivery can be made at
lower cost by using a single transfer point, exploring the pos-



Algorithm 3 fslack(action,Mn,Mex): Determine the
time a’s execution can be delayed without violating addi-
tional constraints. Returns a tuple containing the slack, the
total waiting time, and whether the slack depends on pickup
actions to be delayed which are not in Mex, the set of items
which have already had their pickup actions delayed.
slack ←∞, Σwait ← 0, redo← False
for a from action to end of plan do

if a 6= action then
Σwait ← Σwait + (t (a)− b (a))
if a is TRANSFER or RECEIVE then

(s1,Σ1, r1)← fslack(a,Mn,Mex)
(s2,Σ2, r2)← fslack(pair (a) ,Mn,Mex)
s1 ← s1 + Σwait, s2 ← s2 + Σwait

Σwait ← Σwait + min(Σ1,Σ2)
if s1 < slack then

slack ← s1, redo← r1
if s2 < slack then

slack ← s2, redo← r2
return (slack,Σwait, redo)

redo′ ← False, slack′ ← l (a)− t (a)
if a = DELIVER(m), ∃mtt(m), m 6∈Mn then

x← t (mdelivery)− (t (mpickup) + δ (mpickup))
slack′ ← max (0,min (slack,mtt(m)− x))
redo′ ← (m 6∈Mex)

slack′ ← slack′ + Σwait

if slack′ < slack then
slack ← slack′, redo← redo′

return (slack,Σwait, redo)

sible insertion points for the PICKUP, DELIVER, RECEIVE
and TRANSFER actions. This heuristic is more expensive
than the previous since it searches for insertion points for
four actions over all pairs of vehicles, but finds some solu-
tions the first heuristic cannot.

Determining Action Execution Times
Finally, we discuss the lowest level of the PDP-T al-
gorithm, determining the execution times of the actions
in a schedule and whether the schedule is valid. The
update times(S, V ) routine is an extension of a time de-
termination algorithm presented for a PDP Tabu search al-
gorithm (Cordeau and Laporte 2003) which computes times
when transfers are involved. The function makes use of two
key subroutines:

• earliest times(S, [(a1, t1), . . .]): Given a list of ac-
tions ai and corresponding execution times ti, update the
actions following ai in the schedule to be executed as
early as possible, obeying only time window constraints.
This function is Step 2 in the algorithm detailed for Tabu
search (Cordeau and Laporte 2003).We extend this algo-
rithm for transfers such that when a transfer action a’s
times are updated, we update the times of the actions fol-
lowing pair (a).

• fslack(a,Mn,Mex): Determine the amount of time the
execution of task a can be delayed without violating addi-

tional constraints. These constraints include the transport
time constraints for only items in Mex. See Alg. 3 for
details. The slacks are computed recursively for transfer
actions. Note that if the lowest slack occurred due to an
item’s maximum transport time constraint that has not yet
been satisfied, we may need to redo the computation later.

Given these two routines, the update times(S, V ) al-
gorithm executes the following steps to update the action
arrival and execution times and determine schedule validity:

1. Determine affected vehicles. Add all vehicles to V which
transfer to or from vehicles in V . The times for these ve-
hicles’ actions must also be updated.

2. Compute the earliest possible execution times. Call the
earliest times(S,A, T ) function, where A contains
the initial action for each vehicle v ∈ V and T contains
the earliest possible start time e (v). If any time window
constraints are not satisfied, the schedule is invalid.

3. Enforce maximum vehicle route durations. Call
earliest times(S,A, T ) again with the initial
actions A, but with t ∈ T corresponding to a ∈ A
for vehicle v set to e (v) + min(slack, sum) where
(slack, sum, redo) = fslack(a, ∅, ∅). Doing so
delays the start of each vehicle’s execution as much as
possible while still obeying time windows. If after this
step any vehicle v’s route duration exceeds mrd (v), the
schedule is invalid. If the problem has no maximum route
durations, this step can be skipped.

4. Enforce maximum transportation times. For each item
m, in increasing order of t (mpickup), delay the
action execution by time min(slack, sum) where
(slack, sum, redo) = fslack(mpickup, ∅,Mex). After
the times are updated with the earliest times rou-
tine, addm toMex, and, if redo is True, addm to a list of
actions that must be redone. After attempting to delay ev-
ery item m, remove the items that were marked for redos
from Mex and attempt to delay their execution again until
no items are left. Retrying may be necessary because the
computation of the forward slack assumes that all items
are either in Mex with their time constraints already en-
forced, or the items are picked up after the starting action.
Without transfers this is always the case, but with trans-
fers the item may be picked up on a different vehicle such
that the maximum transportation time constraint has not
yet been enforced. If any maximum transportation time
constraint is violated afterwards the schedule is invalid.

Experiments
We introduce several simple problems that demonstrate the
advantages of transfers, before showing results from com-
plex benchmark problems and problems based on taxi data.

Example Problems
As a basic test to illustrate the potential of transfers, we ran
VLNS-T on the problem in Figure 1. VLNS-T found the
expected solution with a factor of two improvement.

In the second problem, ten hubs are evenly distributed
around a circle of radius 50 on the Euclidean plane. One



Problem Tabu VLNS VLNS-T
# |V | |M | Cost Cost Time Cost Tr. Time

01 3 24 190.02 190.02 0.06 186.46 8 0.23
02 5 48 302.08 303.39 0.18 290.89 8 1.62
03 7 72 532.08 544.00 0.35 531.02 13 4.78
04 9 96 572.78 581.39 0.65 558.15 15 10.89
05 11 120 636.97 640.91 0.92 629.02 23 29.73
06 13 144 801.40 805.33 1.38 772.02 32 60.55
07 4 36 291.71 291.71 0.11 288.82 6 0.50
08 6 72 494.89 505.74 0.34 480.17 12 4.68
09 8 108 672.44 675.64 0.82 639.64 21 18.90
10 10 144 878.76 873.58 1.44 861.73 18 52.85
11 3 24 164.46 164.46 0.07 164.46 0 0.17
12 5 48 296.06 297.67 0.24 292.22 9 1.43
13 7 72 493.30 491.92 0.43 479.75 14 4.20
14 9 96 535.90 550.37 0.85 527.31 16 13.38
15 11 120 589.74 589.67 1.31 584.60 24 33.86
16 13 144 743.60 754.95 1.80 736.82 24 47.91
17 4 36 248.21 248.21 0.13 245.69 4 0.40
18 6 72 462.69 466.82 0.45 457.82 10 5.17
19 8 108 601.96 600.24 1.14 585.36 11 17.31
20 10 144 798.63 811.36 2.00 787.36 18 51.41

Table 1: Cordeau benchmark results. All times are in hours.
The “Tabu” column gives the best results for Tabu search
(Cordeau and Laporte 2003), the “VLNS” section for one
run of VLNS (Ropke and Pisinger 2006), and the “VLNS-
T” section for one run of our algorithm. The “Tr.” column is
the number of transfers.

vehicle begins at each hub, and its destination is its starting
hub. Items begin at random hubs, and are assigned a random
destination from the three hubs on the opposite side of the
circle. All time windows begin at time 0 and end at time 200.
The vehicles have capacity 5 and maximum route duration
150. Ten problem instances with |M | = 15 were all solved
by the PDP-T algorithm, but no solution could be found for
the PDP, since the maximum route duration of 150 prevents
vehicles from delivering items to the other side of the circle
and returning to their starting positions.

These two examples serve to demonstrate that the addition
of transfers to the PDP can drastically reduce the solution
cost and make previously infeasible problems feasible.

Benchmark Problems
We run VLNS-T on a set of benchmark problems (Cordeau
and Laporte 2003), comparing to reported results without
transfers from a Tabu search heuristic and to our own im-
plementation of VLNS (Ropke and Pisinger 2006). All ve-
hicles begin and end their routes at the same central depot.
The vehicles have maximum route durations and capacities,
and the items have maximum transportation times. We set
∀v ∈ V ct (v) = 0.25, run 25000 iterations of VLNS-T, and
optimize for distance (α = 1, β = 0).

Table 1 shows the results. VLNS-T finds lower cost
solutions for 19 of 20 problems, and still finds the best
known solution for the final problem. The cost improve-
ments may not seem large in proportion to the total schedul-
ing cost, but note that in the PDP literature, the percent-
age improvement is often under 2% (Polacek et al. 2004)

or only a binary result of whether the best known solu-
tion was improved upon is given (Ropke and Pisinger 2006;
Hasle and Kloster 2007), and improvements of this order
of magnitude are significant. VLNS-T finds better solutions,
but this comes at a cost of computation time. We have done
little optimization of our implementations of VLNS and
VLNS-T as our focus is on determining the effectiveness of
transfers, but heuristics to exclude transfer points from the
search are a promising area for future work. The number of
transfers per item is low, i.e., Problem 6 has 32 transfers for
144 items, which is 0.22 transfers per item. An improvement
in 19 out of 20 problems suggests that many PDP problems
may benefit from allowing transfers. The benefit of transfers
may be greater if we optimize for criteria other than dis-
tance, such as delivery time, which these benchmarks do not
address.

New York Taxi Problems

We constructed a set of problems sampled from taxi routes
in New York, using over 400,000 data points for Tuesday,
9/25/2012 (Ferreira et al. 2013). The data includes taxi ride
start and end times, and GPS coordinates of the start and end.
First, we cluster the points to find the most popular pickup
and dropoff locations, and select the 20 most popular points
in Manhattan and the 80 most popular points elsewhere. We
sample from taxi routes which start and end near these points
which occur within the same hour window. Distances and
travel times are estimated using OpenStreetMap with OSRM
(Luxen and Vetter 2011). Vehicles have capacity 4.

In the first set of problems, all items are given the same
hour long time window. We varied |V | from 20 to 40 and
|M | from 25 to 100, solving 20 instances for each parame-
terization. With |V | = 40, |M | = 100, the average distance
improvement from VLNS-T was 7.37%, and the maximum
was 12%. The average improvement was between 4.72%
and 7.59% for all values. For the second set of problems,
we began the item time windows at the pickup times in the
original data, and set the delivery deadline as the actual de-
livery time plus the estimated travel time. For |V | = 30 and
|M | = 60, the average improvement was 6.78%, and the
maximum was 10.4%. For all selected |V | and |M |, the av-
erage improvement of VLNS-T over VLNS varied between
4.27% and 6.82%. These results indicate that transfers can
improve efficiency in real-world transportation domains, for
example alternative shared taxi services or ridesharing.

Conclusion
We have introduced the VLNS-T algorithm to solve the
PDP-T. VLNS-T searches over schedules by removing and
reinserting a randomized set of items. We introduced two
heuristics to insert items into a schedule with transfers, and
an algorithm to compute the execution times for actions in
such a schedule. We demonstrated that VLNS-T improves
upon state-of-the-art solutions for a set of PDP benchmark
problems by using transfers, and showed the effectiveness
of VLNS-T for transportation problems generated from real-
world taxi data in New York City.
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