
Indoor Trajectory Identification: Snapping with Uncertainty

Richard Wang2, Ravi Shroff1, Yilong Zha1, Srinivasan Seshan2, and Manuela Veloso2

Abstract— We consider the problem of indoor human tra-
jectory identification using odometry data from smartphone
sensors. Given a segmented trajectory, a simplified map of the
environment, and a set of error thresholds, we implement a
map-matching algorithm in a urban setting and analyze the
accuracy of the resulting path. We also discuss aggregation of
user step data into a segmented trajectory. Besides providing
an interesting application of learning human motion in a
constrained environment, we examine how the uncertainty of
the snapped trajectory varies with path length. We demonstrate
that as new segments are added to a path, the number of pos-
sibilities for earlier segments is monotonically non-increasing.
Applications of this work in an urban setting are discussed, as
well as future plans to develop a formal theory of odometry-
based map-matching.

I. INTRODUCTION

In this paper we examine the identification of walking
trajectories of people equipped with mobile phone-based
odometry sensors. Specifically, we build on prior work in
[1], [2] and implement a “snapping” algorithm to reconstruct
human paths traversed in a real indoor environment, given
an existing map of that environment. Our algorithm searches
for all plausible paths within specified error bounds using the
map and a segmented trajectory derived from accelerometer
and gyroscope measurements.

There are three major modalities for indoor human path
identification; WiFi, odometry, and vision-based. Vision-
based systems rely on fixed infrastructure (cameras),
odometry-based systems rely on mobile sensors, and WiFi-
based systems require both fixed WiFi access points in
conjunction with a WiFi-enabled mobile device [3], [4]. A
significant advantage of odometry over vision or WiFi-based
systems is that there is no requirement for the installation
of fixed hardware (this is also an advantage over WiFi
based approaches), making scaling more cost-efficient. We
emphasize that the odometry-based approach does not use
GPS, and in fact uses no data apart from smartphone sensor
measurements and an underlying “topological map” of the
space.

Our technique of map matching is borrowed from the
navigation algorithms used for outdoor GPS[5], [6]. It was
first used to handle indoor path identification tasks with a
wheeled robot [1], [2], and proved robust in several real
settings. Previous efforts relying only on cell phone odometry
used probabilistic techniques like particle filters [7], which
have strong independence assumptions between measure-
ments. In contrast, our “snapping” approach focuses on using

1 Center for Urban Science and Progress. New York University. 1
Metrotech Center, 19th floor, Brooklyn, NY, 11201.

2 School of Computer Science. Carnegie Mellon University. Pittsburgh,
PA. 15213

the shape of the aggregate trajectory. More recent efforts
focus on leveraging unique global signatures like WiFi[8].
While these efforts focus on taking advantage of WiFi or
vision sensor data, our work aims to use motion data by
focusing on coarse-grain motion data instead of fine-grain
motion changes that are likely due to inevitable motion while
carried by a person.

In this paper, the “snapping” technique of [1] is applied
to humans for the first time, and the only sensors used are
the accelerometer and gyroscope found in a Samsung Galaxy
S4. The process of deriving a walker’s trajectory from raw
data is as follows:

1) From raw odometry data, extract steps (i.e. step length
and count) and heading changes.

2) Combine into a segmented trajectory.
3) “Snap” the segmented trajectory to a given map using

specified error thresholds.
Given the complexity of real situations, we focus on one

indoor setting, the highly structured environment of New
York University’s Center for Urban Science and Progress
(CUSP). “Highly structured” here refers to a regime of
many narrow, straight corridors and restricted spaces, as
opposed to wide open, possibly curved spaces. The snapping
algorithm is implemented for a complicated trajectory and
fairly restrictive error thresholds, and demonstrates accurate
performance. We introduce metrics to compare how uncer-
tainty in a trajectory changes with number of path segments,
compute these metrics in our example, and verify that they
conform to intuition.

The work has many potential applications in urban set-
tings. City agencies can understand how indoor public spaces
are used and learn aggregate patterns of pedestrian movement
(for example, to link walking patterns to health outcomes).
Retailers can use trajectory knowledge to optimize store
layout and cultural institutions can learn which exhibits
are most viewed. We note that currently a user’s path
is determined by data collected from his or her personal
smart phone. A thorough discussion of effective large-scale
data collection strategies and solutions to anonymity and
privacy concerns is outside the scope of this paper, although
certainly a prerequisite to implementation. We conclude with
a discussion of further research directions regarding human
trajectory identification in indoor spaces.

II. DATA

The snapping algorithm takes three inputs: a traversed tra-
jectory in the form of a collection of segments, a topological
map of the ambient space, and a set of error thresholds. The
algorithm compares the traversed path to the topological map

Fig. 1. The original path displays the actual path traversed at CUSP, whereas the topological map represents the intersections and hallways used by
the snapping algorithm. The segments plot shows the segmented input trajectory to the snapping algorithm (note that error in both length and angle is
apparent). The result of the snapping algorithm is displayed in the lower right, and conforms closely to the original path, although direction of motion is
not indicated.

and determines which paths are within the error thresholds.
We discuss the creation of traversed path segments from user
step data in the next section.

We denote a traversed path by Γn =
∑n
k=1(Sk, θk), a

formal sum of segment-angle pairs. Here Sk is the kth

segment and θk is the angle between Sk and Sk−1, with
θ1 = 0. Given Γn, let Γj , with j ≤ n denote the jth partial
path. We assume that each segment and angle measurement
contains some unknown error from the true values, and for
convenience we frequently identify a segment S with its
length.

The next input to the snapping algorithm is a topological
map, i.e. a simplified representation of an environment such
as a floor of an office building, or platform of a subway
station. A topological map is a collection of segments
specified by their endpoints, representing hallways and their
intersections, such that segments only intersect at endpoints.
This also encodes lengths of hallways and angles between
hallways. Note that a long hallway with several intersections
will comprise multiple segments of varying lengths in the
topological map that correspond to all possible sections of
the hallway. Given a text file of the (x, y) coordinates of all
walls in an environment, we use a simple point-and-click
program to select intersections and construct all possible
edges between intersections that do not pass through a wall.

Finally, we set two allowable error thresholds, a length
threshold (dm1, dm2) and angular threshold da. The length
threshold consists of both an allowable percentage error dm1

and absolute error dm2. For example, a trajectory segment S
is within the length threshold of a topological map segment
T , if either |S−T |T < dm1 or |S − T | < dm2. We specify

both dm1 and dm2 to account for large percentage errors in
short segments, and large absolute errors in long segments.
The angular threshold is a constant measured in radians
and comparison between angles is performed similarly. Note
that a complete trajectory identification implementation that
converts raw data into segments and then snaps segments to
a topological map may have additional parameters that affect
the accuracy of the input trajectory.

III. METHODS

As introduced above, the traversed path Γn describes the
raw human trajectory in the form of segment-angle pairs.
To obtain Γn, we first extract the steps and heading of the
walker from the accelerometer and gyroscope signals of a
mobile phone, in the form of length-heading pairs. The steps
where a turn occurs are identified and steps between turns are
integrated into longer segments, representing straight walks
in each hallway. We then identify the path traversed by
snapping the trajectory to a given topological map.

A. Extracting Steps and Heading

Identifying steps and heading based on sensor signals from
a mobile phone is challenging. Unlike wearable sensors, the
user activity, device type and position the phone is carried on
the body may lead to complex variations in input data. We
discuss how we are able to extract both steps and heading
of the mobile device as long as the cell phone is held in a
fixed orientation relative to the walker (i.e. in the hand or in
a pocket).

1) Counting Steps: Instead of directly using the 3-
dimensional acceleration signal, we use the magnitude of
acceleration normalized to zero-mean. Thus, if a(t) =
(ax(t), ay(t), az(t)) denotes the acceleration signal of the
phone at time t, we consider the quantity a′(t) = |a(t)| −
|a(t)|. We denote the corresponding array of normalized
acceleration measurements {a′(t1), . . . , a′(tn)} by A.

a) Naive Threshold Crossings: The most naive ap-
proach would identify steps as zero-crossings of the normal-
ized acceleration; unfortunately, this is unreliable in practice
due to noisy sensor measurements. A slightly better approach
applies a lower and upper threshold that the normalized
accelerations must both cross in order to register as a
step. This method is efficient and does not require advance
knowledge about the period of each step; however, it assumes
that the step signal is sinusoidal. It will not be able to
cope with more complex accelerometer signals. For example,
Figure 2a shows how the threshold crossing approach is fairly
accurate when the phone is held in the hand. Each vertical
line indicates the start of a new step. In contrast, Figure 2b
shows how such an approach fails when the device is placed
in the pocket, resulting in over-counting of steps.

b) Template Matching for Steps: With template match-
ing, we assume a periodic function between acceleration and
time but we do not manually design conditions based on prior
assumptions about the shape of the acceleration signal. In-
stead, our template-matching algorithm automatically learns
the periodic function and identifies steps based on a learned
template.

There are three major steps: estimating the periodicity
of steps, identifying the initial template, and then counting
the number of repetitions of the template. Periodicity arises
in the normalized acceleration signal as the human takes
turns between stepping with their left and right foot (so
each template identifies two steps). We apply a Fast Fourier
Transform (FFT) to the signal to extract the period P of
these two steps.

To identify an initial step template, we look at an initial
time interval I0 = [t0, t0 + P], where t0 is the initial time
when the human started walking. Within interval I0, we find
time tm ∈ I0 that maximizes the acceleration signal because
is usually corresponds to the person’s foot hitting the ground.
Roughly estimating that each step takes the same amount of
time, we then choose the time interval [tm− P

4 , tm + 3P
4] to

represent the step template.
Finally, we count steps across the entire normalized ac-

celeration signal by finding step template matches. For each
step i, we search for the time interval Ii = [ti, ti + P]
during which the step occurred. While human steps are not
perfectly synchronized, we expect that the starting time for
step i will quickly follow the end of the previous step,
{ti−1 + P < ti < ti−1 + 5P/4}. We optimize for the best
starting time ti by minimizing the mean squared error of the
template match. This process is repeated for each step until
the entire normalized acceleration signal is processed.

As shown in Figure 2c and d, our algorithm can tolerate
many different shapes of steps as long as the acceleration

data is periodic. In addition, it can adjust to variations over
time including slight stops and changes in pace.

2) Headings From Fixed Orientations: We also wish to
extract changes in heading regardless of phone orientation.
Compass readings are useful only if the relative orientation
of the phone and body are known for all measurements.
Additionally, compass errors may result from local magnetic
fields or device misalignment. According to [9], typical
mobile device compass errors, when compared to known
headings, are at least 5 degrees. We therefore use both
gyroscope and accelerometer data to get a raw estimate of
the headings.

Assuming that the main component of acceleration is
gravity (true in our context), the direction of acceleration
can be used to determine where the ground is, no matter
the orientation of the phone. We then approximate the
angular velocity of the turning of the user’s body using the
acceleration-direction component of the gyroscope reading.
The following equation demonstrates the relationship be-
tween ω, the estimated angular velocity of the turning of
the user, and the gyroscope and accelerometer data:

ω =
ωxax + ωyay + ωzaz√

ax2 + ay2 + az2
,

where ωx, ωy and ωz are the measures of angular velocity
in the three axes of the phone.

The angular velocity ω is a good measure of the turning of
the device carrier if the phone is not shaking severely relative
to the carrier’s body. No knowledge about how the phone
is placed is required so the user may change the phone’s
position throughout the data collection period (e.g. taking the
phone from the pocket and holding it in the hand). However,
in our experiments this method will still perform poorly if
the user swings their arms significantly or places the phone
in a very loose pocket.

B. Segment Identification

We regard a series of consecutive steps with small total
change in heading as a straight walk and a series with larger
change of heading as a turn. Explicitly, consider a sequence
of steps {xi}mi=1 with respective headings {ψi}mi=1, let τ > 0
denote the turning threshold, and w, an odd integer greater
than 3, the window length parameter. For each i, consider
the window Wi of w consecutive steps centered at step i
(restricting the window size for i near 1 and m as necessary),
and let dψi be the largest difference between all headings in
Wi. Given a consecutive sequence dψi, . . . , dψi+k, k ≥ 0,
each of which is greater than τ , we say a turn occurred at
index median({i, . . . , i+k}). After the turns are identified,
the segments are calculated as the summed length of the
steps between two turns and the angles of the segments
are calculated as difference in headings between consecutive
turns.

Regarding the choice of parameters, w should be larger
when the space is more open. For example, in a shopping
mall with wide intersections, people may take more steps to
finish a turn than in office environments. However, with a

Fig. 2. Counting steps with the threshold and template approaches. In a and b, the lower and upper threshold are shown in the horizontal, dashed grey
lines. The vertical lines represent the estimated start of each step, where green indicates correct registrations and red incorrect steps. In c and d the template
method is used on the same signals, where the template (in blue) is matched to the signal in intervals demarcated by dashed vertical lines.

large w the window sometimes can contain more than one
turn, resulting in mis-identification of turns. On the other
hand, the turning threshold τ should be small enough to
recognize turns, but much larger than the error in individual
step headings, so avoid over-counting turns.

Note that the task of separating turns and straight walks
can be ambiguous due to the difficulty in defining a turn.
One can walk in a curve along a straight hallway and in a
straight line along a shallow-angled intersection. This kind
of ambiguity can lead to error in segment identification, but a
flexible topological map can account for this. In general, we
would rather consider two real segments as one rather than
break one actual segment into two. For example, in Figure 1,
the segment identification algorithm ignored two small turns.
The modification of the topological map is to actually allow
some intersections that pass through walls to be connected
by artificial “hallways”. To build this topological map, one
can first connect all adjacent intersections without passing
through walls, and then artificially connect non-adjacent (but
close) intersections which don’t require a big turn to reach
one from the other.

C. Trajectory Snapping

The snapping algorithm finds all sequences of segments
in the topological map that match with trajectory segments
within the given error thresholds. In order to search all
possibilities, the algorithm used a depth first graph search
algorithm. The algorithm can be described as the recursive
function Snap.

In function getAdjSegments() the input is an intersection
in the topological map and the returned value is the set of
segments in the topological map with the specified intersec-
tion as an endpoint. In the function underThreshold() the
first input is a segment, the second input is a set of segments,
and the returned value is the subset of the second input
consisting of those segments within the error thresholds of
the first input. Finally, the function otherEndPoint() takes

Algorithm 1 Snap(currentPoint,Segments,path)
if Segments is empty then
outputpath();
exit();

end if
AdjSegs = getAdjSegments(currentPoint);
MatchedSegs = underThresh(Segments[0], AdjSegs);
for ∀ seg ∈ MatchedSegs do
newpath = [path, seg];
newPoint = otherEndPoint(seg, currentPoint);
Snap(newPoint, Segments[1 :], path);

end for

two inputs, a segment and an endpoint of that segment. The
returned value is the other endpoint of the segment.

When the algorithm terminates there may be several
potential trajectories produced as output. We pick the one
with smallest summed error as our final result. If there is
no output, one can lower the thresholds (dm1, dm2), da and
rerun until a trajectory is successfully snapped. Note that
there is an inverse relationship between the size of the error
thresholds and the likelihood of successful snapping, and a
direct relationship between the size of the error thresholds
and the size of the algorithm’s search space.

IV. RESULTS

We implement the snapping algorithm in NYU’s Center
for Urban Science and Progress, which occupies the 19th
floor of 1 MetroTech Center in downtown Brooklyn, NY.
This setting is the floor of an indoor office building, with
narrow corridors, offices, and cubicles. Most hallways are
between 5 and 50 meters long, and most angles between
corridors are right angles. Figure 1 shows both the underlying
map of CUSP, along with the actual 12-segment long path
traversed, as well as the topological map used for snapping.

Data was collected from an Android application installed

Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

Segment 1 2 2 1 1 1 1 1 1 1 1 1
Segment 2 2 2 1 1 1 1 1 1 1 1 1
Segment 3 - 2 1 1 1 1 1 1 1 1 1
Segment 4 - - 1 1 1 1 1 1 1 1 1
Segment 5 - - - 2 2 1 1 1 1 1 1
Segment 6 - - - - 3 1 1 1 1 1 1
Segment 7 - - - - - 2 1 1 1 1 1
Segment 8 - - - - - - 1 1 1 1 1
Segment 9 - - - - - - - 2 2 2 2
Segment 10 - - - - - - - - 2 2 2
Segment 11 - - - - - - - - - 3 2
Segment 12 - - - - - - - - - - 1
Full path 2 2 1 2 3 2 1 2 2 3 2

Fig. 3. The (i, j) entry in the table above shows the number of possibilities for Segment i in the partial path Γj , where 1 ≤ i ≤ 12 and 2 ≤ j ≤ 12.
The jth entry in the last row in the table gives the total number of possible matches for Γj , i.e. the maximum of all entries in the jth column of the table.
Note that each of the first twelve rows is monotonically non-increasing as j increases, illustrating that earlier segments are “locked in” as new segments
are added to the path. The three plots give an illustration of this for Γ3 and Γ4. Specifically, the two left plots demonstrate the two possible matches for
Γ3, and the two possibilities for Segments 1, 2, and 3 in Γ3. The right plot demonstrates that the addition of Segment 4 gives a unique result for Γ4, and
hence there is now only one possible match for Segments 1, 2, and 3 in Γ4.

on the second author’s handheld Samsung Galaxy S4 smart-
phone and converted into a segmented motion trajectory that
also appears in Figure 1. We used dm1 = 0.25, dm2 = 5,
and da = 0.8, roughly π

4 radians, as error thresholds. We
took the window length parameter w = 5 and the turning
threshold τ = 0.4 radians. We also assumed a length of 0.8
meters for every two user steps when converting the raw
input data into a segmented trajectory.

We have plotted the result of the snapping algorithm in the
lower right panel of Figure 1, which conforms quite closely
to the actual traversed path, although direction of motion is
not indicated. The snapping algorithm correctly snapped all
twelve segments to their best match. In this implementation
there were two output paths that were admissible within
the given error thresholds, but given multiple admissible
paths, we rank them by total percentage error (the sum of
percent angular and percent length errors over all trajectory
segments) and the correct path is selected when choosing the
lowest-error path.

Next, we examine how uncertainty in the snapped path
varies with the addition of new segments. In particular, we
look at both how the total number of possible snapped paths
varies, as well as how the number of possible matches for a
given segment varies.

First, we introduce some notation to facilitate a discussion
of uncertainty in the snapped trajectory as the number of

segments in a path increases. For a topological map M , a set
of error thresholds E, and an input trajectory of n segments,
Γn =

∑n
k=1(Sk, θk) as above. We define

- ρj(Sk) = the number of matches for segment Sk,
considered as a segment in Γj , where j ≥ k, when
Γj is snapped to M with thresholds E.

- ρ(Γj) = the number of trajectories for Γj that snap to
M with thresholds E.

We expect ρj(Sk) to monotonically not increase as j
increases, for a fixed k. That is, adding additional constraints
to Γj can only decrease the number of possible matches
for Sk. Intuitively, segments early in a trajectory become
“locked in” as newer segments are added, although the
overall path may retain ambiguity. We observe this behavior
also by looking at the number of matches for segment Sk,
k = 1, . . . , 12 in the context of the path traversed at CUSP.
This is displayed in the table in Figure 3, where the number
of matches for any given segment Sk only stays the same or
decreases as the number of segments in the path it belongs
to increases. Explicitly, S3, for example, has two possible
matches in Γ2 and Γ3, then has only one possible match in
Γ4, . . . ,Γ12, as illustrated in the plots in Figure 3.

On the other hand, ρ(Γj) may fluctuate non-monotonically
as j increases from 1 to n. For example, ρ(Γj) < ρ(Γj+1)
may occur if Sj+1 matches several segments in the topolog-
ical map within given error thresholds. On the other hand,

ρ(Γj) > ρ(Γj+1) if the addition of Sj+1 eliminates possible
matching trajectories for Γj . We observe this behavior in
the 12-segment path traversed at CUSP, in the last row of
the table in Figure 3. The total number of matches varies
between 1 and 3, and increases and decreases as more
segments are added.

V. DISCUSSION

The above results provide a first application of
smartphone-based human trajectory identification using the
o-snap algorithm of [2] in an indoor setting. We emphasize
that this method does not use any fixed infrastructure or
GPS, but rather just data obtained from the sensors inside
a commonly available phone. However, there are numerous
further engineering challenges to be overcome, and this
work may provide the foundation for myriad applications
of trajectory identification in an urban setting.

First, extending the snapping approach to open spaces,
rather than the narrow corridors found in office buildings.
It is not clear how to best construct a topological map for
an open space, such as an indoor lobby or mall plaza. One
approach may create artificial hallways in a topological map
of an open space, i.e. to represent the possible routes people
take as a sequence of short straight lines, the algorithm
search space may grow tremendously. It is also not clear that
humans in a wide open space walk in straight lines; perhaps
they walk along curved paths. In addition, open spaces –
particularly in crowded urban settings – may also be full
of people, forcing a trajectory to change direction or pause
frequently. Adapting the snapping technique to take pausing
and mid-segment changes in direction into account is another
direction of research.

Other challenges include considerations of multiple floors
and buildings. We anticipate that large-scale experiments
incorporating many different users and devices would be
necessary before any real-world implementation of the snap-
ping algorithm is feasible. Furthermore, there are important
privacy issues to be considered, for even if a user’s iden-
tifying information is completely erased from his or her
trajectory, it may still be possible to de-anonymize users by
correlating trajectories with external data sets. Additionally,
processes involving automatic data collection from a user’s
smartphone will have to be developed to encourage large-
scale adoption of our technique. Derived statistics from a
large corpus of trajectory data will also be a useful output
for both researchers and city agencies, to understand where
city residents walk and how movement patterns change over
time or in response to particular events.

Finally, it is desirable to have a general theoretical frame-
work to analyze snapping algorithm performance for a given
topological map M . Suppose M is highly symmetric (for
instance, the boundary of a square), then the snapping algo-
rithm will be unable to distinguish between many different
paths in the absence of a fixed starting location. Even if
a starting location is given, one may have an M that is
still unable to distinguish between different paths if the
allowed error thresholds for displacement and heading are

sufficiently, but not unreasonably, large. However, intuition
suggests that for a sufficiently irregular map M , the longer
a path is, the fewer potential snapped paths will be produced
by the algorithm. We anticipate that such a theory may begin
by creating for each M , an associated function

fM : Rk × PM −→ Z≥0, (θ,Γ) 7−→ l

where θ is a vector of error thresholds, PM is the set of all
possible paths on M , and l is the number of paths within the
error thresholds that snap to the given path Γ on M . For θ
in some range (depending on M), fM may be a decreasing
function of the length of Γ. A potential application of this
theory would be to give a quantitative measure of how
accurately we may expect the snapping algorithm to perform
in a real-world situation.

VI. CONCLUSION

In this paper, we investigated the problem of snapping
indoor trajectories to identify the the path traversed. We
analyzed how uncertainty of the snapped trajectory varies
with path length. We showed that as new segments are
added, the number of possible earlier segments decreases
monotonically. We also discussed the challenges of making
such an approach robust in realistic urban environments.

REFERENCES

[1] R. Wang, M. Veloso, and S. Seshan, “Iterative snapping of odometry
trajectories for path identification,” in 2013 RoboCup International
Symposium, 2013.

[2] ——, “Optimal snapping of odometry trajectories for route identifica-
tion,” in Proceedings of ICRA ’14, the IEEE international conference
on robotics and automation, 2014.

[3] P. Bahl and V. N. Padmanabhan, “Radar: An in-building rf-based user
location and tracking system,” in INFOCOM 2000. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 2. IEEE, 2000, pp. 775–784.

[4] K. Chintalapudi, A. Padmanabha Iyer, and V. Padmanabhan, “Indoor
localization without the pain,” in Proceedings of the sixteenth annual
international conference on Mobile computing and networking. ACM,
2010, pp. 173–184.

[5] M. A. Quddus, W. Y. Ochieng, and R. B. Noland, “Current map-
matching algorithms for transport applications: State-of-the-art and
future research directions,” Transportation Research Part C: Emerging
Technologies, vol. 15, no. 5, pp. 312–328, 2007.

[6] C. E. White, D. Bernstein, and A. L. Kornhauser, “Some map matching
algorithms for personal navigation assistants,” Transportation Research
Part C: Emerging Technologies, vol. 8, no. 1, pp. 91–108, 2000.

[7] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee:
Zero-effort crowdsourcing for indoor localization,” in Proceedings of
the 18th annual international conference on mobile computing and
networking. ACM, 2012, pp. 293–304.

[8] B. Ferris, D. Fox, and N. Lawrence, “Wifi-slam using gaussian pro-
cess latent variable models,” in Proceedings of the international joint
conference on artificial intelligence (IJCAI), 2007.

[9] D. Gusenbauer, C. Isert, and J. Krösche, “Self-contained indoor po-
sitioning on off-the-shelf mobile devices,” in Indoor Positioning and
Indoor Navigation (IPIN), 2010 International Conference on, Sept
2010, pp. 1–9.

