Proceedings of the 2002 IEEE
international Conference on Robotics & Automation
Washington, DC « May 2002

Probabilistic Roadmap Motion Planning for Deformable Objects*

O. Burchan Bayazit

Jyh-Ming Lien

Nancy M. Amato

Department of Computer Science '
Texas A&M University
{burchanb,neilien, amato}@cs.tamu.edu

Abstract

In this paper, we investigate methods for motion plan-
ning for deformable robots. Our framework is based on a
probabilistic roadmap planner. As with traditional motion
planning, the planner’s goal is to find a valid path for the
robot. Unlike typical motion planning, the robot is allowed
to change its shape (deform) to avoid collisions as it moves
along the path. We propose a two-stage approach. First an
‘approximate’ path which might contain collisions is found.

~Next, we attempt to correct any collisions on this path by

deforming the robot. We propose and analyze two methods -

for performing the deformations. Both techniques are in-
spired by physically correct behavior, but are more efficient
than completely physically correct methods. Our approach
can be applied in several domains, including flexible robots,
computer modeling and animation, and biological simula-
tions. '

1 Introduction

Robot automation and motion planning have been
inseparable since the very first robot. It is common
practice to represent a robot as a set of rigid objects
connected by joints. Although this representation cov-
ers many common situations, such as most industrial
robots, there are many cases where a more flexible
representation of the robot would be desirable.

Any problem that requires a robot to change its
surface or shape is almost impossible for most exist-
ing planners. Yet such problems arise naturally in
many common situations. Moving a long rod through
corridors may require the rod to bend when passing
around corners, or a robot pulling a flexible sack may

_ require the sack to deform when passing through nar-
row regions. There are many situations in which the
other objects in the environment are most appropri-
ately modeled as deformable objects. For example, in

*This research supported in part by NSF CAREER Award
CCR-9624315, NSF Grants 1IS-9619850, ACI-9872126, EIA-
9975018, EIA-0103742, EIA-9805823, ACI-0113971, CCR-
0113974, EIA-9810937, EIA-0079874, and by the Texas Higher
Education Coordinating Board grant ARP-036327-017. Bayazit
is supported in part by the Turkish Ministry of Education.

0-7803-7272-7/02/$17.00 © 2002 IEEE

Figuxje 1: A brick deformed by a spherical obstacle.

a surgical simulation, the environment contains rigid
bones, somewhat deformable cartilage, and highly de-
formable tissue.

Deformation, however, is not restricted to robotics.
It is a commonly used operation in computer modeling
and animation. Nevertheless, even for an expert, gen-
erating deformation animations, especially for com- -
plicated models, is always a very difficult and time-
consuming task. Moreover, natural-looking deformed
models usually require significant additional time for
the animator to manually adjust the control points
and parameters until the deformation ‘looks right.’

Representing the deformable object with a very
large number of dof (in the limit, one for each de-
formable point on its surface) could work in principle
for most problems. However, this approach has the ob-
vious disadvantage of increasing the dof to intractable
levels and it still does not provide for a convenient way
of enforcing physically correct behavior. Thus, finding
an acceptable deformation within reasonable time lim-
its is the objective of most algorithms. The acceptabil-
ity criteria can be defined by constraints on the topol-
ogy or physical properties which define the realism
of the deformation. Unfortunately, physically-correct
deformation and speed are usually mutually exclusive.

Thus, a trade—off between the time required and the

2126

degree of realism required must be made. While a
physically correct deformation is desirable, it might
require several hours to produce. On the other hand,
deformations which do not respect physical properties
might be quickly computable, but produce unrealistic

results.

Our goal is to find an acceptable deformation within
a reasonable time limit (real-time in some cases). Our
approach is based on the probabilistic roadmap (PRM)
methods [1, 11, 12]. We concentrate on problems
where the robot is deformable and the other objects
are rigid. However, our method can easily be general-
ized to problems where everything is deformable. We
first find a path in which the robot might collide with
the obstacles. Such paths can be found by using a
reduced-scale version of the robot during initial mo-
tion planning or by allowing the robot to penetrate
an obstacle by some (fixed) amount. As a result, the
initial path may contain collisions for the rigid ver-
sion of the robot. After finding such a path, we iden-
tify the colliding portions and deform the robot in
these regions to avoid collisions. We currently employ
two different methods for producing the deformations.
One is a hierarchical approach which first deforms the
robot’s bounding box, and then the robot itself, and
the second is a more direct approach which directly
deforms the robot’s geometry (but not topology).

The paper is outlined as follows. We first discuss
related work (Section 2). Section 3 gives an overview
of our approach. Section 4 describes how we find ‘ap-
proximate’ paths for a deformable object, and we dis-
cuss our deformation methods in Section 6. Our ex-
perimental results are presented in Section 7 and Sec-
tion 8 concludes our paper. :

2 Related work

Deformable modeling and manipulation are essen-
tial in computer graphics. Deformable models are
often used to design complicated objects. As in [9],
these deformation methods can be classified into non-
physical methods and those based on mechanic prop-
erties. Deformations which do not address physi-
cal properties include functional deformations (scale,
bend, twist) [3] and free-form deformation [17]. Mass-
spring and finite element methods are the most com-
monly used strategies for building deformable ob-
jects with physical properties. Deformation meth-
ods without constraints are very useful in interac-
tive shape editing since they are fast and deform ob-
jects smoothly. However, physically-based deforma-
tions, which respond to applied external forces and
constraints, are often required for simulation and an-
imation, such as deformable tissue [7, 8], blood cells,
creatures [14, 19}, sand, mud, and snow [20], and cloth
[10].

Although work on the motion planning problem has
produced many practical planners for rigid robots, not
as much work has been done in motion planning for
deformable objects. The f-PRM framework [2, 13] has

2127

been proposed for planning for models using physically
correct deformations. Due to expensive operations for
solving mechanical models and generating collision de-
tection data structures, their planner is not suitable
for real-time use and has so far only been applied to
simple objects, such as a sheet of metal or a pipe-
like robot. In [6], deformed distance fields were used
to control the amount of penetration between non-
penetrating flexible bodies.

3 Overview

As mentioned in Section 1, our approach is based
on the probabilistic roadmap (PRM) approach to mo-
tion planning [12]. Briefly, PRMs work by sampling
points ‘randomly’ in C-space and retaining those that
satisfy certain feasibility requirements (e.g., they must
correspond to collision-free configurations of the mov-
able object). Then, these points are connected to
form a graph, or roadmap, using some simple plan-
ning method for connecting ‘nearby’ points. During
query processing, paths connecting the start and goal
configurations are extracted from the roadmap using
standard graph search techniques.

Our approach is similar to a traditional PRM. In
our case we modify the feasibility requirements used
during the roadmap construction stage so that our
roadmaps may contain paths having some collisions.
Later,. during query processing, if a path containing
collisions is extracted from the roadmap, we attempt
to deform the robot to avoid those collisions. An ex-
ample of such a deformation is shown in Figure 1,
where the brick robot is deformed to avoid a collision
with a spherical obstacle. If we do not succeed, we
remove the corresponding edge from the roadmap and
search for a new path.

MoTION PLANNING FOR DEFORMABLE OBJECTS
1. Build a feasible roadmap
2. while (a valid path is not found)
3. find a feasible path
foreach path configuration
if (there is collision)
deform robot
if (not deformable)
. remove path segment from roadmap
endwhile

4
5
6.
7
8
9.

The way we have implemented this strategy is to
use a rigid robot during roadmap construction, and a
soft (deformable) robot during query processing. The
key to our approach is to define appropriate feasibility
metrics which enable one to construct useful roadmaps
with rigid robots. The two feasibility tests we have
studied thus far are:

1. A reduced-scale version of the rigid robot (in some
nominal shape configuration) is not in collision in
the sampled configuration.

. An original-scale version of the rigid robot (in
some nominal shape configuration) penetrates an
obstacle only within some acceptable limit.

Clearly, both tests can accept colliding configurations.
During roadmap generation, we use heuristics to as-
sign edge weights to denote the difficulty of deforming
that edge, and during query processing a minimum
weight path is extracted.

This philosophy is similar to Fuzzy pPRM [16], Lazy
PRM [5], or Customizeble PRM [18] where the roadmap
nodes and/or edges are not validated, or are only par-
tially validated, during roadmap construction and are
validated completely only at query time. These meth-
ods have been shown to greatly decrease the roadmap
construction costs, while only slightly increasing the
query costs. Moreover, as noted in 18], there are ac-
tually some other benefits to this approach, such as
enabling the same roadmap to be used for different
robots, or for queries with different requirements. Our
approach is also related to a method we have success-
fully employed when incorporating haptically collected
user-input with-a PRM planner [4]. In this work, the
- user collects an ‘approximate’ path, which may con-
tain collisions, and the planner tries to ‘push’ the col-
liding path segments to nearby free space. So, the

~ planner deformed the path but not the robot, which

is the opposite of the approach taken here.

In the following sections we describe our algorithm
in more detail. Our deformation methods are de-
scribed in Section 6.

4 Roadmap Construction

As discussed in Section 3, our strategy is to build
roadmaps which may include some colliding configu-
rations. To increase the probability that we can in
fact deform the colliding configurations to free config-
urations during the query phase, we place some fea-
sibility requirements on the acceptable colliding con-
figurations. We also attempt to weight our roadmap
edges to denote the expected difficulty (cost and fea-
sibility) of deforming that edge if necessary. That is,
the weights are selected to denote the expected defor-
mation energy required to deform the edge. Since this
energy is not known ‘a priori, we use heuristic methods
to assign weights that are related to the parameters of
the feasibility. metrics used to define acceptable con-
figurations.

In this section, we describe in detail the two strate-
gies mentioned above for constructing the roadmap.

In the first, roadmap nodes are accepted if the config-
uration corresponding to a reduced-scale version of the
rigid robot is collision free, and in the second, the con-
figuration is accepted if the amount of penetration by
the original robot is less than some acceptable bound.
In both cases our goal is to build a roadmap contain-
ing paths that are either already valid, or that can be
made valid by deforming the robot.

4,1 Shrinkable Robots

We would like to weight roadmap edges with some
estimation of the deformation energy. One heuris-
tic estimate of this energy is the volume of the
robot/obstacle intersection. While such intersection
volumes are difficult to compute, the ‘shrink’ factor
required to obtain a free robot in a particular config-
uration does offer some indication of the deformation
energy and is at least loosely correlated with the in-
tersection volume. Moreover, these shrink factors can
be computed relatively inexpensively if we have pre-
computed a set of scaled models, which can be viewed
as a “uniformly deformed robot.” The scaled robot
models are constructed in a straightforward manner
by scaling all vertices defining the robot model, and
maintaining the robot topology. These scaled rigid
models are used for collision detection in node gener-
ation and connection.

Node Generation and Connection. During
node generation, for each node, we begin with the
largest robot and progressively reduce its scale, while
maintaining the configuration, until a collision free
robot size is found. After the roadmap nodes have
been generated, the roadmap is connected as with a
traditional PRM. In particular, any of the normal local
planners or connection methods could be employed [1].
An edge weight is set as the sum of the shrink factors -
of the two scaled models that define the (potential)
edge’s endpoints. (A larger (smaller) robot model has
a smaller (larger) shrink factor.) '

Figure 2(a) shows a roadmap generated with a
spherical robot. The variable sized roadmap nodes
correspond to the shrink factors used to generate the
roadmap nodes. One clearly sees the smaller nodes
surrounding the obstacles, which should be avoided

by the deformable object if possible.

2128

4.2 Penetration

As discussed previously, another estimate of defor-
mation energy is penetration depth. The deeper the
robot penetrates inside an obstacle the harder it will
be to deform the robot into a collision free shape. Un-
fortunately, penetration is hard to measure in most
cases and is not provided by collision detection li-

(a)

()

Figure 2: (a) A roadmap generated with shrinkable robots; roadmap configurations are shown in their accepted shrunk
size in wire frame. (b) A roadmap generated with penetrating robots. (c) The swept volume of a path found.

braries (except for special cases such as convex objects
[15)). : .

Here, we propose using C-space penetration instead
of workspace penetration. While C-space penetration
is not easier to compute, we use a probabilistic ap-
proach to compute an estimate. Let ¢y be our initial
configuration of interest. We generate n random C-
space vectors which originate at ¢o and have random
directions and lengths in some predetermined range
(our allowable penetration depth). The choice of n
affects the accuracy of the estimate. As n increases,
the probability of finding a value close to the real pen-
etration and the computation time both increase. In
our experiments, the value of n is 20. Note that the
size of a C-space vector depends on the distance met-
ric selected and can be defined as |¢; — ¢p| where ¢;
is a configuration representing the ith vector. Adding
these vectors to ¢y returns configurations within the
allowable penetration distance. If any of them is colli-
sion free, then we accept configuration ¢y. The mini-
mum penetration depth found can be used to provide
edge weights in the roadmap.

Node Generation and Connection. In this
method, collision detection is replaced by a test for
allowable penetration, i.e., if the penetration is small
enough, a configuration which is in collision is ac-
cepted into the roadmap. The advantage of this ap-
proach is that we can use a standard PRM, including all
node generation and connection methods. For exam-
ple, the intermediate configurations that a local plan-
ner tests during the connection phase can be accepted
based on their penetration. See Figure 2(b).

5 Query

While the roadmap was constructed using rigid
bodies, a deformable version of the robot is used in the

2129

query phase. Since roadmap nodes and/or edges may
be in collision, the query process must check them for
collision and then, if collisions are found, call on some
deformation method to try to deform the offending
configurations into collision-free configurations. The
query process below applies to roadmaps generated
by either of the methods described above.

PATH QUERY
1. Test if robot can be deformed in start and goal.
2. Connect start and goal to roadmap (same Connected
Component, CC).
Connected=false;
while(!Connected)
Find a path connecting start and goal.
Sort edges from largest weight to lowest.
Connected=true;
for each edge
if(test failed)
Delete this edge, Connected=false and break
10. endfor
11. endwhile

©ENDo s

In the query, the deformation test essentially re-
places the collision detection test for traditional mo-
tion planning. Now, a configuration will be accepted
if its deformation energy is less than some threshold,
that can be user-defined to give the user some control
over the deformations. :

Because deformation is an expensive operation, we
need a quick way to determine if a path edge cannot
be deformed. To do this, we sort path edges according
to their weights (which are estimates of deformation
cost), and test the edges with highest weights first as
they are the most likely to fail. If a test fails, the edge
is deleted from the roadmap and the process repeats.

Figure 2(c) shows a path found by a query. Al-
though the shortest path is on the right side of ball,
our planner selected a longer path which had a smaller
deformation energy.

6 Deformation

To construct huge numbers of deformable models
on-line (at query time), we should have fast deforma-
tion methods. However, it is also important to con-
sider the physical properties of the model. Although
we consider physical properties, our approach is not
physically complete, since our goal is to produce re-
alistic looking deformations fast. For example, we do
not attempt to precisely compute energy, as in [2].

Of the two objects participating in a deformation,
one is the deformable object and the other is called
the deformer. The deformer pushes (a portion of)
the deformable object towards a collision-free state,
and deformable object then changes shape according
to these external forces. We implemented two defor-
mation methods: bounding box deformation and geo-
metric deformation.

6.1 Bounding-Box Deformation

The bounding box deformation deforms the given
model hierarchically. First, the bounding box of the
model is deformed, and then the model itself is de-
formed according to the deformation computed for the
bounding box.

Our approach combines strategies of the ChainMail
Deformation [7] and Free-Form Deformation (FFD)
[17] to create a real-time deformation with reason-
able physical properties. First, a bounding box of
the model is deformed by ChainMail deformation, and
then this model is deformed by FFD according shape
of its bounding box. Figure 3 illustrate this process.

The ChainMail deformation was created to model
tissue in surgical simulations [7]. Briefly, for a 3D
ChainMail Box, each vertex is connected to {at most)
six neighboring vertices, and the maximum and min-
imum distances to these neighbors are set according
to the material property (e.g., a rigid body will have
maximum=minimum). The following shows the basic
operations of the ChainMail deformation. In line 1,
vertices are moved by usef or deformers in our case.

CHAINMAIL DEFORMATION
Put moved vertices in queue, Q.
while(Q is not empty)
vertex v = dequeue(Q)
for(all neighboring vertices, n, of v)
if(n violate constraints) _
resolve constraints and enqueue(Q, n) -

=

2
3
T4
5
6

Free Form Deformation, or FFD [17], is a well
known interactive modeling tool which uses affine
transformations to map local coordinates to deformed
global coordinates. The third step in Figure 3 shows
a model deformed when control points on the FFD
lattice are moved. While FFD is extremely fast, it is

\

Figure 3: BBX deformation with 13*9*7 lattices. (1)
Build voxel bounding box for a given model. (2) Bound-
ing box deformed by ChainMail deformation. (3) FFD uses
deformed bounding box to deform internal model. (4) De-
formed model.

génerally difficult to obtain physically-based deforma-
tions since it requires tweaking many control points.
There are several benefits of this hybrid, hierar--

* chical bounding box deformation. First, ChainMail

provides physical properties, such as preservation of
inter-vertex distances and elastic properties, and later
FFD smoothly deforms the real model. One of the
best aspects is that the motion planner can use only
ChainMail, since it only requires the deformation en-
ergy, and utilize FFD during rendering. Thus, the
motion planning cost is independent of the complex-
ity of the model since only the ChainMail bounding
box is deformed during planning. The display cost,
which uses FFD, will still be dependent on the model
complexity.) _

After the object is deformed, the deformation en-
ergy can be calculated as the summation of the dis-
placement of each vertex from its initial position to its
deformed position.

The deformer pushes the deformable object to a
collision free condition. Since the deformable object is
converted to a bounding box, the implementation of
the deformer is quite simple. The center of the bound-

‘ing box is the guide for pushing all points. First, we

2130

check if the center of the bounding box is inside or out-
side the deformer (it is always outside the obstacles if
shrinkable robots are used, but may be internal for the
penetration method). For each point on the surface of
the bounding box, we shoot a ray to the center point.
If the ray intersects the deformer, the point is pushed
along the ray until no intersection exists.

6.2 Geometric deformation

In this approach, we use the obstacle as the de-
former, and directly deform the colliding portion of the
robot. If we knew the colliding volumes of the robot
" and obstacle, it would be relatively easy to move the
colliding part of the robot out of collision. Unfortu-
nately, for the complex models we consider, collision
detection routines only return the intersecting poly-
gons of the models.

Our algorithm continuously moves the colliding
polygons of the robot until they are outside the ob-
stacle. The most challenging part of this algorithm
is to decide which direction to move intersecting poly-
gons. An intuitive approach would be to move the
robot polygons in the direction of the obstacle poly-
gons’ outward normals. Unfortunately, there are some
important cases where this approach does not produce
the desired result. For example, if most of the robot
is on the ‘other’ side of the obstacle from the colliding
polygons, we would prefer to deform the robot in the
opposite direction. To address this, we employ a sam-
pling strategy to identify the correct direction. If we
select directions randomly, we expect that directions
toward the larger external portions of the robot should
become collision free faster than other directions. To
improve efficiency, we restrict our sampling to the fol-
lowing directions: (i) normals of colliding polygons on
the robot, (ii) normals of the colliding polygons (or
average of several colliding neighbors) on the obsta-
cle, (iii) some uniformly selected directions, and (iv)
the inverse of the directions in (i-iii).

Figure 4 shows an example. The robot is the elbow.

shaped object and the obstacle is the hole shown in a
colliding configuration in Figure 4(a). Some colliding
polygons are shown in 4(b). After we chose a correct
direction (from the types i-iv mentioned above), we
move the robot’s colliding polygons in that direction
until we reach the collision free shape shown in 4(c).
If the robot does not fit in a narrow passage, then
this method will fail to find a pushing direction unless
we use a reduced-scale version of the robot. When
the smaller robot is free, the colliding polygons of the
original robot are moved towards the corresponding
polygons on the smaller robot. Another problem with
this method is that it can be distracted by remote
collisions that occur when deforming some colliding
region of the robot. To avoid this, we define a neigh-
borhood function which eliminates the influence of the
remote collisions. Finally, this method can produce
unrealistic looking deformations because the resulting
polygons may be quite large. In some cases we may
even have topological changes. To address such issues,
we added a constraint which states that none of the
deformed edges can be shorter or longer than some
percentage of the original edge. After the deforma-

2131

(a)

Figure 4: (a) Colliding configuration where robot is elbow
and obstacle is hole, (b) intersecting polygons of robot and
obstacle and normals to try, (c) deformed version.

(a)

(b)

Figure 5: Snapshots of the stamping environment; (a) box
deformation, (b) geometric deformation.

tion a smoothing operation is applied to enforce this
constraint. However, after smoothing we may end up
with a shape that is in collision. If this occurs, we
simply continue deforming, and then smoothing, until
a valid deformation or the maximum number of itera-
tions is reached.

7 Experiments

In this section we report on experiments designed to
study the shrinkable robot and penetration techniques
for roadmap construction (Section 4) and the bound-
ing box (BBox) and geometric deformation techniques
(Section 6). All experiments were implemented on a
PC with an Athlon 1.33 Mhz CPU and 256 MB RAM.

Our experiments investigate the performance of
our algorithm in three situations requiring diverse de-
formations. In the sliding experiment, the letters
"DSMFT” simulate multiple robots following a path
passing very close to an obstacle; the path is found
for one letter and then applied to the others. In the
narrow passage experiment (Figure 6), a deformable
sphere (the robot) passes through a narrow passage
bounded by four different-sized rigid spheres (obsta-
cles) in a bounding sphere (front part not shown). The
stamping experiment (Figure 5) enables us to see the
effect of pushing the teapot (robot) against a complex
seal (the obstacle).

Our first set of experiments studies the BBox and
geometric deformation techniques. As reported in Ta-
ble 1, both deformation techniques were applied to

(a) Bounding Box Deformation

(b) Geometric Deformation

Figure 6: Snapshots of a path in the narrow environment; (a) box deformation, (b) geometric deformation.

paths extracted from roadmaps constructed using the
. shrinkable robot and the penetration methods. Snap-
 shots of the deformed robots in the stamping and
narrow enviroments are shown in Figures 5.and 6,
respectively. Snaphsots for the sliding environment
~ and movies for all three environments can be found at
http://www.cs.tamu.edu/faculty /amato/dsmft/. Our

" results show the BBox deformation is several hundred -

times faster than the geometric deformation. This
is due to the high cost of the search for the push-
ing directions and because collision detection costs are
higher than in the BBox deformation where only the
bounding box is tested for collision (as opposed to
the entire model in the geometric deformation). The
BBox method also produces smoother deformations,
which is as expected because ChainMail directly prop-
agates a deformation towards the neighboring points,
whereas the geometric deformation propagates defor-
mations recursively (i.e., indirectly); this difference in
the methods can be mitigated by a good neighborhood
function, perhaps determined experimentally for each
environment. We note that the average cost of the de-
formations varies with the complexity of the environ-
ment and the deformations; in the BBox deformation,
this is also affected by the number of lattice points in
* the bounding box.

Our second set of experiments studies the effects of
" the parameters for the roadmap generation techniques
" in the narrow passage environment (the spheres). For
the shrinkable robot method, roadmaps were con-
structed using two and six scaled robots (models). For
the penetration method, we consider two penetration
depths, 15r (small) and 25r (large), where 7-is the en-
vironmental resolution set for collision detection. As

2132

previously discussed, these parameters should approx-
imate the deformation energy. The results in Table 2
show that both the shrink factor and the penetration

" value are good indications of deformation energy. As

expected, if a larger number of reduced-scale robots is
used, or a smaller penetration is allowed, the resulting
roadmap will be more expensive to compute, but will
contain paths that are easier to deform. We also note
that most (99% to 100%) of the query time is spent on
deformation processing. (The geometric deformation
did not find a solution within acceptable time limits

" for the roadmap generated by the two scaled robots.)

Although the main disadvantage of the geometric
deformation is speed, it was also observed to some-
times alter the topology of the model. This could be
solved by including self-collision checks as the object -
is deformed. Nevertheless, this method is suitable for
some types of situations, e.g., narrew passage prob-
lems where the robot must assume the shape of the
surrounding environment.

8 Conclusion and Future Work

This paper considers motion planning for de-
formable objects. We have suggested two different
methods for constructing and querying roadmaps, and
have presented two deformation techniques that can
be applied to the resulting path. This approach de-
couples motion planning and deformation, and enables
hybrid methods utilizing multiple methods in a plug
and play fashion. Our future work includes optimizing
the geometric deformation method and applying our
algorithm to particle systems where several robots de-
form independently.

Roadmap and Deformation Statistics

ROADMAP GENERATION AVERAGE DEFORMATATION
SHRUNK ROBOT PENETRATION TIMES(S)
Total Time (s} Total Time(s)
ENVIRONMENT | #CC (gen.+con.) #CC (gen.+con.) Bounding Box | Geometric
Sliding___| 66 | 5.4(2.742.7) 16 16.5(8.4+8.1) 0.04 13.3
—_ Narrow 87 | 16.2(0.5+15.7) 35 116.9(25.9491) 0.40 86
Stamping 9 5.2(0.145.1) 1 124.2(50.544+-73.77) 0.86 536

Table 1: Roadmap and Deformation statistics. Total time includes node generation time and connection time for 1000
nodes. We use OBPRM for Sliding and PRM for Narrow and Stamping. Deformation time includes time for deformation,
time for relaxation (for BBox only), and time for energy calculation. The average deformation time is for the successful
deformations. All times are in seconds.

Comparison of Roadmap Generation and Deformation Techniques

ROADMAP BOUNDING BoX GEOMETRIC
GENERATION Time(s) Time{min)

GENERATION METHOD | #CC | Time(s) Query [Deform | #Deform | #PFailed Query | Deform | #Deform | #Failed
Shrunk (2 models) 22 2.5 619 617 1403 25 A | NJA N/A NJA
Shrunk (6 models) 21 43 82 81 199 0 322 322 212 1

[Penetration (large) 3 [149 [144 144 328 [4 [514 T 514] 344 | 3]
[Penetration (small) 2 | 256 | 75 75 | 162 | 2 || 255 | 255 | 174 | 1 |

Table 2: Comparison of roadmap generation (350 nodes) and deformation methods for the narrow passage environment.
The table shows query and total deformation times as well as number of deformations and the number of the failed
deformations. These values are for different roadmap generation methods; using 2 shrunk robots and 6 shrunk robots,
enabling small and large penetration. Deform time is total deformation time in the query phase. The times for Bounding
Box Deformation are in seconds while the times for Geometric deformation are in minutes.

References

(1]

2

&}
(4

(5]

[6

(7

8

&)

[10]

N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones,
and D. Vallejo. OBPRM: An obstacle-based PRM for 3D
workspaces. In Proc. Int. Workshop on Algorithmic Foun-
dations of Robotics (WAFR), pages 155-168, 1998.

E. Anshelevich, S. Owens, F. Lamiraux, and L. Kavraki.
Deformable volumes in path planning applications. In
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
2290-2295, 2000.

A. H. Barr. Global and local deformations of solid primi-
tives. In Proc. ACM SIGGRAPH, pages 21-30, 1984.

O. B. Bayazit, G. Song, and N. M. Amato. Enhanc-
ing randomized motion planners: Exploring with haptic
hints. Awutonomous Robots, Special Issue on Personal
Robotics, 10(2):163-174, 2001. Preliminary version ap-
peared in ICRA 2000, pp. 529-536.

R. Bohlin and L. E. Kavraki. Path planning using Lazy
PRM. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
pages 521-528, 2000.

S. Fisher and M. C. Lin. Deformed distance fields for sim-
ulation of non-penetrationg flexible bodies. In Proc. IEEE
Int. Conf. Intel. Rob. Syst. (IROS), 2001.

S. Gibson. 3D Chainmail: A fast algorithm for deforming
volumetric objects. In Proc. Symp. Interactive 3D Graph-
ics, pages 149-154, 1997.

S. Gibson. Using linked volumes to model object collision,
deformation cutting, carving, and joining. In IEEE Visu-
alization and Computer Graphics, pages 169-177, 1999.

S. Gibson and B. Mirtich. A survey of deformable mod-
eling in computer grapics. In Technical Report TR-97-
19,MERL, 1997.

D. House, R. DeVaul, and D. Breen. Towards simulating
cloth dynamics using interacting particles. International

[11]
(12]

(13]

(14]

[15]
[16]
[17]
18]
[19)

[20]

2133

Journal of Clothing Science and Technology, 8(3):75-94,
1996.

D. Hsu, L. Kavraki, J-C. Latombe, R. Motwani, and
S. Sorkin. On finding narrow passages with probabilistic

 roadmap planners. In Proc. Int. Workshop on Algorithmic

Foundations of Robotics (WAFR), 1998.

L. Kavraki, P. Svestka, J. C. Latombe, and M. Over-
mars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Trans. Robot. Au-
tomat., 12(4):566-580, August 1996.

F. Lamiraux and L. Kavraki. Planning paths for elastic
objects under manipulation constraints. The International
Journal of Robotics Research, 20(3):188-208, 2001.

G. S. P. Miller. The motion dynamics of snakes and worms.
In Proc. ACM SIGGRAPH, pages 169-177, 1988.

B. Mirtich. V-clip: Fast and robust polyhedral collision
detection. Technical Report TR97-05, Mitsubishi Electric
Research Lab, Cambridge, MA, 1997.

C. L. Nielsen and L. E. Kavraki. A two level fuzzy prm
for manipulation planning. Technical Report TR2000-365,
Computer Science, Rice University, Houston, TX, 2000.

T. Sederberg and S. Parry. Free-form deformation of solid
gemetic models. In Proc. ACM SIGGRAPH, pages 151-
160, 1986.

G. Song, , S.L. Miller, and N. M. Amato. Customizing
PRM roadmaps at query time. In Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), pages 1500-1505, 2001.

X. Tu and D. Terzopoulos. Artifical fishes: physics, loco-
motion, perception, behavior. In Proc. ACM SIGGRAPH,
pages 43-50, 1994. :

R.W. Sumner R. W., J.F. Brien, and J.K. Hodgins. Ani-

mating sand, mud, and snow. In Computer Graphics Fo-
rum, 1999.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

