Coordinated Motion Planning for Multiple Car-Like Robots using
Probabilistic Roadmaps*

Petr Svestka, Mark H. Overmars
Department of Computer Science, Utrecht University
P.0.Box 80.089, 3508 TB Utrecht, the Netherlands
e-mail: petr@cs.ruu.nl; markov@cs.ruu.nl

Abstract

We present a new approach to the multi-robot path
planning problem, where a number of robots are to
change their positions through feasible motions in the
same static environment. The approach is probabilis-
tically complete. That is, any solvable problem is
guaranteed to be solved within a finite amount of time.
The method, which is an extension of previous work on
probabilistic single-robot planners, is very flexible in
the sense that it can easily be applied to different robot
types. In this paper we apply it to non-holonomic car-
like robots, and we present experimental results which
show that the method is powerful and fast.

1 Introduction

We present a new method for solving multi-robot
path planning problems in known static environments.
In these problems, a number of robots move indepen-
dently in the same workspace (containing obstacles),
and the task is to compute feasible paths for the robots
which bring each robot from some start configuration
to some goal configuration, while avoiding (mutual)
collisions.

The multi-robot path planning problem has re-
ceived a considerable amount of attention in the re-
cent years ([3],[2],{1],{7]). Current approaches basi-
cally fall into two classes: centralized planning meth-
ods and decoupled planning methods (See also ([5]).
The former are very straight-forward. The idea is
that one treats the separate robots as one compos-
ite robot, hence transforming the multi-robot problem
into a single-robot one (with many degrees of free-
dom). Standard motion planning methods, for exam-
ple cell-decomposition methods, can then be used for

* This research was partially supported by the ESPRIT III
BRA Project 6546 (PROMotion) and by the Dutch Organiza-
tion for Scientific Research (N.W.0.)

[EEE International Conference
on Robotlcs and Automation
0-7803-1965-6/95 $4.00 ©19995 IEEE

finding a path in the configuration space of the com-
posite robot. A major drawback however is that the
dimension of this configuration space is usually rather
large, and, as a result, the time complexity of cen-
tralized planning methods is high. Decoupled plan-
ning methods plan the paths for the individual robots
more or less independently, and, in a second stage,
coordinate these paths in a way that mutual robot
collisions are avoided. This scheme significantly re-
duces the amount of computation, but completeness
is lost. For example, when two robots are to change
place, then they typically follow the same route. Ob-
viously, any coordination of the robot motions along
the route will result in collisions.

The method we describe in this paper, which we
refer to as the probabilistic multi-robot method, builds
on previous work that we have done on a general
single-robot planning method. This work resulted in
efficient and probabilistically complete planners for a
broad variety of robots, including free-flying robots
([6]), high dof articulated robots ([4]), and various
non-holonomic robots ([8]). The single-robot method
incrementally constructs a roadmap from which paths,
feasible for the particular robot, can efficiently be re-
trieved. We refer to roadmaps constructed by the
single-robot method as simple roadmaps. The multi-
robot planner will combine such simple roadmaps into
roadmaps for composite robots.

The probabilistic multi-robot method does not fall
into either of the two above mentioned classes of
multi-robot planning methods. It uses the notion of
composite robots, but, unlike current centralized ap-
proaches, it requires no computations to be performed
in the configuration space of the composite robot. A
roadmap for the composite robot is extracted from
information stored in a simple roadmap, computed
by the single-robot method for the underlying simple
robot.

The method is a flexible one, in the sense that it is
easily applicable to many different robot types, and it
is probabilistically complete. In this paper we apply it

— 1631 —

to car-like robots. We give experimental results which
show that the method is very efficient in terms of com-
putation costs. Throughout this paper we will assume
that the robots are identical, although the technique
we present is conceptually applicable to problems in-
volving non-identical robots as well.

2 The single-robot method

The single-robot planning method, which forms the
basis for the multi-robot method that we present in
this paper, is conceptually very simple. An undirected
graph G = (V,E) is constructed, with nodes corre-
sponding to free configurations of the robot and edges
to simple feasible paths.

The construction is done incrementally, by repeat-
edly adding a random free configuration ¢ to V, and
trying to connect ¢ to a number of (well chosen) nodes
in V, which we refer to as c’s neighbors, by a local
planner. Whenever such a connection succeeds, a cor-
responding edge is added to E. The local planner is
a simple but fast planner. Given two argument con-
figurations a and b, it constructs a path connecting a
and b which is feasible in absence of obstacles. Then,
it tests whether this path intersects any obstacles. If
so, failure is returned, and otherwise the local planner
succeeds. If the local planner is chosen properly ([8]),
then probabilistic completeness of the (global) plan-
ner is guaranteed. In the rest of this paper we assume
this to be the case.

Once a roadmap has been constructed in the above
manner, it can be used for solving queries. Given a
start configuration s and goal configuration g, the cor-
responding query consists of trying to connect both s
and g to nodes (in the same connected component) of
G by feasible paths, for example with the local plan-
ner. If this succeeds, then a feasible path connecting s
and g can be retrieved, by performing a graph search
and concatenating appropriate path segments (For de-
tails see [6]).

Of course, queries are likely to succeed only if a
sufficient amount of time has been spent on the con-
struction of G, or learning time. Experimental results
over a wide range of examples show that these required
learning times tend to be very low. For free-flying
and car-like robots at most a few seconds! of learning
where required for obtaining roadmaps that solve vir-
tually all queries in far from trivial scenes ([6],[8]). In
joint work with Kavraki and Latombe ([4]), we have
applied the method to articulated robots with up to 7
degrees of freedom, in highly constrained workspaces.

IThe experiments where performed on a Silicon Graph-
ics Indigo? workstation rated with 96.5 SPECfp92 and 90.4
SPECint92.

Again, the required learning times where surprisingly
low, not exceeding 80 seconds.

The local planner and an associated distance mea-
sure, used for selecting the neighbors of a new node,
are the only robot dependent components in the
single-robot planning method. This makes the method
flexible and easily applicable to different robot-types.
This flexibility propagates to the multi-robot exten-
sion that we present in this paper.

3 Formalization and discretization of
the multi-robot planning problem

We now formalize the multi-robot path planning
problem. Let Aq,...,An be n instances of some robot
A, present in a workspace W, together with a set of
obstacles whose union we denote by B. Furthermore,
let € be the space of all possible configurations of A,
and let C¢ be a the subset of € consisting of all con-
figurations ¢ such that A placed at ¢ intersects no
obstacles. That is, C¢ is .A’s free configuration space.
Given a configuration ¢, we denote the workspace-area
occupied by A, when placed at ¢, by A{c).

Definition 1 A path planning problem for
Ar,...,An is defined as follows: Given start
configurations si1,...,Sn and goal configurations
g1,.--,9n (with si,gi € C¢), find continuous maps
P1,...,Pn € [0,1] — C¢ describing feasible motions
for A, such that (Vi,j € {1,...,n}):

o Pi(0) =si APi(1) =gs
® Vicpo 1t APi(t)NB =10
® Vicron:t# i = APi(t)) NAP;(1) =0

We refer to such a problem simply as problem
((s1,.. - snly (91,1 gn))-

Given a graph G = (V, E) storing a simple roadmap
for robot A (computed by the probabilistic single-
robot method), we are interested in solving multi-
robot problems using G. For ease of presentation, we
assume that all start configurations s; and goal config-
urations g; are nodes of G (they can always be added
as extra, non-random, nodes), and that, for each node
¢ € V the edge (c,c) is contained in E. We denote the
workspace-area swept by A when moving along a path
corresponding to an edge e € E by Ale), and we refer
to it as e’s sweep-volume. The idea is that we seek
paths in G along which the robots can go from their
start configurations to their goal configurations, but
we disallow simultaneous motions along paths corre-
sponding to edges ey and e, with intersecting sweep-
volumes. In this way, we avoid mutual robot collisions,

— 1632 —

while robot-obstacle collisions are ruled out by the fact
that we move along the simple roadmap. We say that
we discretize the multi-robot planning problem to G.

Definition 2 The G-discretized path planning prob-
lem is defined as follows: Given start configurations
s1,...,8n and goal configurations gi,...,gn (with
si,0i € V), find continuous’® maps Py,...,Pn €
{1,...,m} — E such that (Vi,j € {1,...,n}):

o 51 € Pi(1) A gi € Py(m),
o Vieqr,...,my it # i = AP(k) NnAP;(k)) =0.

We say that (P, ...
composite robot, solving the problem ((s1,.

(g1, .-, 0n))-

,Pn) is a G-discretized path for the
e)STL))

We now first show that solving G-discretized path
planning problems (instead of continuous ones) is suf-
ficient, in the sense that this guarantees probabilistic
completeness. Given a set of free configurations W
and a graph G computed by the single-robot method,
we denote by G @ W the graph that is obtained by
adding the elements of W to G, as is done with the
random configurations.

Theorem 1 Let ((s1,-..,8n),(g1,...,9n)) be an ar-
bitrary problem for the composite robot, for which
there exists a solution in the open free configura-
tion space of the composite robot (That is, one with-
out robot-robot and robot-obstacle contacts). Then,
within a finite amount of time, the probabilistic single-
robot method will produce a graph G such that a
G-discretized solution for the problem exists, where
G=G&{s1,...,8n,01,...,gn}

Theorem 1 states that, given an arbitrary solvable
problem for the composite robot, the probabilistic
single-robot method will, within a finite amount of
time, construct a graph G with which the problem
can be solved, provided that we have means for find-
ing G-discretized paths. This theorem is proved in the
full version of this paper.

4 The multi-robot method

The question now is, given a simple roadmap G =
(V,E) for a robot A, how to compute G-discretized
paths for the composite robot (A1,...,An) (with all
A identical to A).

We have seen that each step in a G-discretized path
describes a number of (simultaneous) motions along

2We say a map P of type {1,...,m} — E is continuous iff,
for all k € {1,..., m — 1}, Pi(k) and Pi{k + 1) have a node in

comimon.

Sg:

@@
@6
G
G~

Figure 1: At the left we see a simple roadmap G for the
shown rectangular robot A (shown in white, placed at
the graph nodes). We assume here that A is a trans-
lational robot, and the areas swept by the local paths
corresponding to the edges of G are indicated in light
grey. At the right, we see the G-induced supergraph
Sg for n = 2. Tt consists of two separate connected
components.

edges with non-intersecting sweep-volumes. Clearly,
during such a step, mutual robot collisions cannot oc-
cur, no matter how the individual robot velocities are
chosen. Hence, it is feasible to move just one robot at
a time. Of course this will increase the lengths of the
composite paths, but, as we shall see later, this can
be remedied with some simple smoothing techniques.
It follows that we can constrain our search to simple
G-discretized paths, that is, G-discretized paths where
each step corresponds to the motion of just one robot,
while the others stand still (at nodes of G).

For finding simple G-discretized paths, we intro-
duce the notion of super-graphs. We say anedgee € E
is blocked by a node x € V if A(e) NA(x) # 0.

Definition 3 Given a simple roadmap G = (V,E),
the G-induced supergraph Sg = (Vs, Es) is defined as
follows:

e (X1,...,Xn) € V¥ is a node of Sg iff L #j =
Alxi) N Alx;) = 0. We refer to the nodes of
Sc as super-nodes. Given a super-node X =
(X1,...,%Xn), we refer to the x;’s as X’s underlying
simple nodes.

e Two super-nodes X = (x1,...,xy) and Y =
(Yy1,...,yn) are connected by an edge of S¢g if
and only if for exactly onei € {1,...,n} X3 # Y4,

and x; Is connected to y; by an edge in G which
is not blocked by an xy, with j # 1. We refer to
the edges of Sg as super-edges.

So each node of Sg corresponds to a feasible place-
ment of the n simple robots at nodes of G, and each
edge of S corresponds to a feasible motion of one
simple robots along an edge of G. See Figure 1

— 1633 —

for an example of a (simple) G-induced supergraph.
Any path in the G-induced supergraph describes a
simple G-discretized path (for the composite robot),
and vice-versa. Hence, the problem of finding G-
discretized paths for our composite robot reduces to
graph searches in Sg.

The size of a G-induced super-graph, as defined
above, is exponential in n (the number of robots).
However, the entire data-structure does not have to be
stored explicitly. Given a particular super-node X, its
neighbors in Sg can be retrieved in constant time pro-
vided that, for each (x,e) € V x E, we know whether
A(x) intersects A(e). This asks for a data-structure of
quadratic size (in the size of G) which for each node-
edge pair (x, e) stores whether A(x)N.A(e) = 0. Using
optimized intersection routines, such a data-structure,
which we refer to as the G-intersection map, can be
computed and updated quite efficiently. Hence, for
performing graph searches in Sg, we need only to com-
pute and store the set Vs of super-nodes. If however
1 is large, then the required amount of memory can
still be very (too) large. Such cases ask for reducing
the number of super-nodes. In Section 6 we discuss a
technique for achieving this.

Our multi-robot approach for solving a compos-
ite problem ((s1,...,%n), (g1,--.,gn)) now consists of
the following steps:

1. Compute a simple roadmap G of sufficient density
using the probabilistic single robot approach.

2. Addsy,...,snand g1,..., gn to G (together with
edges connecting them to other nodes).

3. For each node v and each edge e, compute and
store whether A(v) NA(e) = 0 (That is, compute
the G-intersection map).

4. Construct the supergraph S as described above,
and store it in an (partially) implicit form.

5. Find the shortest path in Sg between node
(s1,...,8n) and node (g1,...,gn).

6. Transform this path into a feasible path in the
configuration space of the composite robot, using
the local method.

7. Smooth the (maximal) segments of the composite
path where only one robot moves.

8. Combine consecutive motions of different simple
robots into simultaneous ones, where possible.

The last two steps of the algorithm require some ex-
planation. In step {7) we identify maximal segments
of the (composite) path where just one (simple) robot
moves. Each such segment can be then smoothed with

the use of standard single-robot smoothing techniques,
after the stationary robots have (temporarily) been
added to the set of obstacles. Typically, this technique
significantly reduces the length of the composite path.
However, it does not allow for simultaneous motions of
the simple robots. In Step (8) we heuristically identify
segments in the composite path where the consecutive
robot-motions can be replaced by simultaneous ones,
without introducing mutual robot collisions. This step
again reduces the length of the composite path (De-
tails will be given in the full paper).

5 Application to car-like robots

‘We have implemented a multi-robot motion planner
for car-like robots, based on the super-graph concept
as described in the previous section. In this imple-
mentation, we have interleaved the construction of the
simple roadmap and that of the super-graph (Steps
1,3, and 4). That is, whenever a simple node is added
to G, we immediately extend the super-graph S¢g cor-
respondingly. In this way we obtain a method which
can be proven to be probabilistically complete; if it
runs long enough then any problem which is solvable
(in the open free configuration space) will be solved.

Car-like robots are solid planar robots with 3
degrees of freedom, but their motions are non-
holonomically constrained in a way that they can
only move forwards and backwards, and follow cer-
tain curves of a lower-bounded turning radius (for a
formal definition, see [5],(8]). Intuitively, they can per-
form the motions that an ordinary car can.

Applying the method to car-like robots asks for a
local planner that computes paths which are feasible
for these robots. We use the RTR local planner, which
uses simple curves (that is, circle arcs of constant
turning radii) and straight line motions for building
the local paths. Given two argument configurations a
and b, the planner constructs the shortest path con-
sisting of a simple curve, followed by a straight line
motion, followed by another simple curve, which con-
nects a and b. So the RTR local planner generates
paths which describe motions that are compositions
of a Rotation, followed by a Translation, followed by
another Rotation (This local planner has the proper-
ties which guarantee probabilistic completeness of the
single-robot method). For more details we refer to
previous work ([8]).

We have done experiments on a Silicon Graphics
Indigo? workstation rated with 96.5 SPEC{p92 and
90.4 SPECint92. We present some results for 2 scenes.

See Figure 2 for Scene 1. It consists of a narrow “H-
shaped” corridor, and there are three rectangular car-
like robots present. The problem in the scene is that,
if one robot is to change its position, the others often

— 1634 —

Figure 2: Scene 1. Three car-like robots in a narrow
corridor. The white robot has to swap places with the
dark robot.

have to make large detours. A decoupled planning
method will not solve such problems.

Within 2 seconds a super-graph was obtained which
solved most problems in this scene, among which the
shown “swapping-problem” (Figure 2). This super-
graph contained about 20.000 super-nodes. The com-
putation of a shortest path in Sg took about 1 second,
as did the smoothing of the path.

Scene 2 (Figure 3), which also involves 3 car-like
robots, required larger super-graphs to be constructed.
This is due to the fact that, in comparison with the
previous scene, the free space is quite large, and,
hence, a larger number of simple nodes (i.e., nodes
of the simple roadmap) are required to obtain a suffi-
cient “covering”. The problem shown required about 4
seconds for the construction of a suitable super-graph
(which contained about 150.000 nodes), and another
5 seconds for the shortest-path search in the super-
graph. Again, smoothing took about 1 second.

6 Reducing the super-graph size

As pointed out before, in some cases it is desir-
able/necessary to reduce the number of nodes stored
in a super-graph in order to obtain a practical plan-
ner. For this we introduce the notion of clustered
super-graphs. We say two nodes a and b of G are G-
prozimate, if and only if a has an outgoing edge eq and
b an outgoing edge ep such that A{eq)NAlep) # 9. In
words, two nodes are G-proximate if they have outgo-
ing edges with intersecting sweep-volumes. Clustered
super-graphs are formalized in Definition 4.

e £/

g e
Ay &
4

)

Figure 3: Scene 2. Three car-like robots in a
workspace with wide and narrow areas.

Definition 4 A G-induced clustered super-graph Se
is defined defined as follows:

¢ A super-node X is a clustered super-node (that is,
a node ofgg) iff for each underlying simple node a
of X there exists another underlying simple node
b of X with a and b being G-proximate.

e Two clustered super-nodes X = (x7,...,%xn) and
Y = (y1,...,Yn) are connected by a clustered
super-edge if and only if for exactly one i €
{1,...,n} x4 # yi, and x4 Is connected to y; by a
path in G not containing any edges e which are
blocked by an x;, with j # i.

Intuitively, within each clustered super-node, the
simple nodes are grouped in “clusters”, that is, groups
of mutually G-proximate nodes. While a regular
super-edge is defined by an (non-blocked) edge in G,
a clustered super-edge is defined by a (non-blocked)
path in G.

It can be proven that two nodes X and Y are graph-
connected in a G-induced clustered super-graph Se
if and only if they are graph-connected in the (reg-
ular) super-graph Sg, provided that G is connected.
Since it is always possible to go from a (regular) super-
node to a clustered super-node (if G is connected),
all problems solvable by a regular super-graph can be
solved by the corresponding clustered super-graph as
well. Hence, in terms of solvable problems, G-induced
super-graphs and G-induced clustered super-graphs
are equivalent. For more details we refer to the full
version of this paper.

— 1635 —

The major advantage of clustered super-graphs is
their relatively small size. In fact, if G is of bounded
degree and for every edge e € E the number of edges
¢ € E with A(e) N A(€) is bounded by a constant,
then it is easy to prove that the number of nodes in
the G-induced clustered super-graph is e(vilz]). So,
for example, for n = 3 the clustered super-graph still
has just a linear number of nodes (that is, linear in
[V]). Even if the above conditions do not hold, the
sizes of clustered super-graphs tend to be substantially
smaller than those of regular super-graphs.

For example, we have seen that the problem in
Scene 2 (previous section) is solved by a G-induced
super-graph containing about 150.000 nodes. The
(equivalent) G-induced clustered super-graph contains
only approximately 20.000 nodes. In Scene 1 the gain
is somewhat smaller, due to the “compact” structure
of the scene.

The usage of clustered super-graphs however also
has some drawbacks. The computation of the clus-
tered super-edges is more expensive than that of regu-
lar super-edges, due to the fact that for each clustered
super-edge that is added a graph search in G has to
be performed. Hence, the edges must be explicitly
stored (they cannot be retrieved in constant time).
This however does not have to increase the complex-
ity of the graph, since one can constrain the clustered
super-graph to be a forest (edges creating cycles are
discarded).

7 Conclusions

We have presented a new multi-robot motion plan-
ning approach. Roadmaps for the composite robot
are derived from roadmaps for the underlying sim-
ple robots. This approach avoids (expensive) com-
putations in the configuration space of the composite
robot, without loss of probabilistic completeness. The
roadmaps for the simple robots are computed via a
probabilistic single-robot learning method, which we
have recently developed and applied to a broad vari-
ety of robots. This single-robot method is very time-
efficient and flexible, in the sense that it can easily be
applied to different robots. We have shown that this
flexibility propagates to the presented multi-robot ex-
tension by applying the multi-robot method to car-like
robots. Experimental results indicate that the method
is very time-efficient. Another nice property of the
method is that it is, to some extent, a learning ap-
proach. That is, a super-graph constructed for a par-
ticular problem can be reused and, where necessary,
extended for solving other multi-robot problems (in
the same scene) as well. However, a considerable por-
tion of the running-time of our multi-robot method is

consumed by path searches in the super-graph, which
must be performed for every individual query.

In this paper we required the underlying simple
robots to be identical. The ideas developed in this
paper are however also applicable to composite robots
consisting of distinct underlying robots. In that case,
a separate simple roadmap for each underlying robot
can be constructed, and a super-graph can be derived
from the information stored in the simple roadmaps
in a straightforward manner. More computation time
will however be required for computing/updating the
G-intersection map. We are currently investigating
this. Another interesting direction of research, which
we plan to persue, is motion planning among movable
obstacles. Again, the super-graph notion seems to be
useful for tackling such problems, since movable ob-
stacles can be regarded as (multiple) robots, though
constrained in their motions by the fact that, in order
to move, they have to be manipulated by some (real)
robot.

References

[1] J. Barraquand, B. Langlois, and J.-C. Latombe. Nu-
merical potential field techniques for robot path plan-
ning. IEFEE Trans. Syst. Man Cybern., 22:224-241,
1992.

(2] J. Barraquand and J.-C. Latombe. Robot motion plan-
ning: A distributed representation approach. Internat.
J. Robot. Res., 10:628-649, 1991.

[3] M. Erdmann and T. Lozano-Peréz. On multiple mov-
ing objects. Technical Report 883, MIT, Massachusets,
USA, 1986.

[4] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Over-
mars. Probabilistic roadmaps for path planning in high
dimensional configuration spaces. Technical Report
UU-CS-94-32, Comput. Sci., Utrecht Univ., Utrecht,
the Netherlands, August 1994.

[5] J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, Boston, USA, 1991.

[6] M. Overmars and P. Svestka. A probabilistic learn-
ing approach to motion planning. In The Algorithmic
Foundations of Robotics. A. K. Peters, Boston, MA,
1995.

[7] J. H. Reif and H. Wang. Social potential fields: A dis-
tributed behavioral control for automonous robots. In
Proc. The First Workshop on the Algorithmic Founda-
tions of Robotics. A. K. Peters, Boston, MA, 1994.

[8] P. Svestka and M. Overmars. Motion planning for
car-like robots using a probabilistic learning approach.
Technical Report UU-CS-1994-33, Dept. Comput. Sci.,
Utrecht Univ., Utrecht, the Netherlands, August 1994.

— 1636 —

