Submitted to the IEEE Transactions on Robotics and Automatidén

Randomized Path Planning for Linkages with

Closed Kinematic Chains
Jeffery H. Yakey, Steven M. LaValle, Lydia E. Kavraki

Abstract—

‘We present a set of primitives that can be used to ex-
tend randomized path planning algorithms to the case of
articulated robots that have closed kinematic chains. This
is an important class of problems, which includes applica-
tions such as manipulation planning using multiple open-
chain manipulators that cooperatively grasp an object, and
planning for reconfigurable robots in which links might be
arranged in a loop to ease manipulation or locomotion. Ap-
plications also exist in areas beyond robotics, including com-
puter graphics, computational chemistry and virtual proto-
typing. The dimension of the above problems is typically
very high which suggests the use of randomized path plan-
ners for their solution. Currently, randomized techniques
have been successfully applied to robots with open kine-
matic chains. One major difficulty when dealing with closed
kinematic mechanisms is the fact that a parameterization
of the set of configurations that satisfy closure constraints
is usually not available. Rather than developing completely
new planning algorithms, we present a set of primitives that
can be used to extend existing randomized path planners to
the case of linkages with closed kinematic chains. We focus
on three operations that are commonly used by randomized
planners: (a) the generation of random free configurations,
(b) the generation of incremental paths and (c) the opti-
mization of paths. To demonstrate the utility and generality
of our primitives, we show their application to recently de-
veloped randomized planners and present several computed
results for high-dimensional problems.

Keywords: Motion planning, randomized path plan-
ning
Submission Type: Regular paper

I. Introduction

This paper addresses the problem of path planning for
multi-body systems that contain flexible kinematic loops,
in an environment that contains obstacles, as shown in Fig-
ure 1. In other words, we consider general linkages that
have closed kinematic chains, in addition to the usual mo-
tion planning constraints. Our motivation for considering
this problem comes from the spectrum of applications that
could benefit from such a planner.

In manipulation planning, when multiple robots grasp a
single object, they form a closed loop containing the ob-
ject as a link of the chain [1], [35]. Many of the existing
methods for manipulation planning plan separately for the
object and the robots [35] and require inverse kinemat-
ics solutions for the robots. Such methods, although very
successful in a variety of problems, are limited by the de-
coupling of the problem and the use of inverse kinematics.

Dept. of Computer Science, Iowa State University, Ames, IA 50011
USA. E-mail: yakeyjQcs.iastate.edu

Dept. of Computer Science, lowa State University, Ames, IA 50011
USA. E-mail: lavalleQcs.iastate.edu

Dept. of Computer Science, Rice University, Houston, TX 77005
USA. E-mail: kavraki@cs.rice.edu

Fig. 1. We investigate path planning for linkages that have closed
kinematic chains and must avoid static obstacles.

Regrasping is needed because one or more of the manipula-
tors often attain a singular configuration [52]. The ability
to plan for closed linkages eliminates the need of inverse
kinematics solutions and could the reduce the number of
regrasps needed during manipulation tasks, as the linkage
will be considered as a whole rather than as multiple, in-
dependent manipulators.

A planner for closed linkages can also be applied for re-
configurable robots. Typically, this type of robot is com-
posed of multiple, independent robots that can connect and
disconnect from one another [37], [54], [63]. This results
in their ability to dynamically reconfigure themselves, de-
pending on the current situation for the robot. The abil-
ity to change their connectivity gives reconfigurable robots
multiple modes of locomotion [37], [63]. Closed linkages
often occur during locomotion or reconfiguration of the
robots, and such situations could be simplified with the
addition of a planner for closed linkages.

Many of the concepts used in path planning for robotics
can also be applied to computer graphical animation [11].
Human-like characters can naturally be modeled as link-
ages. It is desirable to automate the lengthy and compli-
cated task of animating these models, for which motion
planning techniques are well suited [64]. However, a dif-
ficulty arises when these characters manipulate an object
with both arms (e.g., pick up a box, two characters grasp
each other, etc.), because this forms a closed linkage. There
already exist algorithms capable of planning for this prob-
lem [34], but as in coordinated manipulation planning, a
decoupling of the planning for the animated character and
the object is done. Another application that could benefit
from a planner for closed linkages lies in virtual prototyp-
ing. To reduce the expense of engineering new products,
computer simulations are often executed to determine the
quality of a design. Motion planning algorithms have been

used to achieve this end [16]. For designs that include
closed linkages, a corresponding planner could automate
testing, and potentially avoid constructing physical proto-
types.

Our work was first inspired by the need in computational
chemistry to query databases of flexible molecules that sat-
isfy a given pharmacophore [42]. A pharmacophore is a
set of atoms (or more generally features) of the molecule
whose relative spatial positions are constrained [17]. Drug
design involves finding molecules that contain a pharma-
cophore while maintaining a low energy configuration and
a legal chemical structure (e.g., no bonds are ‘broken’ for
the molecule to ‘stretch’ and satisfy the pharmacophore).
Molecules often have closed loops (rings) and are straight-
forward to model as linkages. Also, pharmacophore con-
straints define closed loops when, for example, they impose
distance constraints between two atoms. Besides our ear-
lier work in finding molecules that satisfy pharmacophoric
constraints [42], related work on finding configurations of
closed rings were presented in [19]. In that paper, two
methods were described to algebraically express the geom-
etry of 6-atom ring molecules (cyclic molecules represented
with six linkages) so that their configurations could be enu-
merated. Extensions were also proposed for the 5 and 7
atom rings, which are more difficult to solve. The work
in this paper, although different in spirit, could benefit in
part from the results in [19] for 5-, 6-, or 7-linkage chains.

The existence of closed kinematic chains greatly increases
the difficulty of path planning because the set of configura-
tions that satisfy closure constraints is usually expressed in
terms of implicit equations. In the traditional path plan-
ning problem, it is always assumed that a parameterization
of the configuration space is available. For example, for a
rigid body in R3, the configuration space is often param-
eterized by three real coordinates for translation and one
quaternion for rotation, resulting in the manifold R® x P3.
If closure constraints exist, a parameterization is usually
not available (except for special mechanisms), and the set
of valid configurations is generally not even a manifold.!

In this paper we do not develop a new method for plan-
ning for systems with closed kinematic chains. Instead, we
propose a number of primitives that can be used to ex-
tend randomized path planners to handle closed kinematic
chains and we demonstrate the application of our primi-
tives to existing planners. Our work is motivated by the
fact that it is computationally prohibitive to compute the
exact topological structure of the set of valid configura-
tions when complex mechanisms with closed loops are con-
sidered [19]. Our work is also based on the belief that,
among existing approaches, randomized techniques offer
the most promise to solve efficiently high-degree-of-freedom
problems with closed kinematic chains. Given the success
of randomized path planning techniques [2], [6], [9], [15],
[23], [29], [31], [33], [40], [41], [43], [48], [59] at addressing
problems without closure constraints, it seems sensible to
introduce primitives that would allow these existing tech-

1Even though it can be expressed as a stratification of manifolds
[14], parameterizations of the strata are still unknown.

niques to be extended to the case of closed linkages. Other
researchers are moving in this direction too [24]. In this pa-
per, we focus on studying (a) the generation of random free
configurations, (b) the generation of incremental paths and
(c) the optimization of paths. All above operations are rou-
tinely performed by randomized planners and their study
could lead to the development of randomized methods for
all types of linkages.

The paper is organized as follows. After the related lit-
erature and the problem definition in Sections II Sections
ITI, the following three sections each introduce a primitive
that can be used as a building block in a randomized path
planner. More precisely, each can be used to upgrade a
component of a standard randomized path planner, to en-
able to inclusion of closed kinematic chains. Section IV
addresses the problem is generating a collection of ran-
dom samples that satisfy the closure constraints. Section
V addresses the problem of generating small motions in the
vicinity of a given, valid configuration. Section VI presents
a simple technique for optimizing a given path. Section VII
illustrates the application of the primitives from Sections
IV-VI in two different randomized path planners, a version
of a PRM [33] and a version of an RRT-based planner [41],
[43]. We show experimental results for several challeng-
ing problems. Finally, conclusions are presented in Section
VIIL.

II. Related Literature

A. Kinematics

One of the difficulties when planning for closed chains
is the difficulty of computing inverse kinematics. We pro-
vide some background. Forward kinematics determines the
location in the world of a linkage when given a specific con-
figuration defining its position and orientation. The inverse
kinematic problem deals with finding a configuration that
will put a point of the linkage (usually an end-effector, in
the context of robotic manipulators) at a specified location
in the world. Typically, the solution to an inverse kinemat-
ics problem will not be unique. If the linkage is redundant
(i.e., it has more degrees of freedom than the minimum
needed to complete its task), there will be an infinite num-
ber of solutions [12], while nonredundant linkages will have
a finite number of solutions to the inverse kinematics prob-
lem. This topic is of interest because a closed linkage can
be modeled as a special solution to the inverse kinematics
problem, where each loop is considered as an open linkage
with its end-effector permanently attached to another joint
of the loop, or a point in space.

There has been a large body of research dedicated to
investigating the inverse kinematics problem. Analysis of
the topological properties of the inverse kinematics for re-
dundant manipulators were discussed in [4], [12]. Specif-
ically, it was shown that the infinite number of solutions
for a planar or spatial inverse kinematic problem can be
grouped into a finite number of disjoint, continuous self-
motion manifolds. Each of these self-motion manifolds is
a set of configurations that correspond to a self-motion of

a manipulator, which is a continuous displacement of the
manipulator’s joints that keeps the end-effector stationary.
Many algorithms have been developed to find solutions for
the inverse kinematics problem. An algorithm was pre-
sented in [47] for computing the inverse kinematic solution
for a 6R (six revolute joints) serial manipulator in R®. The
number of joints and the dimension of the workspace are
equal in this problem, causing the system of equations that
describe the constraints to be neither underconstrained nor
overconstrained. The main contribution of [47] is an algo-
rithm to reduce the inverse kinematics problem to an eigen-
value problem using matrix operations, which can then be
solved efficiently. An interesting result for 6 R manipula-
tors is a bound of at most 16 unique solutions to the in-
verse kinematics problem, regardless of the manipulator’s
geometry [57]. An algebraic formulation of the problem
and a collection of algorithms for its solution are presented
in [19] for 5, 6 and 7 linkage chains. An iterative algorithm
for moving the end-effector of a manipulator along a given
trajectory using numerical methods was presented in [61],
where the trajectory is specified as a sequence of points in
the world that the end-effector is to follow.

Another area of research in kinematics is the develop-
ment of parallel manipulators, which are closed-loop ma-
nipulators having multiple chains of links connecting an
end-effector to a fixed base. Hence parallel manipulators
have closed linkages. A good example is the Stewart plat-
form, which is composed of two rigid bodies in R® that are
connected by a number of prismatic joints (usually 6). The
kinematics for this manipulator are well known. Parallel
manipulators have a close relationship with mechanism de-
sign. Usually only closed linkages with a small number of
links (4 or 5) are considered in planar mechanism design
because they only need a single actuator to control the
entire linkage. Merlet [50] provided a method to express
the forward kinematics for all architectures of planar fully
parallel manipulators, which are rigid platforms with three
parallel chains of links connected to them, each chain hav-
ing three 1-dof joints (either revolute or prismatic, with
only one of the joints being actuated). In a related paper
[61], algorithms to determine various workspaces of these
planar parallel manipulators were presented. Each of these
workspaces defines the region of the world that a certain
reference point on the manipulator can reach, given differ-
ent constraints on the orientation of a linkage’s platform.

All previous research on the topic of computing kinemat-
ics indicates that inverse kinematics is a very hard com-
putational problem. In our work, we develop randomized
techniques to maintain closed chains.

B. Path Planning

In general, the constraints imposed by a closed linkage
form an algebraic variety and in principle complete plan-
ners such as [58], [14], [8] could be used. For example,
a general algorithm to solve the motion planning problem
by expressing constraints as semialgebraic sets was devel-
oped by Schwartz and Sharir [58]. Varieties can be thought
as a semialgebraic sets where all the algebraic expressions

are restricted to being equal to zero. However, the run-
ning time of the best known algorithm is exponential in the
dimension of the configuration space [14]. Unfortunately,
the high computational complexity of all of the above al-
gorithms and our desire to address motion planning for
problems with high degree of freedom makes them too pro-
hibitive for practical use.

This has led to the development of randomized path
planning methods, which produced good results in a va-
riety of difficult problems involving robots with open kine-
matic linkages. Several randomized planners exist, and
can be generally be categorized as single-query or multiple-
query approaches. Single-query approaches are designed to
quickly solve a single problem without preprocessing, and
multiple-query approaches perform significant preprocess-
ing of a given robot and environment to enable numerous
initial-goal query pairs to be solved efficiently. Among the
single-query planners lies the Randomized Path Planner
(RPP) [5], which was one of the first highly successful
randomized planners. It solved problems for robots with
more than 60 degrees of freedom [7], [34]. The planner
uses a potential field as a guidance towards the goal, and
random walks to escape local minima. Another interesting
approach was presented in [49], [48] — the Ariadne’s clew
algorithm. Considering the initial configuration as a land-
mark, the algorithm incrementally builds a tree of feasible
paths as follows. Genetic optimization is used to search
for a collision-free path from one of the landmarks to a
point as far as possible from previous landmarks. A new
landmark is then placed at this point, and a path to the
goal configuration is searched. New landmarks are placed
until the goal configuration can be connected to the tree.
Other randomized planning approaches that grow trees of
feasible paths include [29], [30], [44], [43]. The planners in
[44], [43] are based on the notion of a Rapidly-exploring
Random Tree (RRT).

The Probabilistic Roadmap Planner PRM [32], [33], [53]
was one of the first multiple-query planners. It captures
the connectivity of the free configuration space by a ran-
dom network, a roadmap, whose nodes correspond to ran-
domly selected configurations and whose edges are local
path segments. The initial version of PRM [33] is con-
sidered a multiple-query planner since after the random
roadmap has been constructed, multiple initial-goal query
pairs can solved efficiently. Several planners have been in-
spired by PRM. Narrow passages are notoriously difficult
to find at random and several planners have developed to
address this issue. Creating nodes in narrow passages has
been the main motivation of the enhancement step in [32],
the generation of nodes near the configuration space obsta-
cles in [3], the penetration of obstacles in [28], the Gaussian
sampling in [10], the retraction to the configuration space
medial axis in [3], and the use of the workspace medial axis
in [13] and [55]. Many recent randomized planners focus
on single-query performance although they can be used for
multiple queries too. Some of them select the nodes of their
roadmaps using a lazy evaluation [9] or a visibility-based
selection method [40].

In all of the above planners, primitives such as the gen-
eration of random configurations or the creation of local
paths are frequently used. One could argue that these
primitives form the basis of several randomized planners.
That is why in this paper we investigate how these primi-
tives, together with path smoothing, can be extended to
handle closed kinematics chains. Our hope is that the
newly developed primitives could be used in the random-
ized methods described above, creating new randomized
planners that are suitable for a variety of problems, as their
open-chain counterparts are.

In Section VII we demonstrate the generality and utility
of our primitives by applying them to extend two existing
planners. The first is a multiple-query planner based on the
PRM, and the second is a single-query planner based on the
RRT. To the best of our knowledge, there are two published
papers that extend randomized planners to handle closed
kinematic chains apart from the earlier work in [36], [35].
One is a previous paper of ours [45], which presents a subset
of the work in our current paper. The other is a paper by
Han and Amato [24]. In that paper, the authors show
how to develop a PRM-based planner for closed kinematic
chains. They break the closed chains into a set of open
chains, apply standard PRM random sampling techniques
and forward kinematics to one subset of the subchains, and
then use inverse kinematics on the remaining subchains to
enforce the closure constraints. Both [24] and our work
advance the state-of-the-art in using randomized planners
for planning for mechanisms with closed loops.

I11. Problem Formulation

In this section, a formal definition of a closed linkage
will be presented, and the motion planning problem is for-
mulated in the context of these linkages. Mathematical
concepts that are commonly used in motion planning will
be briefly introduced, and the notation used throughout
the remainder of this paper will be standardized as well.

A. Definition of a Linkage

Our problem will be defined in a bounded two or three
dimensional world, W C RY, such that N = 2 or N = 3.
A link, L;, is a rigid body in the world, which represents
a closed, bounded point set. Let £ = {Ly,Ls,...,Ly,}
denote a finite collection of n; links. A joint Ji contains
the following information:

1. a subset of links {L;, Lj, ..., Ly} C £ connected by Jj
2. the point of attachment for each L;

3. the type of joint (revolute, spherical, etc.)

4. the range of allowable motions

Let J be a collection of n; joints, each of which connects
various links in £. We then define M = (£,J) to be a
linkage?. It will sometimes be convenient to consider M
as a graph in which the joints correspond to vertices and
the links correspond to edges. Therefore, let Gy denote

2We use the more general definition of linkage that includes open
and closed kinematic chains [20], rather than a linkage that contains
only closed chains [25].

Fig. 2.

Nomenclature: (a) Open chain linkage (b) open linkage
(c) closed chain linkage (d) closed linkage and a (e) compound
linkage.

the underlying graph of M. The special case of unary
links (a link connected to a single joint) in M needs to
be addressed, since the edge corresponding to these links
will only connect one vertex. An artificial vertex needs
to be created in Gy for each unary link, and it will be
connected only to the edge corresponding to the unary link.
According to the connectivity of G s, we will then group
linkages into classes®, which are shown in Figure 2. If Gy is
a tree, then we will consider this type of linkage to be open.
A special case of an open linkage is an open chain linkage,
in which all the vertices of Gs have degree less than three.
In the case where Gy is cyclic and all vertices have degree
greater than one, we will call this a closed linkage. We
define a closed chain linkage to be a closed linkage in which
all the vertices have degree exactly two. The last class
is the compound linkage, in which Gy is cyclic with at
least one vertex having degree one. It is interesting to note
that if Gas is a tree, then all configurations of M yield an
acceptable position and orientation for each of the links,
if we ignore any collisions. This is due to the fact that
there are no loops that would create restrictions on the
valid configurations of a linkage.

B. Kinematics

To consider the kinematics of M, we use standard pa-
rameterization techniques to express the configuration of
M as a vector, g, of real-valued parameters. The configu-
ration is used to uniquely specify the position and orienta-
tion of M in W. Let M(q) denote the transformation of
M to the configuration in the world given by g.

To determine the position and orientation of each L; with
respect to L;_1 in an open chain of links Ly, Lo, - - -, L;, we
will use a “homogeneous” transform matrix 7; that en-
codes both translation and rotation in W. Each L; will
have associated with it an independent origin O, and a
coordinate frame Fp,, which will also be independent of
W’s coordinate frame. Then, since the linkage is open and

3Note that these classes deviate from the standard terminology used
in mechanism design [25]. Our intent was for a chain to imply linear-
ity of the linkage, and for closed to mean that the linkage contains no
unary links.

G will be a tree, we can choose one of the links to be the
root link. It is often convenient to assume that this link is
attached to a point in the world, no longer allowing M to
freely translate in the world. This point of attachment can
be thought of as a zero length link in our linkage, which we
will denote as Ly. These transformations pertain to open
chains only. To calculate the kinematics of an open link-
age, each chain of links in G'ps that begins at a leaf of the
tree and ends in the root vertex can be considered as an in-
dependent open chain, effectively decomposing the linkage
into multiple open chains.

For the planar case (N = 2) we have the following trans-
formation matrix:

cosq; —sing; £; 1
T;=| sing; cosg; 0 , (1)
0 0 1

in which /; is the distance between the joints for link L; and
Lo = 0 (the length of the artificial link Lg). The parameters
q; assume that each of the joints connecting the links is
revolute. Since a prismatic joint is essentially a variable
length link, this transform matrix can be used to represent
this type of joint by varying ¢;. The transformation of any
link is given by the product, V(z,y) € L; (with respect to
L;’s coordinate frame),

z(q) x
yl@) | =T1T---Ti|y |- (2)
1 1

This transformation rotates each link L; by the param-
eter ¢; and translates L; to its position in the chain
Ly, Lo,...,L;.

As in the 2D case, a homogeneous transformation ma-
trix can be defined for the 3D case by using the Denavit-
Hartenburg parameterization [21], [26]:

cos 0; —sin @; 0 li—q
T — sinf;cosa;_1 cosf;cosa;_1 —sina;_1 —sina;_1d;
*7 | sinf;sina;_1 cosé;sina;_1 cosai_1 cos a;—1d; ’
0 0 0 1

(3)
in which there are four parameters involved: ¢;,a;,d; and
0;. Assuming once again that each of the joints in the
linkage is revolute, then the joint connecting links L; and
L;_; will have an axis of rotation. The four parameters can
be put into two groups, denoting a length and angle with
respect to either L; or the axis of rotation. The parameter
£; denotes the length of L; as before, and «; is the angle
between L; and L;_q, with respect to L;. Along the axis
of rotation, d; is the distance between L; and L;_1, and
0; is the angle between them. In the case of a prismatic
joint, either ¢; or d; can be varied. The Denavit-Hartenburg
parameterization is capable of representing the other lower-
pair joints by creating additional links and setting certain
parameters equal to 0. To compute the kinematics for the
entire linkage, a product similar to the one in Equation 2
can be used.

Fig. 3. The relationship between C¢;ce, Ccons, and Csat-

C. Ezpressing Closure Constraints

In this paper, we are primarily concerned with the case
in which M is a closed or compound linkage, implying that
G contains cycles. For this case, there will generally ex-
ist configurations that do not satisfy closure constraints
of the form f(g) = 0. These constraints can be defined
by breaking each cycle in G at a vertex, v, and writ-
ing the kinematic equation that forces the pose of the cor-
responding joint to be the same, regardless of which of
the two paths were chosen to v. Let F represent the set
{fig) = 0,f2(q) = 0,..., fm(q) = 0} of m closure con-
straints, whose formulation will be formally defined in Sec-
tion IV-A. In general, if n is the dimension of C, then
m < n. Let Ceons C C be defined as:

Ccons:{qec|vfi€]:7f’i(Q) :0}7 (4)

which denotes the set of all configurations that satisfy the
constraints in F.

A collision is defined for M(q) if any of the links of
M(q) collides with any of the workspace obstacles or the
other links in £. Consecutive links usually do not give
rise to collisions. Let the world have a set of obstacles
B ={Bi,...,B,,}, which are each a closed but not neces-
sarily bounded subset of W. Using standard terminology,
let C¢ree denote the set of all configurations such that M(q)
is not in collision. Formally, this is:

Cfree = {q ecC | (M(q) nB = 0) A (VLiaLj € M(q)aLi nL; = @)},
(5)

where L;, L; are nonconsecutive links.

In addition to the usual complications of path planning
for articulated linkage having many degrees of freedom,
we are faced with the additional challenge of keeping the
configuration in Ceons. Let Coat = Ceons N Cyree define the
set of configurations satisfying both closure and collision
constraints, pictured in Figure 3.

Although C is typically a manifold, C.ons Will be more
complicated. Each of the holonomic constraints in F is a
smooth function with a non-zero derivative. Using stere-
ographic projection [39], these constraints can be refor-
mulated as polynomial equations, and together these con-
straints form a system of equations that characterize the
configurations satisfying the closure constraints. A real al-
gebraic variety can be defined by the polynomial equations
f1(q) = ... = fm(q) = 0. The surfaces defined by these va-
rieties are not smooth in general, and can contain singular

points. Therefore, a variety is not necessarily a manifold,
although a real algebraic variety can be split into a finite
number of manifolds [62]. Because of the nature of these
closure constraints, we will assume that we have no a priori
knowledge of a parameterization for the variety.

We previously illustrated how a parameterization for S!
is created, and we were able to use this parameterization to
reduce the dimension of the composite configuration space.
However, since we have no known parameterization for the
variety defining C..,s, we can not reduce the dimension-
ality of C. Herein lies the difficulty of path planning for
closed linkages. Our problem reduces to path planning in
a space with lower dimension than C, due to the fact that
the equality constraints in F reduce the dimensionality of
C. Since we have no efficient way to reduce the number of
parameters needed to specify the configuration for a closed
linkage, we allow a tolerance for C.,y,s to simplify path plan-
ning. This tolerance will be the subject of Section IV-A.

Finding a Path. We now come to the definition for the path
planning problem. Initially we are given ¢;ni € Csqp and
Ggoal € Csat, the initial configuration and goal configuration,
respectively. The task is to find a continuous path 7 :
[0,1] = Csqt such that 7(0) = ginie and 7(1) = ggoa- For
a path to exist between giniz and ggoar, it will be necessary
that they are both contained within the same connected
component of Cgay.

D. A Specific 2D Model

The model described up to this point is fairly general,
and is used to express the primitives that we introduce.
We now give a specialized model that will facilitate some
of the later discussion and will be used in our simulation
experiments.

Suppose the following:

1. L is a collection of line segments in a 2D world.

2. Joints only attach links at their endpoints.

3. Every joint is revolute.

4. There are joint limits (e.g., joints are not allowed to
rotate into the range 0 + &, where ¢ is a parameter for the
joint limit).

5. One of the joints attaches a link to the origin (0,0) in
the world, W.

6. The obstacle region is polygonal.

IV. Generating Random Samples

One of the most basic operations in many randomized
planners is the construction of random configurations. This
is particularly true of multiple-query approaches. For ex-
ample, the basic PRM approach uses randomly-generated
configurations that lie in Cfpe.. These can be found by
simply generating configurations in C, and rejecting those
in collision. The problem is considerably more complicated
for closed kinematic chains because all samples must lie in
Ceons, satisfying closure constraints. This section provides
a general approach to generating random samples in Cggy.

Fig. 4. An example of breaking cycles in a linkage.

A. Kinematic Error

To handle the closure constraints in F, we define a new
linkage, M' = (L', J"), which is obtained by breaking cy-
cles in the underlying graph G of M. Let the set of links
be the same, £’ = L. Let J' be a superset of 7 and con-
tain n; + m joints, where a new joint is added for each
of the m cycles in Gps. For each cycle in Gy, the joint
where the break occurs can be selected arbitrarily, and will
be denoted by Ji. There will be two links from the cycle
in Gy that are attached by Ji. For one of these links,
disconnect it from Jj and form a new joint J;, on the link
where Jj, was formerly attached. If this insertion of joints
is performed for each cycle of G jr, the result will be a link-
age M’ which has no cycles (G is a tree). An example
of “breaking” the loops in a linkage is shown in Figure 4.
In M'; the configuration of any link can be determined by
applying the kinematic equations from Section ITI-B to the
sequence of links on the unique path to Lg.

Neglecting self-collision, note that M’ can achieve any
configuration in C. If J, and J; have the same position
in W, then a closure constraint from M is satisfied. If
this is true for all joints in J'\ J, then the configuration
lies in Ceons- The closure constraint f;(q) can be written
by subtracting the kinematic expression for Ji(q) from the
expression for .J;, using the equations from Section III, and
will be done as follows. Let B C {1,...,n;} be the indices
of the set of joints that were broken in M to form M'. A
kinematic error function can be defined as:

e(g) = Y [19k(a) = Ji(a)II>- (6)

keB

Alternatively, the maximum (or any LP norm) can be used
to combine the error from each broken loop. This error
function allows us to redefine C.,,s as follows:

Ccons = {q ecC | e(q) = 0}

Figure 5 is an example of a linkage in which there are two
broken kinematic loops, where e; and e; are the gaps that
need their Euclidean distance reduced. Since the equality
constraints that define the closure of the kinematic loops
are very restrictive, we allow a specified real-valued toler-
ance € > 0 to determine when the closure constraints are
satisfied. The tolerance also allows us to reduce the ef-
fects of numerical error on our solutions. This gives us new
definitions for Ceons and Cgq: that take € into consideration:

Ccons = {q ecC | e(Q) < 6};

Fig. 5. Each kinematic loop is broken, and e(q) is measured in terms
of Euclidean distances.

a. b.

Fig. 6. (a) The curves depict Ccons, and configurations are chosen at
random in C. (b) Randomized error minimization is performed
on the samples to force as many as possible onto Ccons-

C~sat = Ccons N Cfree-

By using the e tolerance, we allow some freedom for the
randomized algorithms as they travel on the constraint sur-
face. Without the the tolerance, we would need to use more
costly algebraic techniques to incorporate the closure con-
straints into our planner, which would decrease the number
of allowable degrees of freedom for a linkage.

B. Gradient Descent

Figure 6 illustrates the problem of generating vertices in
Csat- A random sample in C can easily be generated (of
course, its distribution depends on the parameterization of
C), but is not very likely to be in Cyps. The algorithm in
Figure 7 gives pseudocode for a randomized descent tech-
nique that iteratively attempts to reduce the error function,
e(q) from Section IV-A. The approach we use is to break
the kinematic loops and minimize the sum of squares the
Euclidean distances of each joint that is not where it should
be to satisfy kinematic closure. An alternative would have
been to define each of the closure constraints f;(q) in poly-
nomial form. The algebraic distance could then be mini-
mized, or an approximation to the Euclidean distance in C
may easily be minimized [60].

The algorithm GENERATE RANDOM_SAMPLE re-
quires three constants: €, which is the numerical tolerance
on the error function, I, which is the maximum number of

GENERATE RANDOM_SAMPLE()
1 ¢ +RANDOM_CONFIGURATION();

14+ 0; 7«0
while i < I and j < J and e(q) > € do

i++; J++

¢ -« RANDOM_NHBR(qg);

if e(¢') < e(q) then

70 g+ d;
if e(¢q) < € then Return ¢
else Return FAILURE

© 00 O Ut ix LN

Fig. 7. An algorithm that iteratively attempts to reduce the kine-
matic error of a linkage.

U.a.

search steps, and J which is the maximum number of con-
secutive failures to close the kinematic chains. The function
RANDOM_NHBR takes in a configuration ¢ as a parame-
ter, and produces a new random configuration ¢’ in Cfree.
The distance between the new configuration ¢’ and ¢ will
be within a fixed amount d,,,,, which will generally be very
small. RANDOM_NHBR may have to guess many nearby
configurations to produce one that is collision-free. Rather
than compute a complicated gradient of e(q), any random
configuration ¢’ in which e(q') < e(q) is kept. This was
observed in [5] to be much faster than computing an ana-
lytical gradient for high-degree-of-freedom problems. If the
algorithm becomes trapped in a local minimum and returns
FAILURE, then the sample is simply discarded. This has
no serious effect on the overall approach, except that some
computation time is wasted. Other approaches, such as
the Levenberg-Marquardt [56] nonlinear optimization pro-
cedure could be used instead of randomized descent, but
one must be careful not to introduce an unwanted deter-
ministic bias on the solutions.

C. A Computed Example

As an example, we tested the uniformity of a sample of
nodes obtained through our randomized algorithms. Ob-
stacles were placed in the world so that there would be
many distinct connected components in Cgq;. We then gen-
erated a roadmap for this world and observed the various
connected components to determine whether they were all
represented. In Figure 8, it can be seen that many of the
generated nodes wrap around various obstacles and have
different orientations. Each of these configurations lies in a
distinct connected component of C~sat, which means that no
path exists between these configurations. This experiment
illustrates the ability of random sampling to simultaneously
explore all components of a space, which is advantageous
for PRM-type multiple-query planners.

V. Generating Local Motions

Nearly all existing randomized path planners require the
generation of local motions in Cfpe.. To extend these plan-
ners, operations are needed that generate local motions in
Ceons Or Cgq. Given a configuration g € Cyqy, the task is to

b

&7
ww
o

@ |

Fig. 8. All ten components were found in a 2D world that contains
obstacles.

generate nearby configurations that also lie in C4,; and are
reachable from g by a local motion.

A. Random Steps in the Tangent Space

Suppose that a configuration g € Csq is given. We will
use random sampling to generate incremental motions. It
is preferable to generate samples that locally follow the
tangent space of the constraints, rather than choosing a
random direction. The tangent space is the set of tangent
vectors for some ¢ € Ccons, which is depicted in Figure 9.
Using a tolerance €, each of the tangent vectors gives us a
direction from ¢ that is likely to remain in ésat, which we
can exploit when we wish to move locally. By sampling in
the tangent space when searching for configurations within
a neighborhood of ¢, we will be more likely to generate a
new configuration that satisfies all closure constraints. The

Fig. 9. Tangent space for a configuration g on C.

differential configuration vector dq lies in the tangent space
of a constraint f;(¢) = 0 if

afz'(q) afz'(q)
oq dqr + 0q2

ofi(q) _
-+ mdqn =0. (7)

dgs + -

This leads to the following homogeneous system for all of
the m closure constraints:

ofilg) 0fi(g) 0f1(q)

Oq 0q2 0qn dq
0fa(qg) 9f2(q) 0f2(q) dgs

oq 0q> 0qn . =0. (8)
dfm(@) Ofm(a) fm(a) |

Oq 0qo 0gn

Recall that m < n. If the rank of the matrix is £ < m,
then n — k configuration displacements can be chosen in-
dependently, and the remaining k parameters must satisfy
Equation 8. Using singular value decomposition (SVD)
[22], [56], [46], this under-constrained homogeneous sys-
tem can be efficiently converted into a more useful form.
SVD will take any m x n matrix A and decompose it into
three new matrices: an m X n column orthogonal matrix
U, an n X n diagonal matrix W, and the transpose of
an n x n orthogonal matrix V. These matrices are con-
structed such that A = U-W -VT. The nonnegative values
wy > wy > ... > wy, that lie on the diagonal of W are the
singular values for the homogeneous system of equations.
Since m < n for Equation 8, the last n —m singular values
will be equal to 0, although some of the first m values could
be 0 as well due to degeneracies in the m equations. For
all w; = 0, the corresponding columns ¢ in V' will form an
orthonormal basis for our tangent space, meaning that any
linear combination of these vectors will lie in our tangent
space. This enables our algorithm to follow the tangent
space and only generate the n —m random scalar displace-
ments needed for the linear combination, effectively reduc-
ing the size of the space we need to searching for valid local
motions. This technique usually increases the likelihood
that local motions will remain within tolerances for larger
step sizes, thus improving the efficiency of our algorithms.

To use this technique, we need an efficient means of com-
puting the partial derivatives for each of our constraints.
Each of these closure constraints is formulated by finding
the algebraic equations that force J; and J;, at each break
to have the same position in the world. J; and J, can be
considered as unary joints, or in other words, there is only

one link attached to each of them. L, and Lj will denote
these links for Ji and Jj, respectively. As discussed in
Section III-B, Ly and L) will each have a unique chain of
links to the root link Ly since the linkage is acyclic. The
kinematics of these open chains needs to be computed us-
ing the two or three dimensional transformation matrices
from Section III-B. Below we will consider how the partial
derivatives of these open chains are efficiently computed for
W C R2. First, we need to reformulate the homogeneous
transform matrix in Equation 1. We do this by defining re-
cursive formulas to compute the = and y positions for the
origin of each link in W:

X = c08(qn)Xn—1 —sin(qn)Yn—1 + b1, (9)
where Xy = z and
Y, = sin(gn)Xn—1 + c08(¢n)Yn—1, (10)

where Yy = y. In Equations 9 and 10, i represents the
index of the link in each open chain of links. So, Ly will
have index 0, etc. Once again, £, is the length of a link
and the (z,y) values are the coordinates of a link with
respect to its coordinate frame. These formulas give us
an algebraic representation of the kinematics for each open
chain of links, but the partial derivatives with respect to
each parameter ¢; € ¢ need to be computed. For each of
the above formulas, there will be two cases to be considered
when taking the partial derivatives: taking the derivative
with respect to the parameter for link n, or for one of the
other ¢ < n links:

0X, _ { cos(qn)aigzi‘l — sin(qn)‘rﬂ(,;jh‘1 i<mn
9q; —sin(qn) Xpn—1 — cos(gn)Yn-1 i=n
(11)
. OXn_1 Y1 .
oYy :{ sin(gn) Ba; _(.:OS(Qn) das 'L.< n (12)
Jq; cos(qn) Xn—1 — sin(g,)Yn-1 i=n

Now that we have the algebraic equations corresponding
to the needed derivatives, we must now consider the task of
evaluating them for a given ¢. Since these derivatives need
to be computed quite often, it must be done efficiently.
By using the recursive linkage of these equations to our
advantage, memoized dynamic programming [18] can be
used to efficiently perform this computation. The partial
derivatives are computed iteratively starting from n = 0,
and each value is stored in a table for reuse in later itera-
tions. The following two equations avoid computing values
for Equations 9 and 10:

oY,
Xn = 8—qn + Kn_l, (13)
0X,
Y, =— . 14
90, (14)

Using memoized dynamic programming, we can eliminate
the need to recompute values that were previously com-
puted, and we can also avoid the overhead of using the
naive recursive implementation that would result in a large

CONNECT_CONFIGURATIONS(q,q")
i+ 0; j«<0; kK« 0; L+« {q};
while i < I and j < J and k < K and
p(LAST(L),q") > po do
t++; J++
q¢" < RANDOM_NHBR(LAST(L));
if e(¢") < e then
i+ 0; k+ +;
if p(¢",q') < p(LAST(L),¢') then
k+<0; L« L+{¢"};
if p(LAST(L),q') < po then Return L
0 else Return FAILURE

N =

= © 00O Utk W

Fig. 10. An algorithm that iteratively attempts to move a system
from one vertex to another while keeping ¢ in Csqt.

number of function calls in our implementation. The pro-
cedures outlined above to reformulate the kinematics and
express the partial derivatives for a linkage can easily be
extended to the three dimensional case. The Denavit-
Hartenburg parameterization may be expressed as a re-
cursive function, and the derivatives can be derived in a
manner similar to the two dimensional case.

B. Connecting Nearby Configurations

Some randomized path planners, such as the PRM, are
required generate a path that connects two nearby config-
urations. This can be accomplished by chaining together
a sequence of local steps using the method just presented.
Let ¢ and ¢' be two configurations in Cso; that we wish to
connect (if possible).

To describe what is meant by “nearby,” a distance metric
will be defined. For the model in Section III-D, we will use
the following

n
p(e,d) = llai — &, (15)
i=1
with the understanding that each ¢; € S'. An alternative
is to compute the sum of squares of the Euclidean displace-
ments for all of the joints in 7. This metric offers some
advantages, but is often too costly for frequent computa-
tion [33].

The algorithm in Figure 10 attempts to reduce p(g,q'),
the distance from ¢ to ¢', by a randomized gradient de-
scent that simultaneously maintains the kinematic error to
within € and reduces p, but is free to travel due to the al-
lowed tolerances on the closure constraints. The gradient
descent is shown in Figure 11, where the random path trav-
els between two configurations while staying within Csat.

The overall structure of the CONNECT_CONFIGURATIONS
algorithm is similar to GENERATE_RANDOM_SAMPLE.
An additional constant K is used to terminate the search
after K consecutive failures to reduce p, even though kine-
matic closure is maintained. Also, the constant pg is in-
troduced to stop the algorithm when the path from g is
sufficiently close to ¢’. In some cases, it might be prefer-
able to switch the order of Lines 5 and 7, depending on

Fig. 11. A randomized descent on p can be performed inside Ceons-

whether we want to prioritize the minimization of distance
over the satisfaction of the closure constraint. The success
of the algorithm is based on the assumption that the se-
lected vertices are close enough to ensure local minima and
collision constraints are not likely to prevent connection.

One drawback of creating paths using randomized gra-
dient descent is that the path needs to be stored for every
edge we add to the roadmap. The reason is that there is no
longer a guarantee, due to the randomization, that a path
can be regenerated between these vertices at a later time.
Another reason is that the gradient descent is computation-
ally expensive to perform, and the computation required
during the query phase should be minimized. Although,
once a path has been generated, the path optimization al-
gorithms from Section VI can be used to reduce the length
of the path. As a result, the amount of space needed to
store the paths in the roadmap is reduced, along with the
added benefit of the higher quality paths.

C. Experiments

We use the model given in Section ITI-D to demonstrate
the method. The first experiment we performed compared
the random sampling versus tangent space sampling when
generating a random neighbor of a configuration. Our ex-
periment was conducted by generating 5000 random con-
figurations satisfying the closure constraints, and for each
of these configurations a random neighbor was computed
using both the random and tangent space sampling meth-
ods. The number of random neighbors satisfying the clo-
sure constraints was recorded, as well as their average dis-
tance from the original random configuration. This exper-
iment was performed repeatedly, changing the parameters
of the two methods to vary the average distance traveled
between the random configuration and its random neigh-
bors. The chart in Figure 12 compares the two sampling
methods for an 8-link closed chain linkage, and Figure 13 is
a comparison for a 7-link closed linkage that has two loops
(the linkage is shown in Figure 15).

It is readily seen that for both linkages the tangent space
sampling will outperform random sampling in both cri-
teria. Tangent space sampling is more likely to produce
a new configuration satisfying the closure constraints, as
well as generating random neighbors along a greater dis-
tance. Both of these can improve the overall computation
time because more successful random neighbor sampling
leads to less wasted computation and increasing the dis-
tance traveled per step speeds connection of two config-
urations. Computing the tangent space samples is more

10

Comparison of Random and Tangent Space Sampling
5000

4000 +

ints

3000 1 —— Random Samples

2000 4 Tangent Space Samples

Neighbors Satisfying
Closure Constral

1000 -

0
0.00

T T
0.01 0.02

Average Distance Traveled

0.03

Fig. 12. Comparison between random and tangent space sampling
for random neighbor generation of an 8-link closed chain linkage.

Comparison of Random and Tangent Space Sampling
5000

4000

ints

3000 1 ——Random Samples

2000 Tangent Space Samples

Neighbors Satisfying
Closure Constrai

1000

0
0.00

T
0.01

Average Distance Traveled

0.02

Fig. 13. Comparison between random and tangent space sampling
for random neighbor generation of a 7-link, 2-loop closed linkage.

expensive to perform, though. The average time needed to
generate a neighbor using random sampling took 6.94 mi-
croseconds, while tangent space sampling took 1.518 mil-
liseconds. Even though the tangent space sampling is more
expensive to perform, the extra distance it allows the ran-
dom neighbors to travel makes up for this added expense.
Another factor to be considered is the time spent perform-
ing collision detection, which usually dominates the time
needed to compute the random neighbor using either ran-
dom or tangent space sampling.

VI. Optimizing Paths

Generally, the paths generated by randomized algo-
rithms are not very smooth. In many applications it is
desirable to have paths that are not jagged; thus, a post-
processing step can be used to improve the quality of our
paths. While improving the quality of paths is straight-
forward for basic path planning, path optimization is more
complicated for closed linkages.

The paths produced by randomized algorithms are as-
sumed to be of the following form:

1. The path is represented as a discretized sequence of
points that lie in Csq¢, (v1, .. ., Vn,), where n, is the number
of points in the path.

2. The first point in the sequence is ¢;,;; and the last is
9goal -

3. For each pair of consecutive points in the sequence, v;
and viy1, p(vi,vir1) < dmaz, Where diq, is the maximum
distance between configurations in the path.

Viv1

a. b.

Fig. 14. Two methods for path optimization: a) point removal; b)
barycentric warping.

We describe two approaches for improving the quality of
the paths produced by the randomized algorithms, one that
reduces the length of the path and one that “warps” the
path to reduce its curvature. Typically, a combination of
the two methods will provide the best results when they
are repeatedly performed on a path.

Point removal. Along the path, every triple v;, v;41, and
viy2 is analyzed. We compute the distance d = p(v;, vi12)
and determine whether d < dpg,,. Intuitively, when
d < dpae the local portion of the path with configura-
tions v;, viy1, and v;yo is not taking the shortest route
from v; to v; 2. Because of this, we can delete the configu-
ration v;y1 from our path without violating the maximum
distance between two consecutive configurations in a path.
This effectively creates a new, straight line, local path from
v; t0 vi2. Collision detection can be ignored for this new
local path because we have already made the assumption
that there are no collisions between points in the sequence,
as long as the condition d < d, 4, is maintained. When this
operation is performed over the entire path, a less jagged
path is the result. Figure 14.a shows an example of point
removal for a path. To work properly, this technique re-
quires multiple passes over the path to ensure that all extra
configurations have been removed from the path.

Barycentric warping. In this approach to path optimiza-
tion, we will once again be concerned with the triple v;,
Vi+1, and v;ya, but this method will attempt to incremen-
tally move v;; closer to the straight line between v; and
Vi+2. Barycentric warping is most useful when d > dpqq
because this method can reduce the length of the path
without removing any points. We use barycentric coor-
dinates [27] to perform this warping, or more formally,
an iterative interpolation of v;;1. Given a set of points
A = {ag,a1,-..,a;} in Euclidean n-space, a k-dimensional
hyperplane H exists containing A. We can define barycen-
tric coordinates as the real numbers fg, S, -..,8k such
that:

k k
Zﬂi =1 and h:Zﬂiai,
=0 =0

in which A is a point with respect to A lying in H. Intu-
itively, the barycentric coordinates are a series of weights
that allow us to interpolate a new point A from A. This
weighting is used to facilitate the warping of v;41. To
compute the barycentric warping, we will then let A =
{vi, Vit1,Vit2}, making H a two dimensional hyperplane.

11

Since we will want the interpolated point to be in the trian-
gle specified by v;, vi+1, and v;42 on H, then £g, f1,02 >0
will always be true.

The barycentric warping algorithm iteratively warps v;41
towards the straight line between v; and v;;2 by incremen-
tally increasing the (; weight while setting Sy = B2 =
U}—Bl). An example of this warping is shown in Figure 14.b.
The parameter AS determines the change in the weighting
of v;41 for each iteration of the warping algorithm. The in-
terpolated point that is closest to the line between v; and
vi+2 while satisfying the closure and collision constraints
will replace point v;41 in the path.

VII. Path Planning Experiments

In this section, we present two path planning methods
that were developed by applying the methods introduced
in Sections IV-VI. Section VII-A describes an implemented
PRM-based planner and shows some computed results.
Section VII-B presents an implemented RRT-based planner
and several computed examples.

A. PRM Results

The implemented version of PRM is a modification of
the planner presented in [33]. A large number of configu-
rations are distributed uniformly at random in the config-
uration space and those that are collision-free are retained
as nodes of a roadmap. A local planner is then used to
find paths between each pair of nodes that are sufficiently
close together. If the planner succeeds in finding a path
between two nodes, they are connected by an edge in the
roadmap. In the query phase, the user specified start and
goal configurations are connected to the roadmap by the
local planner. Then the roadmap is searched for a shortest
path between the given points.

We use GENERATE_RANDOM_SMAPLE to generate
configurations that lie in Csq. These serve as the vertices
of the roadmap. The edges of the roadmap are generated
using CONNECT_CONFIGURATIONS.

We now present three examples of linkages for which we
have computed roadmaps. The first linkage is shown in
Figure 15, and is composed of seven links configured into
two loops. A path was generated using the roadmap, and
four intermediate configurations in the path have been dis-
played. This linkage has seven degrees of freedom when the
closure constraints are ignored. Each of these constraints
removes two degrees of freedom from the linkage, resulting
in a total of three DOF. Each of the loops in the linkage
has a single DOF, and the base joint adds the third DOF.

The next example considers a manipulator attached to
a closed linkage, and is pictured in Figure 16. This linkage
has 6 degrees of freedom: 5 from each link in the loop
and one for the manipulator (the grippers are not able to
move). The single closure constraint then reduces the total
DOF to 4. Using a probabilistic roadmap, we created an
example of how manipulation tasks with closed linkages
may be computed.

Our final example in Figure 17 simulates two pla-
nar serial manipulators cooperatively grasping an ob-

|<§>|. |<§|-

°r
N ol

Fig. 15. Snapshots along the path of a closed linkage with two loops.

Fig. 16. Snapshots along the path of a manipulator example.

J

yd
|7

N\ \ .
L et

Fig. 17. Two manipulators grasping and moving an object.

12

\f

m .

ﬂﬂ l@l

Ry

.

Fig. 18. Two manipulators grasping a cross-shaped object.

ject. This example has 8-DOF, because the two manip-
ulators have 3 and 4 links plus the single DOF added
by the manipulated object. Once again, the closure
constraint reduces the total degrees of freedom to 6
for the linkage. All of these examples required several
hours for the computation of the roadmap. This ex-
tensive computation time is due to the repeated execu-
tion of the GENERATE_RANDOM_SAMPLE and CON-
NECT_CONFIGURATIONS algorithms, which generally
are very time consuming. Note that the implemented ver-
sion of PRM tries to generate a roadmap that captures the
components of the free configuration space and this entails
a long precomputation time. After the roadmap has been
precomputed, path queries can be run very quickly once
the initial and goal configurations have been connected to
the roadmap because a simple graph search is all that is
required to compute the remainder of the path. The pre-
computed roadmap is then stored for later use.

B. RRT Results

The RRT-based planner is a modification of a planner
presented in [43]. An RRT is a tree that is grown incre-
mentally. Initially, there is a single vertex, g;n;;- In each
iteration, a vertex is added to the tree by picking a ran-
dom configuration, and then extending the vertex that is
closest to the random sample [41], [43]. In the adaptation
described here, the RRT is biased toward ggoa: by selecting
Ggoal as a “random” sample a small percentage of the time.

We have computed several examples of paths for closed
linkages using the RRT approach. Each of these examples
were computed by selecting an initial configuration, and
then the RRT was allowed to expand until 8000 nodes were
added to the tree. The first example, shown in Figure
18, is another coordinated manipulation task for two serial
manipulators grasping an object in the shape of a cross.
This example has 9-DOF, but with closure constraints the
number of degrees of freedom is reduced to 7. The time
needed to generate this example was 1271.18 seconds.

The second example is of a snake-like compound link-
age, shown in Figure 19, where the “head” of the snake
needs to compress so that it may fit through an obstacle.

Fig. 19. A snake-like compound linkage example.

N
5

Fig. 20. An 11-link compound linkage example.

G

This linkage has 9-DOF, but again has a total of 7 degrees
of freedom when closure constraints are considered. Alto-
gether, this example required 468.7 seconds to compute.

The last RRT example is an 11-link linkage, shown in
Figure 20 with 9-DOF once the closure constraints have
been taken into account. The computation of this example
took 888.22 seconds.

VIII. Conclusions

We have introduced a set of primitives that extend the
applicability of randomized path planning techniques to a
larger class of problems. Our work allows for the develop-
ment of randomized planners that incorporate both closed
and open linkages into their motion planning strategy. Our
primitives are general and thus capable of being applied to
a large number of problems and randomized path planning
methods.

Our work is based on decomposing a closed linkage into
multiple open linkages, as well as by defining the notion
of a closure constraint upon these new linkages. We use
random gradient descent algorithms to force and maintain
the closure of these open linkages, leading to algorithms
that provide a large computation time improvement over
algebraic methods, although at the expense of having a
weaker notion of completeness.

13

Using our new primitives, randomized planning meth-
ods were developed by adapting existing randomized algo-
rithms. The PRM approach provides us with a powerful
means of characterizing the entire space of valid configura-
tions for the articulated linkage. RRT trees have also been
implemented, yielding a fast algorithm to explore a single
connected component of Cyq;. Our implemented PRM ex-
cels in applications where multiple path queries are needed,
since the entire space is covered with the roadmap. On
the other hand, when only single point to point queries
are needed, the RRT planner eliminate the overhead of
planning in all connected components simultaneously. The
choice of a suitable randomized planning method is gen-
erally dependent on the application. Both of these ap-
proaches lack the ability to decide if a path exists between
two given configurations. However, if a path does exist,
then the probability that it will be found by these algo-
rithms increases with the number of nodes.

A. Completeness Issues

For the probabilistic roadmap method a notion of proba-
bilistic completeness has been established [33], which states
that if a path exists between an initial and goal configura-
tion, the probability that a path is found approaches one
as the running time approaches infinity. Both the original
PRM and RRT-based planners are probabilistically com-
plete, and we have been careful not to introduce any un-
wanted biases with the modifications made to the standard
probabilistic roadmap planner to ensure that probabilistic
completeness is retained.

Since C.ons is an equality constraint we know it has lower
dimension than C, but the dimension of Ceons i8 equal to
the dimension of C because of the inequality constraints
(see Section IV-A). The boundaries of the € tolerance for
Ceons can actually be considered as obstacle boundaries,
and Ceons is a kind of thin passageway. This enables prob-
abilistic completeness to holds for planning in Cgqs. This
property is true for Czq; only, and not Cyq. The proba-
bilistic completeness of our algorithm is also dependent on
dmaz, the maximum step size between two intermediate
configurations in the encoding of a path.

B. Future Directions

Although our experiments demonstrate that randomized
path planners can be extended to closed linkages using our
framework, signficant issues remain. Our work in [45] rep-
resented the first attempt to develop randomized planners
for closed kinematic chains; the current paper is an expan-
sion and extension of that work. Recently, the approach
described in [24] has led to better efficiency for some classes
of problems. In particular, it was shown in [24] greater ef-
ficiency can be obtained by precomputing samples for a
linkage in the absence of obstacles, and also by using fast
inverse kinematics algorithms for incremental motions.

The reported computation times are encouraging, but it
is expected that great improvements could be obtained by
adapting more recent randomized planners. In some pre-
liminary experients, we have observed dramatic improve-

ment (over an order of magnitude) in computation time
by replacing the RRT-based planner with a bidirectional
version that uses the connect heuristic described in [38].
One would also expect signficant improvement in the PRM-
based approach by exploiting ideas such as lazy evaluation

[9].

Sampling represents another interesting issue that re-
mains for future work. Although it is straightforward to
argue that our approach leads to probabilistic complete
planners, it remains a considerable challenge to character-
ize the rate of convergence to a solution or the distribution
of samples that fall into Csq;- In the spirit of the work in
[3], [10], [28], [40], it be possible to develop special sampling
techniques that are aimed improving the performance for
planning problems that involve closed kinematic chains.

Acknowledgments

We are very grateful to Jean-Claude Latombe and Paul
Finn for our work in [42] which inspired the current pa-
per. We thank Carlo Tomasi for supplying singular value
decomposition code. We also thank Nancy Amato and
Judy Vance for their helpful comments. Steve LaValle is
partially supported by NSF CAREER award IRI-9875304
and a grant from Honda Research. Lydia Kavraki is par-
tially supported by NSF CAREER Award IRI-970228, NSF
CISE SA1728-21122N, an ATP Award and a Sloan Fellow-
ship.

References

[1] R. Alami, T. Siméon, and J. P. Laumond. A geometrical ap-
proach to planning manipulation tasks. In 5th Int. Symp. Robot.
Res., pages 113-119, 1989.

[2] N.Amato, B. Bayazit, L. Dale, C. Jones, and D. Vallejo. Obprm:
An obstacle-based prm for 3d workspaces. In P. Agarwal,
L. Kavraki, and M. Mason, editors, Robotics: The Algorithmic
Perspective. AK Peters, 1998.

[3] N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and D. Vallejo.
OBPRM: An obstacle-based PRM for 3D workspaces. In P. K.
Agarwal, L. E. Kavraki, and M. Mason, editors, Robotics: The
Algorithmic Perspective, pages 630-637. AK Peters, 1998.

[4] D. R. Baker and C. W. Wampler II. On the inverse kinematics
of redundant manipulators. Int. J. Robot. Res., 7(2):3-21, 1988.

[5] J. Barraquand and J.-C. Latombe. Nonholonomic multibody
mobile robots: Controllability and motion planning in the pres-
ence of obstacles. In IEEE Int. Conf. Robot. & Autom., pages
2328-2335, 1991.

[6] J. Barraquand and J.-C. Latombe.
A distributed representation approach.
10(6):628—-649, December 1991.

[7] J. Barraquand and J.C. Latombe. Robot motion planning: A
distributed representation approach. Int. J. of Rob. Research,
10:628-649, 1991.

[8] S. Basu, R. Pollack, and M.-F. Roy. Computing roadmaps of
semi-algebraic sets on a variety. Submitted for publication, 1998.

[9] R. Bohlin and L.E. Kavraki. Path planning using lazy prm. In
Proc. IEEE Int. Conf. on Rob. & Aut., 2000.

[10] V. Boor, M.H. Overmars, and F. van der Stappen. The Gaussian
sampling strategy for probabilistic roadmap planners. In Proc.
IEEE Int. Conf. on Rob. & Aut., pages 1018-1023, 1999.

[11] R. Boulic and R. Mas. Hierarchical kinematic behaviors for com-
plex articulated figures. In N. Thalmann and D. Thalmann, edi-
tors, Interactive Computer Animation, chapter 3. Prentice Hall,
London, 1996.

[12] J. W. Burdick. On the inverse kinematics of redundant manip-
ulators: Characterization of the self-motion manifolds. In JEEE
Int. Conf. Robot. & Autom., pages 264-270, 1989.

Robot motion planning:
Int. J. Robot. Res.,

14

[13] L. Kavraki C. Holleman. A framework for using the workspace
medial axis in PRM planners. In Proc. IEEE Int. Conf. on Rob.
& Aut., 2000.

[14] J. F. Canny. The Complezity of Robot Motion Planning. MIT
Press, Cambridge, MA, 1988.

[15] D. Challou, D. Boley, M. Gini, and V. Kumar. A parallel formu-
lation of informed randomized search for robot motion planning
problems. In IEEE Int. Conf. Robot. & Autom., pages 709-714,
1995.

[16] H. Chang and T. Y. Li. Assembly maintainability study with
motion planning. In IEEFE Int. Conf. Robot. & Autom., pages
1012-1019, 1995.

[17] D. E. Clark, G. Jones, P. Willett P. W. Kenny, and Glen.
Pharmacophoric pattern matching in files of three-dimensional
chemical structures: Comparison of conformational searching al-
gorithms for flexible searching. J. Chem. Inf. Comput. Sci.,
34:197-206, 1994.

[18] T.H. Cormen, C. E. Leiserson, and R. L. Rivest. An Introduction
to Algorithms. MIT Press, Cambridge, MA, 1990.

[19] I. Z. Emiris and B. Mourrain. Computer algebra methods for
studying and computing molecular conformations. Technical re-
port, Institut National De Recherche En Informatique Et En
Automatique, Sophia-Antipolis, France, 1997.

[20] A. G. Erdman and G. N. Sandor. Mechanism Design: Analysis
and Synthesis. Prentice Hall, Upper Saddle, NJ, third edition,
1997.

[21] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee. Robotics: Con-
trol, Sensing, Vision, and Intelligence. McGraw-Hill, New York,
1987.

[22] G. H. Golub and C. F. Van Loan. Matriz Computations. Johns
Hopkins University Press, Baltimore, MD, second edition, 1989.

[23] L. Gouzénes. Strategies for solving collision-free trajectories for
mobile and manipulator robots. Int. J. Robot. Res., 3(4):51-65,
1984.

[24] L. Han and N.M Amato. Kinematics-based probabilistic
roadmap method for closed chain systems. In Wokshop on the
Algorithmic Foundations of Robotics, 2000.

[25] R. S. Hartenberg and J. Denavit. Kinematic Synthesis of Link-
ages. McGraw-Hill, New York, NY, 1964.

[26] R. S. Hartenburg and J. Denavit. A kinematic notation for
lower pair mechanisms based on matrices. J. Applied Mechanics,
77:215-221, 1955.

[27] J. G. Hocking and G. S. Young. Topology. Dover Publications,
New York, NY, 1988.

[28] D. Hsu, L.E. Kavraki, J.C. Latombe, R. Motwani, and S. Sorkin.
On finding narrow passages with probabilistic roadmap planners.
In P. Agarwal, L. Kavraki, and M. Mason, editors, Robotics: The
Algorithmic Perspective, pages 141-154. A K Peters, 1998.

[29] D. Hsu, R. Kindel, J.C Latombe, and S. Rock. Randomized kin-
odynamic motion planning with moving obstacles. In Wokshop
on the Algorithmic Foundations of Robotics, 2000.

[30] D. Hsu, J. C. Latombe, and R. Motwani. Path planning in
expansive configuration spaces. In Proc. IEEE Int. Conf. on
Rob. & Aut., pages 2719-2726, 1997.

[31] Y. K. Hwang and N. Ahuja. A potential field approach to path
planning. IEEE Trans. Robot. & Autom., 8(1):23-32, February
1992.

[32] L. Kavraki and J.-C. Latombe. Randomized preprocessing of
configuration space for path planning. In IEEE Int. Conf. Robot.
& Autom., pages 2138-2139, 1994.

[33] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars.
Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Trans. Robot. & Autom., 12(4):566—
580, June 1996.

[34] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe. Planning
motions with intentions. Computer Graphics (SIGGRAPH’94),
pages 395-408, 1994.

[35] Y. Koga and J.-C. Latombe. On multi-arm manipulation plan-
ning. In Proc. IEEE Int. Conf. on Rob. and Autom., pages
945-952, 1994.

[36] Y. Koga and J.C. Latombe. On multi-arm manipulation plan-
ning. In Proc. IEEE Int. Conf. on Rob. and Autom., pages
945952, 1994.

[37] K. Kotay, D. Rus, M. Vora, and C. McGray. The self-
reconfiguring robotic molecule: Design and control algorithms.
In P.K. Agarwal, L. Kavraki, and M. Mason, editors, Robotics:
The Algorithmic Perspective. AK Peters, Natick, MA, 1998.

[38] J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient

[47]

(48]

[49]

[59]

[60]

[61]

(62]

(63]

approach to single-query path planning. In Proc. IEEE Int’l
Conf. on Robotics and Automation, 2000.

J.-C. Latombe. Robot Motion Planning. Kluwer Academic Pub-
lishers, Boston, MA, 1991.

J.P. Laumond and T. Siméon. Notes on visibility roadmaps and
path planning. In Wokshop on the Algorithmic Foundations of
Robotics, 2000.

S. M. LaValle. Rapidly-exploring random trees: A new tool for
path planning. TR 98-11, Computer Science Dept., Iowa State
University. <http://janowiec.cs.iastate.edu/papers/rrt.ps>,
Oct. 1998.

S. M. LaValle, P. Finn, L. Kavraki, and J.-C. Latombe.
Efficient database screening for rational drug design using
pharmacophore-constrained conformational search. J. Compu-
tational Chemistry, 21(9):731-747, 2000.

S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees:
Progress and prospects. In Workship on the Algorithmic Foun-
dations of Robotics, 2000.

S.M. LaValle and J.J. Kuffner. Randomized kinodynamic plan-
ning. In Proc. IEEE Int. Conf. on Rob. & Aut., pages 473-479,
1999.

S.M. LaValle, J.H. Yakey, and L.E. Kavraki. A proababilistic
roadmap approach for systems with closed kinematic chains. In
Proc. IEEE Int. Conf. on Rob. & Aut., pages 1671-1676, 1999.
A. A. Maciejewski. Dealing with the ill-conditioned equations
of motion for articulated figures. IEEE Computer Graphics &
Applications, 10(3):63-71, 1990.

D. Manocha and J. Canny. Real time inverse kinematics of gen-
eral 6R manipulators. In IEEE Int. Conf. Robot. €& Autom.,
pages 383-389, Nice, May 1992.

E. Mazer, J.M. Ahuactzin, and P. Bessiére. The Ariadne’s clew
algorithm. J. of Art. Intelligence Research, 9:295-316, 1998.

E. Mazer, G. Talbi, J. M. Ahuactzin, and P. Bessiére. The Ari-
adne’s clew algorithm. In Proc. Int. Conf. of Society of Adaptive
Behavior, Honolulu, 1992.

J.-P. Merlet. Direct kinematics of planar parallel manipulators.
In IEEEFE Int. Conf. Robot. € Autom., pages 3744-3749, 1996.
J.-P. Merlet, C. Gosselin, and N. Mouly. Workspace of pla-
nar parallel manipulators. Mechanism and Machine Theory,
33(1/2):7-20, 1998.

R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Intro-
duction to Robotic Manipulation. CRC Press, Boca Raton, FL,
1994.

M. Overmars and P. Svestka. A probabilistic learning ap-
proach to motion planning. In K.Y. Goldberg, D. Halperin, J.C.
Latombe, and R.H. Wilson, editors, Algorithmic Foundations of
Robotics, pages 19-37. A K Peters, 1995.

A. Pamecha, I. Ebert-Uphoff, and G. S. Chirikjian. Useful met-
rics for modular robot motion planning. IEEE Trans. Robot. &
Autom., 13(4):531-545, 1997.

C. Pisula, K. Hoff, ;. Lin, and D. Manocha. Randomized path
planning for a rigid body based on hardware accelarated voronoi
sampling” booktitle = wafr, year = 2000.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery. Numerical Recipes in C: The Art of Scientific Comput-
ing. Cambridge University Press, New York, NY, second edition,
1992.

E. J. F. Primrose. On the input-output equation of the general
7TR-mechanism. Mechanism and Machine Theory, 21(6):509—
510, 1986.

J. T. Schwartz and M. Sharir. On the piano movers’ problem:
II. General techniqies for computing topological properties of al-
gebraic manifolds. Communications on Pure and Applied Math-
ematics, 36:345-398, 1983.

P. Svestka and M. Overmars. Probabilistic path planning. In J-
P. Laumond, editor, Robot Motion Planning and Control, pages
255—-304. Lecture Notes in Control and Information Sciences,
Springer, NY, 1998.

G. Taubin. Estimation of planar curves, surfaces, and nonplanar
space curves defined by implicit equations with applications to
edge and range image segmentation. IEEE Trans. Pattern Anal.
Machine Intell., 13(11):1115-1137, November 1991.

S.C.A. Thomopoulos and R.Y.J. Tam. An iterative solution to
the inverse kinematics of robotic manipulators. Mechanism and
Machine Theory, 26(4):359-373, 1991.

H. Whitney. Elementary structure of real algebraic varieties.
Annals of Mathematics, 66(3):545-556, November 1957.

M. Yim. Locomotion with a Unit-Modular Reconfigurable Robot.

15

PhD thesis, Stanford Univ., December 1994. Stanford Technical
Report STAN-CS-94-1536.

[64] J. Zhao and N. Badler. Inverse kinematics positioning using non-

linear programming for highly articulated figures. ACM Trans-
actions on Graphics, 13(4):313-336, 1994.

