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We present a new method for generating collision-
free paths for robots operating in changing environ-
ments. Qur approach is closely related to recent prob-
abilistic roadmap approaches. These planners use pre-
processing and query stages, and are aimed at plan-
ning many times in the same environment. In con-
trast, our preprocessing stage creates a representation
of the configuration space that can be easily modified in
real time to account for changes in the environment.
As with previous approaches, we begin by constructing
a graph that represents a roadmap in the configuration
space, but we do not construct this graph for a spe-
cific workspace. Instead, we construct the graph for an
obstacle-free workspace, and encode the mapping from
workspace cells to nodes and arcs in the graph. When
the environment changes, this mapping s used to make
the appropriate modifications to the graph, and plans
can be generated by searching the modified graph.

After presenting the approach, we address a number
of performance issues via extensive simulation results
for robots with as many as twenty degrees of freedom.
We evaluate memory requirements, preprocessing time,
and the time to dynamically modify the graph and re-
plan, all as a function of the number of degrees of free-
dom of the robot.

1 Introduction

In this paper, we present a new method for generating
collision-free paths for robots operating in changing en-
vironments. Our work builds on recent methods that
use probabilistic roadmap planners [3, 8, 12, 22, 25].
The idea that the cost of planning will be amortized
over many planning episodes provides a justification for
spending extensive amounts of time during a prepro-
cessing stage, provided the resulting representation can
be used to generate plans very quickly during a query

stage. Thus, these planners use a two-stage approach.
During a preprocessing stage, the planner generates a
set of nodes that correspond to random configurations
in the configuration space (hereafter, C-space), con-
nects these nodes using a (simple, local) path planner
to form a roadmap, and, if necessary, uses a subse-
quent sampling stage to enhance the roadmap. Dur-
ing the second, on-line stage, planning is reduced to
query processing, in which the initial and final config-
urations are connected to the roadmap, and the aug-
mented roadmap is searched for a feasible path.

Our new approach is a descendant of the probabilis-
tic roadmap methods. Our goal, like theirs, is a real-
time planner that uses approximate representations
such as those provided by computer vision or range
sensors. However, unlike probabilistic roadmap meth-
ods, our method is intended for robots that will operate
in changing environments, and therefore we cannot ex-
ploit the premise that planning will occur many times
in the same environment.

Our method begins, as do the probabilistic roadmap
planners, by constructing a roadmap that represents
the C-space. Nodes are generated by a random sam-
pling scheme, and connections between nodes are gen-
erated using a simple, straight-line planner. Unlike
the probabilistic roadmap planners, we generate a
roadmap that corresponds to an obstacle-free environ-
ment. Then, in a second phase of the preprocess-
ing stage, we generate a representation that encodes
the mapping from cells in the discretized workspace
to nodes and arcs in the roadmap. These two phases
are specific to the robot, but are independent of the
environment in which the robot will operate. The
fact that the preprocessing is completely independent
of the robot’s target environment removes constraints
on preprocessing time. Indeed, with our approach, it
is feasible that when a new robot is designed, an ex-
tended period of preprocessing could be performed, at
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the end of which, the robot would essentially be prepro-
grammed to construct path plans in any environment
that it might encounter.

In the on-line planning phase, the planner first iden-
tifies the cells in the discretized workspace that cor-
respond to obstacles (e.g., by using a range scan-
ner or stereo vision system), and then uses the en-
coded mapping to delete the corresponding nodes and
arcs from the roadmap. Planning is then reduced to
connecting the initial and final configurations to the
roadmap (again, as is also the case with the probabilis-
tic roadmap planners), and then searching the roadmap
for a path between these newly added nodes. Of course
it is possible to add obstacles to the environment in
such a way that the roadmap becomes disconnected.
This is true for any of the probabilistic roadmap plan-
ners (once one knows how samples are selected, and
how these samples are connected by local planners, it
is fairly straightforward to construct environments that
will thwart them), but, as we will describe in subse-
quent sections, there are a number of steps that can be
taken to cope with this problem, both at runtime and
during the preprocessing stages.

In the on-line planning stage, our method runs in
real time; plans are generated in less than one second.
Thus, it is feasible to use the planner even in the case
when obstacles are moving in the environment with
unknown trajectories, provided a sensing system can
identify in real-time those regions of the workspace that
are occupied by the obstacles.

2 Related research

There has been much work on probabilistic roadmap
planners, including planners for articulated robots
[12, 22, 8], mobile robots in two dimensional environ-
ments [22], free-flying rigid objects in three dimensions
[2], and flexible surfaces [7]. There are also versions of
these planners that are geared toward single-shot mo-
tion planning [9, 15, 24]. Some modifications to the
sampling methods have also been introduced: obstacle
boundary [22, 3] and medial-axis [25].

The sample configurations generated during the con-
struction of a probabilistic roadmap can be thought of
as landmarks in the C-space. A family of approaches
based on the Ariadne’s Clew algorithm generate land-
marks and search for paths between landmarks in a de-
terministic fashion by solving optimization problems.
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This method has been used to plan for manipulators
[4, 18]. and for manipulation planning (i.e., construct-
ing a sequence of transfer and transit paths) [1].

There have been several previous approaches to path
planning in changing environments. In some cases, off-
line planners have execution times that make it feasible
to directly use them in some kinds of changing environ-
ments with no modifications. This is the case, e.g., for
the Ariadne’s Clew algorithm reported in [4, 18]. The
Ariadne’s Clew algorithm operates by generating land-
marks (during an exploration phase) and then connect-
ing them to the existing network (the search phase).
Variations of this algorithm can be obtained by varying
the search phase, and by using different optimization
criteria to select candidate landmarks [1, 19]. The idea
of incrementally expanding a network for single query
planning has also been used in [9] and [15]. In both
of these, networks are grown from both the initial and
goal configurations until they can be connected. In [9]
the notion of expansive C-spaces is used, while in the
[15], random trees are used. In [24] an adaptable ap-
proach that uses multiple local planners is described.
At runtime, characteristics of the problem are used to
determine which (combination of) local planners will
be most effective.

We also note here that in two of these previous ap-
proaches ([8] and [19]), the idea of somehow represent-
ing the mapping from the workspace to the C-space
was incorporated. In [8], during the off-line planning
stage, the planner is aware of a set of obstacles that
might be present in the environment (in their exper-
iments, a single obstacle was used). The locations of
these obstacles are specified a priori, and at runtime
the robot sensor system determines which, if any, of
the obstacles are present in the environment. Dur-
ing the off-line planning stage, the trajectories in the
paths tree that cause collision with each of these ob-
stacles is determined. When objects are detected at
runtime, the corresponding arcs are deleted from the
graph. In [19], the paths tree (created by the modified
Ariadne’s Clew algorithm) is augmented to generate a
graph. Then, for each path in the graph, the corre-
sponding workspace cells are identified. Thus, when
a new obstacle is added to the environment, the set
of paths that intersect that obstacle can be deleted
from the graph. Because these authors are primarily
interested in domains for which extensive preprocess-
ing is not viable, they construct relatively small graphs
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(fewer than 100 landmarks, with fewer than 400 cor-
responding paths). Therefore, it is fairly easy to add
obstacles that would disconnect the graph, even though
these obstacles might not cause the free C-space to be-
come disconnected. In their experimental evaluation
of their planner, a single obstacle was added, and the
addition of this obstacle resulted in disconnecting the
graph into five components. In such cases, their algo-
rithm resorts to the Ariadne’s algorithm to reconnect
the graph, which can take time long enough to prohibit
the planner from being used in environments with mov-
ing obstacles.

We believe that our planner is the first planner that
constructs a representation that can be used to replan
in real time in changing environments. In the remain-
der of the paper we describe the specific details of the
algorithm, give extensive evaluation of our methods via
simulation results, and discuss the current trajectory of
our research efforts.

3 Constructing the Roadmap

Our construction of a roadmap of the C-space is
very similar to methods used in previous probabilistic
roadmap planers [12]. Nodes are generated by gener-
ating sample configurations, and these nodes are then
connected to form a graph. We will denote this graph
by § = (Gn, 94), in which G, is the set of nodes in the
graph, and by G, the set of arcs in the graph.

Since the graph is constructed without the presence
of obstacles in the workspace, local planning to con-
nect the nodes is trivial. Generating samples is po-
tentially more complex than for the traditional proba-
bilistic roadmap planners, since we cannot exploit the
geometry of the C-space obstacle region to guide the
sampling. We now discuss sampling the C-space, and
generating arcs to connect the resulting nodes.

3.1 Generating Sample Configurations

Since there are no obstacles to consider, it is fairly easy
to generate samples in the C-space. The only hard con-
straint is that self-collision (i.e., collision between dis-
tinct links of the robot) is prohibited. At present, we
generate configuration nodes by sampling from a uni-
form distribution on the C-space. This approach re-
flects a complete absence of prior knowledge about the
environment in which the robot will ultimately operate.

If prior knowledge, either about the environment or the
set of tasks that the robot will perform, were available,
an appropriate importance sampling scheme, or even
a deterministic scheme (if the existence of certain ob-
stacles were known in advance) could be used. More
effective schemes for generating sample configurations
are discussed in Section 6.

3.2 Connecting the nodes

In order to create a graph, pairs of nodes are connected
by arcs that correspond to trajectories of the arm.
Like several of the previously mentioned approaches,
we connect each node to its k-nearest neighbors. In
our current implementation, the paths corresponding
to arcs are not tested to ensure that no self-collisions
take place along the path.

The distance metric used for determining the neigh-
bors of a node plays a very important role in the proba-
bilistic roadmap methods [2]. For these planners, good
distance metrics provide a set of neighbors to which the
local planner has a good likelihood of generating a col-
lision free path. In addition, the distance metric must
be fast to compute, as it will be called many times to
evaluate pairs of nodes (this is particularly true for the
single query planners).

For our application, the swept volume of a path
in the workspace connecting two configurations would
be an ideal metric. Unfortunately, as noted by oth-
ers [2, 13], this metric is very expensive to compute,
and therefore, in our current implementation, we have
opted for approximations that are faster to compute.
In [2], a number of metrics were evaluated for efficiency
and effectiveness for the case of a rigid object translat-
ing and rotating in a three-dimensional workspace. In
particular, as we will discuss below, we have performed
extensive experimental evaluation with the following
four distance metrics:

the 2-norm in C-space
1
n 2
Dy(a,q) = [ld' —al| = lZ(qQ - qz)zl
i=1
the co-norm in C-space

DE(a,d') = max |g; — i
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the 2-norm in workspace

D3V (q,q') = lZ”P(ql) - P(Q)HQ]

peA
the co-norm in workspace

w A AN
DX(a,q) = glea}pr(q ) —p(a)]|-

In each of these equations, the robot has n joints, q and
q’ are the two configurations corresponding to different
nodes in the graph, g; refers to the configuration of the
i-th joint, and p(q) refers to the workspace reference
point p of the set of reference points of the robot A
at configuration q. Versions of DY and D}¥ were also
used in [13].

Once a node’s k-nearest neighbors have been identi-
fied, a local planner is used to connect the correspond-
ing configurations. As a motion planner, this local
planner in the preprocessing phase has very modest
requirements. It should be reasonably fast, as that re-
duces the time needed to construct the data structures,
but this is not a primary concern. It must be determin-
istic, i.e., it must always return the same path when
given the same two nodes as input. This is required
since our approach will use the volume swept by the
robot when it traverses this path. If the path changed
each time, we would be unable to guarantee that the
path was not blocked during on-line planning. In ad-
dition, the local planner should consider self-collisions
of the robot when determining whether two nodes can
be connected (although we have not yet implemented
this feature).

We also note here that, during the on-line planning
phase, a second local planner will be used to connect
the initial and final configurations to the roadmap. In
contrast to the planner used to connect nodes in the
graph, this planner does have to consider the obstacles
around the robot. Since this problem is faced by all of
the probabilistic roadmap planners, we plan to adapt
existing methods for this problem (e.g., the technique
presented in [24] may be used, which selects the lo-
cal planner based on an evaluation of which planner is
most likely to succeed).

4 Workspace to C-space mapping

The ability to plan in real time in changing environ-
ments comes from our encoding of the relationship be-
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tween the workspace and the C-space. To represent the
workspace, we use a uniform, rectangular decomposi-
tion, which we denote by W. We denote the C-space
by €, and define the mapping ¢ : W — C as

¢(w) ={a | Ala) Nw # 0},

in which w is cell of the workspace and A(q) denotes
that subset of W occupied by the robot at configuration
q. We note that ¢(w) is exactly the C-space obstacle
region (often denoted by CB) if w is considered as a
polyhedral obstacle in the workspace. In our approach,
we do not explicitly represent the C-space, but instead
use the roadmap G. Therefore, we define two additional
mappings, one from the workspace to the nodes in the
graph, and one from the workspace to the arcs in the
graph:

¢n(w) ={q € Gn | A(q) Nw # 0},
¢a(w) = {7 € Ga | AlqQ) Nw # ( for some q € v}.

4.1 Computation of ¢, and ¢,

In terms of the implementation, it is much easier to
compute the inverse maps ¢, and ¢,!. Therefore,
we use the inverse maps for the construction of our
representation of the mapping.

The construction of the representation for ¢,' is
straightforward. For each q € G, we note the map-
ping from each w € ¢,'(q) to the corresponding q.
The set of cells in ¢,*(q) is computed by expanding
a “seed” cell in a set of shells surrounding the seed.
The seed for fixed-base articulated robots is the origin
of the robot, which is not stored as part of ¢,. The
shell expands in each direction in the workspace until
the collision tester determines that a cell is outside the
robot. We use the collision-checking package V-Clip
[20] to test for cell intersection with the robot.

The computation of ¢, ' is more complex and time-
consuming. It involves computing the swept-volume of
the robot as it traverses a path computed by the lo-
cal planner between two configurations. In our imple-
mentation, cells that are occupied by the robot at the
endpoints of the arc v (i.e., the configurations that cor-
respond to the two nodes connected by the arc) are not
included in ¢_!(y). Computing the swept volume for
a robot trajectory is not a trivial problem. A method
for swept volume computation for three dimensional
objects that can only translate is presented in [26]. An
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extension to this method was presented that could also
accommodate rotation about a single axis, but no re-
sults were given. This approach could be used to sim-
plify the computation of ¢;*.

We have developed a method for computing ¢, (7)
as follows. First, ¢, for the two endpoints of 7 is com-
puted. Then, the path corresponding to y is sampled
using a recursive bisection method, which proceeds as
follows. First, the configuration corresponding to the
midpoint of the segment connecting the two nodes is
computed, and ¢, ! for that configuration is computed.
If this set contains any cells not already in ¢! of the
endpoints, these new cells are added to the swept vol-
ume, and the path is subdivided again on both sides
of the midpoint. This process is repeated until no new
cells of W are added.

4.2 Efficient representations of ¢

Even though computer memories are rapidly growing,
it is beneficial to compress the representations of ¢,
and ¢,, provided that this can be done without dras-
tically increasing the computation required compute
plans online. Reducing the size of the representation
will also enable us to consider larger graphs G, which
will increase the efficacy of the online planning.

From an information theoretic viewpoint, compres-
sion of a data set involves the reduction of redundancy
in that data set. The amount of compression that can
be performed is limited by the information content of
the data set, which, in turn, is related to the degree
of unexpectedness, or randomness, in the data set [5].
There are three sources of redundancy in the repre-
sentation of ¢, and ¢, that can be exploited: 1) the
spatial coherence of the set ¢(w) in €, 2) spatial co-
herence of ¢(w) for neighboring w’s in W, and 3) the
representation of the labels of the nodes and arcs in
the graph. The third source provides only limited ef-
ficiency increases, as much as a factor of two for our
experiments, depending on the size of the graph.

The spatial coherence of ¢, and ¢, is based on the
following ideas. Since the robot is connected, and since
w is connected and compact, then ¢(w) is connected
and compact. This follows from the application of well-
known facts about the C-space obstacles [16], and that
¢(w) is exactly the C-space obstacle region if w is con-
sidered as a polyhedral obstacle in the workspace.

The spatial coherence of CB has been exploited in
previous collision checking approaches (e.g., [17, 20]).
In our case, spatial coherence derives from the conti-
nuity of ¢, namely, that small changes to w will cause
only small changes to ¢(w). Because of this, for some
cell, say w* € W, we expect that ¢(w) will be very
similar to ¢(w*) for w € n(w*), with n(w*) some ap-
propriate neighborhood of w*. This spatial coherence
presents a situation that is somewhat analogous to the
situation confronted in video compression: in a stream
of images, there will be only small variations between
most adjacent images in the sequence. This is one
of the premises for many modern video compression
methods (e.g., MPEG [21]). Unfortunately, we can-
not directly apply video compression techniques, since
these techniques generally employ lossy compression
(i-e., the original image sequence cannot be exactly re-
constructed), and in our case this could lead to colli-
sions.

The discussion above suggests the following ap-
proach: partition W into a set of neighborhoods, and,
for each neighborhood (a) choose a representative w*,
(b) derive a compact representation of ¢(w*) and (c)
for all w € n(w*), express ¢(w) in terms of Pp(w*). We
postpone the discussion on step (b) to Section 6.3. In
some cases, we may be able to improve upon this by
selecting some other reference set in step (c), and we
discuss this below.

Given the above, we can formulate the corresponding
optimization problem. For specific choice of neighbor-
hood system we have the cost functional

L(W*,m) =

S Jeostlpw)] + Y costlp(w)] y, (1)

w* EW* wen(w*)

in which W* is a set of representative cells in W, n(w*)
is the set of neighbor cells for w*, and cost[¢(w)] de-
notes the cost of encoding the representation. This
leads to the the optimization problem

minimize
subject to:

L(W*,n)
U+ ew= n(w*) =W and (2)
n(wf) Nn(wy) =0,i # j.

This particular formulation of the cost suggests an
algorithm that first selects representatives in 'W and
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then builds the appropriate neighborhoods. The en-
coding of the neighborhoods is based on the idea dis-
cussed above that there will be only minor variations
in ¢ over local neighborhoods of W. Assuming for the
moment that the neighborhoods have been determined,
one way to encode ¢ over a neighborhood n(w*) is to
first determine a representative ¢*(w*) and to then
specify ¢(w) relative to ¢*(w*) for each w € n(w*).
This is essentially a differential encoding, and can be
specified as ¢'(w) = ¢(w) & ¢*(w*), where ¢'(w) is
the encoded representation of ¢(w) and & is the set
symmetric difference operator.

There are two methods for determining ¢*(w*). The
first of these is to use ¢(w*) itself, i.e., ¢* (w*) = Pp(w*).
The second is to compute ¢*(w*) as the set that mini-

mizes
> ¢ w)],

wen(w*)

where |-| denotes set cardinality. The first method may
lead to a more efficient representation of ¢*(w*) itself,
while the second minimizes |¢'(w)| for each w € n(w*).
This is a tradeoff that will have to be evaluated when
selecting which set to use for ¢*(w™).

There is another possible differential encoding
scheme that can also be used to take advantage of the
spatial coherence of ¢(w) over W. This approach is
similar to above, except that instead of choosing one
¢* (w*) over n(w*), the ¢* is chosen individually for
each w € n(w*) from the set of cells adjacent to w that
are closer to w*. In this approach, ¢(w*) is encoded by
itself, the cells adjacent to w* are encoded using ¢(w*)
as their reference, and for each of the other w € n(w*),
the neighbor w’ to w that results in the smallest |¢'(w)|
is chosen, with ¢'(w) = é(w) & d(w’).

These two approaches may be combined in a hy-
brid approach, such that the neighborhood n(w*) is
composed of two parts 71 (w*) encoded using the first
scheme above and 7 (w*) encoded using the second
scheme. The cell w* is encoded as part of n; (w*), and
each w € mz(w*) is encoded with respect to the adja-
cent cell that is closest to a member of 7; (w*).

Still to be addressed is the problem of selecting the
best set of representative cells in the workspace and
the problem of choosing the best neighborhoods 7, (w*)
and 7z (w*) for each w* € W* that satisfies (2). This
is a difficult combinatoric optimization problem, for
which we have applied the following greedy expansion
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algorithm. The elements of W are placed into a pri-
ority queue, Q in decreasing order of the size of the
representation of ¢(w) (i.e., |Pn(w)| + |Pa(w)]). Let
w* be the first element in Q. Initialize n(w*) = {w*}.
Then, until the cost of adding an additional neighbor
to n(w*) exceeds the cost of directly encoding ¢(w) or
a size threshold is reached, expand the neighborhood,
deleting the added w from Q. In the hybrid approach,
each cell w is placed in the neighborhood 7; or 72,
depending on which minimizes the cost of its represen-
tation. This is repeated for the new head of Q until the
neighborhoods form a partition of the workspace.

Note that this operation is performed separately for
both ¢,, and ¢,.

5 Empirical evaluation

For a real-time path planner, we are interested in three
parameters: graph update time, planning time, and
data structure size. We are also interested in the
preprocessing time, though this is less important. In
this section, we evaluate a preliminary version of the
planner, studying the case of serial-link manipulators
with revolute joints operating in a two-dimensional
workspace. Note that our implementation is not lim-
ited to revolute joints; prismatic joints can be used
as well. We limit the following discussion to revolute
joints to simplify the analysis.

5.1 Experimental set-up

The following experimental set-up was used to eval-
uate the approach. The robots tested are all serial-
link manipulators with two to 20 revolute joints in a
two-dimensional workspace. The workspace cells and
the robot are given three-dimensional polyhedral de-
scriptions to allow the use of standard collision check-
ing packages for collision testing. Each cell of the
workspace is modeled as a unit cube, and each link
of the robot is modeled as a rectanguloid with a width
of 2.1 units and a height of 1 unit. The total length of
the robot was fixed at 70 units, with each link length
being scaled appropriately. Each joint of the robot was
given the full revolute range of motion, and the joints
were allowed to wrap around. In addition, the robot
was not tested for self-collision, except when the sam-
ples of C-space were generated. To evaluate how the
data structures and computation times grow with the
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Figure 1: Number of samples of C-space generated per
node accepted.

graphs, we tested graphs with 2048, 8192, and 16384
nodes.

5.2 Results for serial-link manipulators in a
2D workspace

In this section we present some results from using the
above setup. We start with an analysis of the data
structures that are computed to implement our plan-
ning approach. Each of the four data structures—
graph nodes, graph arcs, ¢, and ¢,—was computed
and stored separately to simplify analysis. We follow
the analysis with some compression results for ¢, and
¢q, and we conclude with some planning examples.

5.2.1 C-space sampling

The C-space for each of the robots was sampled uni-
formly at random, except for the first 129 samples.
The first 129 samples were chosen such that the robot
covers as much of the workspace as possible. For the
robots tested, this means that 129 uniformly-spaced
samples were taken of the range of the first joint, and
the remaining joints were held fixed at a position that
maximized the length of the robot. Of the remaining
random samples, samples in which the robot collides
with itself were rejected.

It is interesting to note that, when sampling the C-
space of the robot uniformly, it became exponentially
more difficult as the number of joints increased to find
configurations in which the robot did not collide with
itself. This is a consequence of a robot consisting of
revolute joints operating in the plane: for each set of

three links, there is a region of the C-space in which
the third link is in collision with the first. For each
additional joint beyond three, there is a combinatoric
effect with combinations of links in collision, as well as
an interaction among these links that tends to make
the collision regions larger. For a non-planar robot
operating in 3D, this effect is expected to be drastically
reduced.

The exponential sampling effect can be seen in Fig-
ure 1, which shows the number of samples of C-space
generated per node accepted. Notice that the y-axis
scale of this graph is logarithmic. As expected, the
number of samples generated per node accepted does
not change as the desired number of nodes increases.

The size of the data structure for the configurations
associated with the nodes in the graph is 8mn + 12
bytes, where m is the number of nodes and 7 is the
number of joints.

5.2.2 Graph construction

As described above, arcs in the graph are constructed
for the k-nearest neighbors of each node. For our eval-
uation, we tested the case of £ = 5 nearest neighbors.
We computed the nearest neighbors using the simple
O(n?) method of calculating the distance between all
pairs of nodes and keeping the closest five for each
node. The paths connecting these neighbors are not
checked for feasibility, i.e., whether the robot avoids
self-collision while following the paths.

The computation times for computing the graph are
shown in Figure 2. The increase in computation time
with the number of joints reflects the increase in the
cost of computing the metric. The sharp rise in the
computation time after 16 joints seen in the graph for
the DS and DS distance metrics is unexpected; this
may be due to a memory effect in the implementa-
tion, where the amount memory used for the calcula-
tion crosses some system threshold.

What also can be seen in Figure 2 is that there is
not much difference in computation time between the
2-norm and the co-norm, except that the computations
involving the oco-norm tend to take somewhat more
more time to perform (this is likely an artifact of the
processor architecture, in which the cost of a branch is
greater than the cost of a floating-point multiplication).
A greater difference can be seen between the metric in
C-space and the metric in the workspace, where the
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Figure 2: Time in seconds to compute the k-nearest neighbors for the different distance metrics.

latter appears to have a more linear increase in compu-
tation time as the number of joints increases. Overall,
for robots with more than five joints, the workspace
metric takes more time to compute.

The size of the graph varies linearly with the number
of nodes, with an average size of 163kB for 2048 nodes,
654kB for 8192 nodes, and 1309kB for 16384 nodes.
The variance in size from the average was less than
15%.

5.2.3 Computing ¢,

The overall size of ¢,, is the product of the number of
nodes and the average number of cells the robot covers
in the workspace. For a robot with a fixed maximum
length, this means that the size of ¢,, is largely inde-
pendent of the number of joints. For our experiments,
the size of ¢,, per node in §,, averages around 1000
bytes.

There is a sub-linear increase in the size of ¢,, as the
number of nodes increases that is a result of the over-

head for maintaining the data structure being amor-
tized over more nodes. The overhead for the data struc-
ture depends on the number of cells in the workspace
that intersect with the robot at any node in the graph.
This overhead does not depend on the number of nodes
in the graph, as long as the graph contains nodes that
span the reach of the robot in the workspace (i.e., the
graph contains nodes that touch all the cells in the
workspace that the robot can reach).

The time required per node to compute the node
obstacle data structure increases linearly as the number
of joints increases. This is expected because the size of
the geometric description of the robot used for collision
testing increases with the number of joints.

5.2.4 Computing ¢,

The size of ¢, for different numbers of nodes is shown
in Figure 3. As can be seen in the figure, ¢, can be-
come quite large. This is the reason that the graphs
stop at 13 joints for the 8192 node case, and 8 joints for
the 16384 case. The limit in this case was the process
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size of the program computing ¢,; in order to keep
the computation times comparable, the memory size
of the program computing ¢, was limited to the physi-
cal memory available in the computer. More examples
were computed for the DY metric for the 8192 and
16384 node cases in order to evaluate the compressibil-
ity of the resulting data files (see Section 5.2.5).

1200

16384 ---%---

1000

600

Average cells/arc

200

T S S S SRS SR
9 10 11 12 13 14 15 16 17 18 19 20
Number of joints

Figure 4: Average of |¢; ()| per v for Sa generated from
the DY metric.

It is also apparent that the D& performs the worst
in terms of the size of ¢,. The DY is the next worst,
and the DY and D)V produce the best results. It is
expected that the two metrics defined on the workspace
would produce better results than the C-space metrics,
since the workspace metrics penalize the motion in the
workspace more than do the C-space metrics. There is
no apparent advantage to Dy over DYY.

Another interesting point in Figure 3 is the appar-
ent inflection point at six joints in the graphs for the
size of ¢, when computed using the DY and D," met-
rics. This inflection point is more obvious in the 8192
and 16384 node graphs. An explanation for this is that,
given the resolution of the workspace that we are using,
the random sampling is better able to “fill” the C-space
with samples for the robot with fewer joints. This re-
sults in the nodes being closer together, and, therefore,
the paths between them do not cover as much of the
workspace. This effect can also be seen in Figure 4,
which shows the average size of ¢, () per v € G, for
the DY metric (DY produces similar results).

Shown in Figure 5 is the time it takes to compute
¢, for the DS and D." metrics (the DS, and the DY
produce similar results to the DS and D) metrics,
respectively). These times correlate well with the in-
crease in the size of ¢,: the larger ¢, is, the longer
it takes to compute. Notice that the graph for the
computation times for the workspace metric shows an
inflection point like the graphs for the size of ¢,.
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5.2.5 Some compression results

Shown in Figure 6 are the compression ratios for ¢,
and ¢, that were achieved by differential encoding of
the cells of the workspace and by using a more efficient
encoding of the labels used to represent the nodes and
arcs in the graph (roughly a factor of two of the com-
pression ratio comes from this change in representa-
tion). The compression ratios are relatively flat for ¢,
as the number of joints changes.

To gain some insight into the behavior of the com-
pression ratios achieved for ¢,, a set of images show-
ing the distribution of |¢,,(w)| over the workspace were
generated. Figure 7 shows an example image, showing
the two-link robot case with a graph of 2048 nodes. In
the figure, the grid lines demark 11x11 collections of
workspace cells, and the darkness of a cell is propor-
tional to the logarithm of |¢,(w)|. Cells that are white
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Figure 6: Compression ratios.

have |¢n(w)| = 0. In the figure, the reach of the first
link of the robot is readily apparent as a darker disk
inside a lighter disk. Some variation in darkness can
be seen in the lighter regions.

As the number of joints in the robot increases, the
ring corresponding to the first link becomes smaller,
and the links themselves have a greater tendency to
cluster near the origin due to the uniform random sam-
pling. This clustering also means that clearly-visible
rings corresponding to links of the robot other than
the first do not appear. The clustering also has an ef-
fect on the compressibility of the ¢,. At two joints,
the distribution of |¢,, (w)]| is relatively uniform, com-
pared to robots with more joints. A greater uniformity
of coverage of the workspace implies greater spatial co-
herence between neighboring cells and that allows for
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Figure 7: |¢n(w)| per cell for a two-link robot and a graph
with 2048 nodes.

greater compression. At the 20 joints, the distribution
tends to be highly clustered near the origin, allowing
for higher compression as the cells outside the cluster
near the origin are grouped together in larger groups.
In between the two extremes, the compression is lower.

On the other hand, the compression ratios for ¢,
increase with the number of joints. This is expected
because the average length of the paths corresponding
to arcs in the graph tends to increase with the number
of joints, and that in turn leads to an increase in the size
of the volume of the workspace swept by the robot as
it traverses the paths. As more cells are affected by the
longer paths, the spatial coherence of the cells in the
workspace increases. Notice that the inflection point
seen around eight joints in this graph is similar to that
seen in Figure 3. The same effect that minimizes the
size of ¢, also reduces spatial coherence, and, therefore,
the achievable compression ratio.

Shown in Figure 8 is the distribution of |¢4(w)| per
cell for the two link robot and the 2048-node and 16384-
node graphs. These graphs have the same resolution
as Figure 7. The sparseness of the distribution of the
arcs in this case is the reason for the reduction in the
compression ratio available using the differential encod-
ing. Also shown in the figure is the effect of increasing
the size of the graph from 2048 nodes to 16384 nodes.
As noted earlier, the average distance between nodes
decreases, decreasing the average swept volume of the
paths corresponding to the arcs in the graph, and, in
this case, dramatically increasing the sparseness of ¢,.

B

! 0

2048 node graph

16384 node graph

Figure 8: |¢.(w)| per cell for a two-link robot.

5.2.6 Some planning examples

The current implementation of our path planner
tests the connectivity of the graph between two selected
nodes in the modified graph; it does not connect arbi-
trary configurations to the graph. In all of the planning
runs tested using the uncompressed representations of
¢, and ¢,, it takes less than one second to update
the node and arc obstacle data structures and to find
a path in the modified graph. Extensive tests using
the compressed representations have not yet been per-
formed.

Shown in Figure 9 is a 19-joint robot negotiating be-
tween two obstacles (black objects in the figure). The
steps shown in the figure correspond to the nodes in the
graph along the planned path. This plan was generated
from the graph that used the D)V distance metric with
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Figure 9: A plan for a 19-joint robot passing through a
(relatively) narrow corridor. The dark blocks are the obsta-
cles.

2048 nodes. The fan-like parts of the plan come from
the set of nodes created to span the workspace of the
robot, as described in Section 5.2.1.

6 Future directions

Although we have an implemented version of our plan-
ner, there remain a number of issues that we are now
beginning to investigate.

6.1 Generating Sample Configuration

The uniform sampling scheme described in Section 3
reflects complete ignorance about the environment. If
prior knowledge, either about the environment or the
set of tasks that the robot will perform, were avail-
able, an appropriate importance sampling scheme, or
even a deterministic scheme (if the existence of certain
obstacles were known in advance) could be used.

Even without prior knowledge about the environ-
ment, there are ways to improve the quality of the set
of sample configurations. We could, for example, at-
tempt to maximize the portion of the workspace that is
covered by the sampled configurations (e.g., by gener-
ating configurations for a uniform distribution of end-
effector positions in the workspace). In a similar spirit,
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we could attempt to maximize the minimum distance
between samples as in [4]. The quality of the samples
can be further improved by exploiting on the manip-
ulability measure associated with the manipulator Ja-
cobian matrix [27]. The basic idea is the following. In
regions of the C-space where manipulability is high,
the robot has great dexterity, and therefore relatively
fewer samples should be required in these areas. Re-
gions of the C-space where manipulability is low tend
to be near (or to include) singular configurations of the
arm. Near singularities, the range of possible motions
is reduced, and therefore such regions should be sam-
pled more densely.

These criteria can be posed as optimization problems
with deterministic solutions; however, in each case, the
complexity of the resulting problem would prohibit its
direct solution. Therefore, we are currently investigat-
ing importance sampling approaches that incorporate
the criteria described above for sampling C-space.

6.2 Graph Enhancement

In previous probabilistic roadmap planners, if the ini-
tial roadmap was not singly connected, an enhance-
ment stage was used to connect its various components.
In our work, since there will be no obstacles in the en-
vironment, the roadmap will always have a single con-
nected component, and therefore the traditional idea
of enhancement does not apply. However, unlike previ-
ous approaches, we are concerned with maintaining the
connectivity even if arcs or nodes are deleted from the
roadmap. Therefore, we are investigating two methods
to improve the robustness of roadmap connectivity to
the addition of obstacles to the environment.

In the first method, the enhancement stage will at-
tempt to increase the cardinality of the minimum cut
set of G. In particular, after an initial § is computed,
minimal cut sets of both edges and vertices will be
found, and then the C-space will be sampled in an at-
tempt to add paths that would reconnect the graph if
these cut edges or vertices were removed. This sam-
pling would be driven by constructing the workspace
volumes corresponding to the elements of the cut set
(these are given by ¢,,1 and ¢,!). In order to discon-
nect the graph, an obstacle would need to touch each
of these volumes. An algorithm such as the one pro-
posed in [10] could be used to rapidly deduce a minimal
set of cells in the workspace that satisfy this condition,
and the mapping from workspace to C-space obstacles
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could then be used to seed an importance sampling
algorithm that would add nodes to G.

The second method relies on a quantitative evalua-
tion of the quality of §. We will investigate a property
that we call e-robustness (inspired by the notion of e-
goodness described in [14]). We say that § is e-robust
if no spherical obstacle in the workspace of radius e (or
less) can cause G to become disconnected. Using this
concept, it will be possible to ensure after the enhance-
ment stage that § can tolerate certain types of obsta-
cles. In particular, for a specified value of ¢, § can be
tested for e-goodness. This test can be performed in
such a way that the specific workspace spheres that vi-
olate the e-goodness criterion can be enumerated, and
these can then be used, as above, to seed an importance
sampling algorithm that will add nodes to G.

6.3 Workspace to C-space mapping

There are a number of possible improvements that can
be made to reduce the computation time for the map-
ping and for more efficient representation of the map-

ping.

Improvement in computation time Using colli-
sion testing algorithms to compute ¢,, and ¢,, while
allowing for completely general geometric descriptions
of the robot, is not the most efficient means available
for computing ¢ !(g). An alternative is to consider
3D voxel scan-conversion techniques[11]. In our case,
we do not need the full power of these algorithms as
used to generate realistic images of three-dimensional
scenes. We only need the components that compute the
occupancy bitmaps for geometric data. This operation
could also take advantage of any hardware accelera-
tion available for this operation, as was done in [6] to
accelerate the computation of Voronoi diagrams using
polygon rasterizing hardware.

Efficient representations As described above,
¢(w) is connected and compact. Exploiting the con-
nectedness of regions for the purposes of compression
has been a popular idea in the image processing and
computer vision communities for many years [23]. Well
known examples of this include using quadtrees and
run length coding to compress images. In each case,
the compression exploits an efficient representation of
neighborhood structure, and then encodes homoge-
neous neighborhoods. For quadtrees, neighborhoods

are defined by recursive partitions of the image, and in
run length coding neighborhoods are defined in terms
of individual horizontal rows in the image.

To compress the representations for ¢, (w*), we will
make use of the observation that often ¢(w*) is often
fairly symmetric with respect to its center of mass. We
plan to investigate using a prespecified graph traversal
algorithm, and recording the depths at which the graph
traversal algorithm exits or reenters ¢(w*). For most
problems, breadth first traversal is likely to be the most
effective. For example, if ¢(w*) were a hyper-sphere
in an n-dimensional C-space, then this representation
would require only the storage of a root node and a sin-
gle integer to encode both ¢, (w*) and ¢, (w*). Breadth
first traversal could then reconstruct the exact set of
nodes and arcs in G that correspond to the cell w*.

This approach is analogous to run length coding. In
run length coding, the lengths of strings of one’s are
stored (for binary images). This approach essentially
works by imposing an ordering on the pixels in the im-
age (raster scan ordering), and then encoding when a
region of one’s is exited or reentered. In our proposed
approach, we will use a breadth first tree traversal to
impose an ordering on nodes and arcs in G, and use
the analogous idea of encoding tree depths at which
¢(w*) is exited or reentered. We note here that ap-
proaches analogous to 2" —trees are not appropriate in
our case, because these methods are very sensitive to
small perturbations.

7 Conclusions

We have presented what we believe to be the first plan-
ner that is fully able to plan in real time in changing
environments. We have presented extensive prelimi-
nary analysis of the planner via planning simulations.
Although these preliminary results are quite promising,
there are a number of open issues that remain, and we
have outlined these along with our planned approaches.
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