To appear in TROS ’99 in the Invited Session “Sensor-Based Path Planning”, organized by Prof. Noborio

Sensor-Based Roadmaps for Motion IpgPlanning for Articulated Robots in
Unknown Environments: Some Experiments with an Eye-in-hand System

Yong Yu

yongyu@cs.sfu.ca

Kamal Gupta
kamal@cs.sfu.ca

School of Engineering Science
Simon Fraser University

Burnaby, BC, CANADA, V5A 156

Abstract

We present a real implemented “eye-in-hand” test-bed
system for sensor-based collision-free motion planning for
articulated robot arms. The system consists of a PUMA
560 with a triangulation based area-scan laser range finder
(the eye) mounted on its wrist. The framework for our plan-
ning approach was presented in [24]. Tt is inspired by re-
cent motion planning research and incrementally builds a
roadmap that represents the connectivity of the free config-
uration space, as it senses the physical environment. We
present some experimental results with our sensor-based
planner running on this real test-bed. The robot is started
in completely unknown and cluttered environments. Typi-
cally, the planner is able to reach (planning as it senses) the
goal configuration in about 7 - 25 scans (depending on the
scene complexity), while avoiding collisions with the obsta-
cles throughout.

1 Introduction

Our research is concerned with sensor-based motion plan-
ning (MP) for articulated robot arms with many degrees of
freedom. The arm (called robot from here on), equipped
with an “eye” sensor (See Figure 1) that gives distance of
the objects from the sensor is required to plan and execute
collision-free motions in an environment initially unknown
to the robot. Note that the planning space (the configu-
ration space) and the sensor space (physical environment)
are very different. This is the fundamental distinction from
sensor-based planning for a mobile robot (treated as a sin-
gle point as in [13, 7]), where sensing and planning basi-
cally take place in the same (physical) space. Therefore,
these sensor-based approaches for point robots may not be
directly extended to the case of articulated arms via the
standard “convert to C-space” argument, since, the sensor
senses in physical space and will not, in general, correspond
to sensing in C-space (See [25] for more on this)?.

In [24], we presented an approach (and some initial steps
toward this goal) for such sensor-based motion planning
for articulated robots. Our approach, based on a recent
paradigm in solving classical MP, is to capture the connec-
tivity of robot’s free configuration space (Cyree ) in a finite
graph structure (called a roadmap) [2], [1], [15], with each
node representing a free robot configuration, and an edge be-
tween two nodes represents that a simple local planner can
find a collision-free path between the corresponding robot
configurations. Since this roadmap is constructed without
explicitly representing the C-obstacles, it is particularly use-
ful as a representation for high dimensional configuration
spaces. The crux of our methodology is to incrementally

1 Our argument applies to an “eye” type sensor. A “skin” sensor as
in [11] that senses along the entire manipulator geometry, or a range
sensor distributed along the entire robot geometry, as assumed in [4],
indeed allows the point robot abstraction for sensor-based case as well.

construct this roadmap as the sensor senses new free space
in the physical environment. The (evolving) roadmap re-
flects the connectivity of known Cf... within which the
robot carries out its motion to further sense the physical
environment. The Cf,.. (and the roadmap) expand as the
sensor senses new free space in the physical world. This
process is repeated until either the final goal is reachable
from one of the nodes in the graph, or the goal is declared
unreachable. Our current implementation adapts the PRM
approach of [15]. We call it SB-PRM (sensor-based prob-
abilistic roadmap)?. In this paper, we present a real im-
plemented “eye-in-hand” test-bed system, and experimental
results with the SB-PRM planner running on this test-bed.
The details of the test-bed including hardware description
and the system architecture are presented in Section 3. We
then present an outline of the SB-PRM algorithm (mostly
a summary of what was reported in [24]. Section 5 provides
representation details buried in the succinct description of
the algorithm. Experimental results are detailed in Section
6, followed by a summary in Section 7.

Figure 1: The experimental testbed for sensor-based MP.
The sensor, a triangulation based area scan laser range
finder, is mounted on the PUMA wrist. Inset shows an
enlarged view of the sensor with the camera on the left and
the laser striper on the right. See text for a complete expla-
nation of the system.

2We are also investigating the adaptation of the ACA aaproach
of [2] for the sensor-based case (SB-ACA). A preliminary version is
reported in [18].



2 Related Work

Renton et al presented a Plan-N-Scan system comprising
a PUMA with a wrist mounted range sensor (very similar
hardware to ours) [19]. Their main purpose, however, was to
explore the workspace (a part or whole). In order to reach a
desired scanning configuration, motion planning was accom-
plished with a simple A* algorithm, and therefore somewhat
limited. They successfully demonstrated the ability to scan
workspace volumes. We believe that our planning would
perform significantly better in tight and cluttered environ-
ments. For instance, the initial assumed free region around
the robot is much bigger in their case than in ours. Further-
more, the roadmap has the advantage that once built, it
can be used to quickly answer further path planning queries
[2, 15].

Kruse et al describe a sensor-based system for map build-
ing. Their simulated system also has a range sensor on the
end-effector of a robot arm and they also use a roadmap
for the planning component [9]; however, there are key dif-
ferences. Theirs was a simulation only; their main concern
was map-building and they employed rating functions to
choose configurations that are for promising for further sens-
ing; path planning is used mainly as a tool to get to these
promising configurations. Their simulated examples appear
to be mostly for quite sparse environments. They simply re-
peatedly call the roadmap based planner developed in ([15]).
The extension of this roadmap, as the robot senses more of
its environment is ad hoc in their approach. In fact they
mention that “... after several extensions, the graph tends
to become large and degenerate ... a complete recalcula-
tion of the graph is performed”. Our main emphasis, on
the other hand, is on motion planning and an integrated
approach to incrementally build the roadmap.

A great deal of work has been done on sensor-based plan-
ning for mobile robots [7, 14] with “eye” type sensors (cam-
era or range), however, as mentioned above, with this type
of sensor, this body of work is not directly applicable to ma-
nipulator arms. Even otherwise, most of these algorithms
are applicable to 2-dof (at most 3-dof) systems. Lumelsky
has applied these approaches to 2-dof manipulators and to
the very specific case of a 3-dof arm with all prismatic joints
[12]. Note that his approach requires a whole-arm sensi-
tive sensor (probably more complex than the commercially
available range-scanners). Other sensor-based approaches,
on the other hand assume abstract sensors that provide dis-
tances in C-space [20].

3 Sensor-Based Planning Testbed

A main purpose behind the development of this test-bed
is to be able to test different algorithms for sensor-based
motion planning for robot manipulators. We describe the
physical system in Section 3.1 and the software architecture
in Section 3.2.
3.1 The Physical System

The physical system test-bed, shown in Figure 1 consists
of a six-dof PUMA 560 equipped with a wrist-mounted area-
scan triangulation based laser range scanner. The decision
to mount the scanner on the robot end-effector, thus pro-
viding a six-dof scanning ability, was motivated by the ad-
ditional maneuverability for sensing. The scanner can scan
from any point in the reachable workspace of the robot and
in almost any direction (subject to joint limits).

The physical sensor is a triangulation-based, area-scan
laser range finder mounted on the end effector of the robot

(See Soucy et al [22] for details of a similar sensor). The
scanner hardware 1s composed of a solid state laser striper,
a CCD camera, and a framer grabber residing in a PC. The
camera and the laser striper are mounted on the PUMA
end-effector with their (the camera and the striper) relative
positions fixed. The last joint (joint 6) of the Puma robot is
used to scan the laser light stripe across the scene. As this
joint rotates, the image frame grabber continuously takes
images.

The specification of the sensor are as follows. The sensor
is configured to sense in the range of 30cm - 105cm from
the camera. Within this measurable range, the sensor is
accurate to about 0.5cm (in all three coordinates). This
range and resolution is just adequate for our Puma robot
whose positioning accuracy is roughly lem - 3cm and the
workspace radius is about 1m. The field of view of the sen-
sor in the direction perpendicular to the laser strip (joint 6
rotating direction) is not limited. However, in the direction
of the laser stripe, it is limited to 35 degrees. The scanning
time depends on the scanning resolution and the field of
view. In our typical application, it takes about 35 seconds
to get a 256 by 256 resolution range image.

3.2 System Architecture

The main component blocks of the testbed are: (i) the
robot server (ii) the sensor server, and (iii) the planner
server. The three processes, the planner, the sensor and the
robot communicate with each other through sockets using
TCP/IP. Such an implementation keeps the system modu-
lar and hence easier to maintain and add to. Furthermore,
to achieve fast response and facilitate intensive data trans-
mission between the processes, we use a switched hub for
the system to screen the outside network traffic. The robot
server exchanges data with the robot controller through a
parallel port. See Figure 2 for the basic system architecture
and data flow. We now describe the system details for each
of the processes.

interface
joint range
position| image )

Planner (not implemented yet)
laser beam
control

movg scan . e ;
comman comman '
joi i |§ '
]‘(t)‘ll'lt ! L
position | '
robot el
o move server T T -Camer 3 »
command VIde0|mage: ‘?( !
L ! !
I
joint position

! b
oo, robot joint
I I
I I
| moper || robot !

move command

Figure 2: The sensor-based testbed system configuration
and data flow.

The Robot Server

The robot server is essentially a robot control program that
runs on a host computer, an SGI INDIGO workstation. Its
application control interface is RCCL (Robot Control C Li-
brary) [8]. Tt communicates with a program (MOPER) that



runs on the Unimation controller (an LST 11). MOPER dis-
patches the joint setpoint commands to individual (original
Unimation) joint servo controllers.

In order to communicate with other processes in our sys-
tem, for instance, the sensor process and planner process,
the robot server runs on the same machine as the RCCL
program. The robot server accepts most of the RCCL com-
mands and the API is kept the same with only minimal
necessary alternation.

The Sensor Server

A range image daemon process running on the PC analyzes
(using triangulation) the laser stripes in the images, and us-
ing the joint 6 value and each scan, it outputs a range image,
an array of points in the physical 3-dimensional workspace.
The daemon communicates with other processes on the net
with TCP/IP protocols through two sockets. The first
socket accepts commands from client process and transmits
the range images to the client. These commands include the
specification of field of view, interpolation (between range
data points) on/off etc.

The second socket communicates with the robot server
(in our case, as mentioned above, the robot server resides
on the SGI INDIGO). The scanning mechanism is started
and synchronized through this socket.

Planner Server ) o
The key task of the planner is to find a collision free path

from a given start configuration to a given goal configura-
tion. Currently, the start and goal are specified by the user
in configuration space. However, as mentioned earlier, the
sensor-based planner (details in Section 4) generates robot
motions to explore (scan) the environment as well as to di-
rect the robot toward the goal position. Note that the physi-
cal sensor (the scanner) is mounted on the robot (and hence
a part of the robot) and must not collide with obstacles.
The planner server runs on the PC, the same machine that
the sensor server runs on. A main reason behind this choice
is that since the planner needs to receive the range image
(each image is more than 2 Mbytes) from the sensor server,
the two should reside on the same machine.

Data flow ] )
There are several major data flows in the system: (i) planner

sends robot move command to the robot server and receives
the current robot configuration (joint position) data from
it (ii) planner sends scan commands (along with the scan-
ning configuration of the robot) to the sensor server which,
in turn, generates and sends move command to the robot
server. The sensor server returns the sensed range image
along with joint positions (received from the robot serve)
back to the planner.

4 The Algorithm: SB-PRM

In this section we briefly describe our planning algorithm,
SB-PRM. Details of the algorithm have been presented in
[24], here we present a brief overview. The two key assump-
tions are: (i) the robot work space is static, with the robot
itself being the only moving object, and (ii) a small region
of physical space (a cuboid) surrounding the robot in its
initial configuration is free. This latter requirement is im-
portant because otherwise even the very first move may not
be possible after the initial scan.

4.1 Definitions and Notation

Let C denote n-dimensional C-space of the robot and Let

q denote a robot configuration, or a point in the C-space.

P denotes the physical space (the 3-D Euclidean space).
Correspondingly, Csree is the free C-space and Py, .. is the
free physical space the sensor has cumulatively seen at a
certain stage of the planning process (note that this plan-
ning and sensing). An obstacle is defined as the “surface”
elements of the range data returned by the scanner. We use
Pobstacle t0 represent the obstacles (in the physical space)
at a certain stage in the planning process. Note that at a
given stage in the planning process, Popstacte |J Prree may
not equal the whole physical space P . This is because there
may be some portion of P that is unknown. A represents
the robot. A(q) C P denotes the physical space occupied
by the robot at configuration q.

We assume that a routine scan() returns the sensed free
region. However, since the sensed free region (in the cur-
rent scan) may overlap part of existing Pgr.. , an addi-
tional computation is needed to calculate APy, , the ad-
ditional increment in free physical space, ie., (APfree =
scan()—Pjree ). Corresponding to APjfree , Ciree 1s aug-
mented by ACfr.. . Formally, let Crree = M (Piree ),
where M is the mapping from Pyr.. to Cfree , then ACs,..
=M (Piree UAPtree )= M (Pgree ), where — denotes set
difference.

A landmark, denoted by [, is a particular robot configura-
tion (along with some additional information as will become
clear later). ¢; denotes the configuration corresponding to
a landmark /. L denotes the set of all the landmarks. We
distinguish between three types of landmarks: white land-
marks, similar to the landmarks in [15, 2], are those that
belong to C¢r.. ; black landmarks are those that correspond
to the robot in collision with a sensed obstacle; and, gray
landmarks are those that correspond to part of the robot
in “unknown” environment, i.e., at the configuration corre-
sponding to the landmark, the robot does not intersect with
any sensed obstacles, and does not lie completely in Cyrc.
either (see Figure 3).

Ctree 1s characterized by a roadmap R. The roadmap
R is defined as an undirected graph R = (N, E) with its
nodes as the white landmarks. Note that N includes all the
white landmarks and is a subset of L. Two nodes, ny and ns,
in R are connected by an edge in F if local_planner(ni,ns)
returns a simple collision-free path from ¢,,1 to ¢,2. We store
graph R related data and the color in the landmarks. The
local_ planneT() simply tries to execute a discretized straight
line in C-space. It checks for collision detection at each
discretized point. If any of the points along the straight line
results in collision, local_planner() returns failure.

4.2 Incrementally Building Roadmap

The basic idea behind our algorithm is to incrementally
generate the roadmap R that represents the connectivity
of C¢ree . As each APy... is obtained by the range sen-
sor, Cfree 1is expanded towards the goal. New landmarks
are generated randomly to expand the roadmap and update
gray and black landmark lists. Recall that gray landmarks
represent points in the “unknown” C and could be conceptu-
ally thought of as a “wavefront” of C¢,.. . These gray and
black landmarks are updated (some gray landmarks may
be updated to white ones) as new APy, is added from
each new scan. The update process can be thought of as
the wavefront of Cy,.. , represented by the gray landmarks,
expanding toward the goal.

The motion planning algorithm can now be outlined as
follows:



i

.
_

Figure 3: Three types landmarks (all denoted by o) are
shown above. White region is known Cy,.. and the land-
marks in this region are white landmarks. The Roadmap
is the graph shown in this region. The dark region indi-
cates known C-obstacles and the landmarks in this region
are black landmarks (close list). The grey region is the un-
known C-space and the landmarks in this region are grey
landmarks (open list). The grey and black landmarks form
a “crust” enclosing Cfre. .

Algorithm SB-PRM
SB — PRM()

Ncur < N0
Piree < initial free region
Povstacte — 0
Initialize R(N, E), OpenList, Close List
loop
newScan = scan()
APsree = newScan— Pyree
update Roadmap()
SearchShortest Path(R)
moveRobot(nscan)
Ncur < Nscan

loop end

update Roadmap()
deate Pobstacle
AL — randomly generated landmarks within ACyyc.
AL — AL U (OpenList ﬂ ACfree )
/* new landmarks & some in Open List examined */
vie AL,
if colorOf(l)=WHITE
Vn e N
/*connect new white landmarks to roadmap*/
if n is within certain distance from !
if local_planner(l, n) = true
E—El (Ln)
if colorOf(l) = BLACK
addToList(l, CloseList)
if colorOf(l) = GRAY
addToList(l, OpenList)

Vn € N, and connected(ncur,n) = TRUE
if local_planner(goal, n) = true
report success and exit
lezp — closest landmark to goal in OpenList
/* lezp is the next landmark to be investigated */
Vn € N and connected(ncur,n) = TRUE

Nscan— bestViewPoint for(lesp)

5 Representations

We now detail some of the underlying representations and
computations that are only mentioned in the abstract in the
algorithm stated above.

An octree representation is used for the physical space.
We maintain two octrees, one for the free physical space,
called Py, -octree, and the other for the obstacles, called
Pobstacte -octree. In the Py,.. -octree, white nodes repre-
sent free space, and black nodes represent either obstacles
or unknown space. Each black node is augmented with an
additional field that classifies parts of it as obstacle or un-
known. Therefore, a black node is not a terminal node as
in the standard octree, but could be further decomposed.
During the planning process, Pjr.. increases by AP;,.. .
The union of all the APy,.. and the initial free space is
the current Pjr.. . The octrees are constructed and oper-
ated efficiently and in an on-line manner from sensed range
images by our recently developed algorithms [23]. Further-
more, efficient algorithms are also available to manipulate
these representations [21].

The basic collision detection in our computations is based
on checking if each face (the robot model is a CAD model
composed of polyhedral primitives) of the robot intersects
any black node in the octree. Due to hierarchical nature
of an octree, such computations are very efficient (on av-
erage it takes a few milliseconds to detect if the robot is
collision-free). Similar octree based collision detection has
been previously reported in [16].

Note that AC;,.. mentioned in the algorithm pseu-
docode is not explicitly computed. We simply ensure that
at least a part of the robot when placed in the configura-
tion corresponding to each newly generated landmark lies
in APfree .

best ViewPoinifor() computes the “best” white landmark
from which the next scan is to be made. Our current scheme
first determines the grey landmark closest to the goal posi-
tion. Tt then computes the intersection of the robot (as if
it were placed at the grey landmark) with the unknown re-
gion. Let us denote the centroid of this intersection as c.qp.
The algorithm then tries to position the sensor at a white
landmark such that the centroid of the sensed region (the
cone) is the closest to c.yp. Note that one could also use
rating function approach of [9] to select the next viewpoint
at increased computational cost.

As mentioned earlier, an obstacle is the “surface” of ob-
jects seen by the sensor. We calculate Popsiacre from Pyree .
Note that Popssacie is different from the boundary of Py, .
The latter differs from the former in following three ways:
(1) it may include the boundary of shadows caused by oc-
clusion of obstacles, (ii) it may include the boundary caused
by the limit of sensing distance, and (iii) it may include the
boundary caused by the robot itself (sensor may scan part
of the robot). We determine Poypseqere from the boundary
of Ptree by excluding the spurious boundary caused by



the above three cases (We omit the details here for lack of
space).

6 Experiments

We now present experimental results with SB-PRM on
the real test-bed. We assumed a small region of 80cm x
80cm x 220cm surrounding the robot is free. Note that
with the PUMA in its most “compact” configuration, the
smallest cube enclosing the projection of PUMA on the x-y
plane is 65cm x 65cm, implying that the assumed initial
free region is indeed very tight. A typical task we tested is
shown in Figure 7. The goal is in a very tight region, the
closest object being only a few centimeters from the robot
in its goal configuration.

Figure 7 shows a sequence of snapshots of the robot
(al,a2,a3, and a4 are actual pictures), the physical free
space, Pjr.. and the physical obstacles Popsiacte , sensed
by the robot (b and ¢ are the internal models built by the
planner), and the roadmap (landmarks) in the C-space. The
robot is started in completely unknown and cluttered envi-
ronments (Figure 7al). The corresponding Pyre. is shown
in Figure 7b1l. The grey vertical cuboid corresponds to the
initially assumed physical free space. Since the robot has
not sensed anything yet, Popstacie is an empty set (Figure
7cl). The initial set of landmarks (their projections in the
3-dimensional space comprising the first three joint angles
of the PUMA) are shown in Figure 7d1. Note that the white
landmarks are limited to a very thin disk that corresponds
to the initially assumed cuboid Py,.. (Figure 7bl). For
each 1iteration, the system takes a range image, generates
new landmarks, updates old landmarks, updates Py,.. and
Pobstacte , determines the next scanning position, and moves
to it. This process is shown in the next three sets in Figure
7, b,c and d. The goal configuration of the robot lies in be-
tween two cuboid boxes and above a flat horizontal surface
(Figure 7d). In Figure 7c3 and c4, the largish gray region
corresponds to this flat horizontal surface, and the verti-
cal walls of the boxes correspond to other gray patches. In
Figure 7d1,2,3and 4, dark gray (and larger) dots are white
landmarks, light gray (and smaller) dots are gray landmarks,
and black dots are black landmarks. One can see how the
roadmap evolves as more scans are taken.

Figure 4 shows the connectivity of the final roadmap
(when goal is reached). Note the robot has to pass through
a very narrow (and quite complex) channel in order to reach
the goal. In this case, the final roadmap consisited of 2411
total landmarks (392 white, 1359 black and 660 grey). The
large number of black landmarks is due to the narrow re-
gions in the workspace. The proportion of white, black and
gray landmarks varies depending on experiment settings.

The run time for one iteration varies from 1 minute to 2.5
minutes depending on the number of landmarks generated
and the complexity of the scene. Table 1 shows the break-
down of the time used in each part of the planner at a stage
when there are about 1000 - 6000 landmarks. Typical robot
movement in each iteration is composed of 3 - 7 primitive
movements (straight line in C-space).

Figure 5 graphs the increase in number of landmarks
and Pjr.. as a function of number of scans. As expected,
Ptree and the total number of landmarks increase as more
scans are taken. S1 and S2 are two successful examples. In
each, the robot reachs the goal after 15 scans. In F1, the
robot was not able to reach the goal within 30 scans. The

Figure 4: The final roadmap. An edge between two white
landmarks is shown by a straight line between them. The
robot has to pass through a very narrow (and quite complex)
channel in order to reach the goal.

scanning and
scan() construgti ng octree | 44- 80 sec
updateRoadmap() (1 - 6k landmarks) | 20 - 60sec
moveRobot robot movement
0 (3-7 motions) 5-30sec
Total 69 - 160 sec

Table 1: Breakdown of run time for one iteration

failure was most likely due to the fact that the channel to
the goal is very narrow. and more landmarks (and scans)
may be needed. This problem (of finding narrow channels)
is inherent in PRM type approaches, even for the classical
model-based case[15]. Additionally, even for the same ex-
ample, SB-PRM may fail to reach the goal within a given
number of scans (30 scans), because of the probabilistic el-
ement (a key deficiency in such approaches). We ran the
same experiment 24 times. The robot was able to reach the
goal within 30 scans in about 80% of the cases (20 times).
This success rate could be increased at a cost of increas-
ing the density of landmarks, and correspondingly increased
computation times.

An interesting observation is that scan 13 in experiment
S1 and scan 12 in experiment S2 (both near the goal), the
scanner sensed more free space than the previous ones. This
is because robot’s final goal was in a narrow region. This
region could not be scanned before because of occlusions.
Once this region is scanned, the robot is quickly able to
reach the final goal.

The algorithm needs to maintain a uniform distribution
of the landmarks in C-space. As pointed in [9], the distri-
bution could easily degenerate in the planning process. Our



3000

g
5 S1 14 S1
210 g
& r%ached goal after £ 2000
g 15'scans g
8
<—§ 5 3 1000
0 S
g
<o o
0 10 20 30 0 10 20 30
x10° number of scans number of scans
° 3000
2
5 S2 14 S2
g10 3
@ reached goal after g 2000
E 15'scans K
8
35 3 1000
o ]
2
0 o
0 10 20 30 0 10 20 30
x10" number of scans number of scans
°
e
3 g
g g
[ £
2 E
E 8
[ s
> =
[ E
g

0
0 10 20 30 0 10 20 30
number of scans number of scans

Figure 5: Evolution of P¢,.. and total number of landmarks
with successive iterations.

approach strives to generate new landmarks only in the new
free region (ACfr.. ) and near the (expanding) boundary
(wavefront) of C¢re. . This leads to a relatively uniform dis-
tribution of landmarks during the entire planning process.
To show this, we need a measure of “uniformity” of distri-
bution. Each landmark has a minimum distance associated
with it, the distance to the closest landmark. We use the
average these minimum distances as a measure of the devi-
ation from uniform distribution [3]. The basic idea is that
clustered landmarks will result in lower average minimum
distance. The lowest value of this measure (most uniformly
distributed) is given by |T'(k/2+ 1)["*T(1/k +1)/p"/*x1/2,
where p is the density of landmarks and k is the dimension
of the space, and I is the standard function.

Figure 6 shows this measure for a typical example, plot-
ted as a function of number of iterations. The horizontal
line represents the theoretical value for a random distribu-
tion. This suggests our landmarks are uniform distributed
in C-space. The fact that our average minimum distance is
somewhat greater than the theoretical value is due to the
boundary effects. Landmarks on the boundary have greater
chance of having a larger minimum distance. We can see the
boundary effect fades away as more landmarks are added.

7 Summary

We presented a real implemented “eye-in-hand” system
for sensor-based motion planning for articulated robot arms
with many degrees of freedom in unknown environments. It
consists of a PUMA 560 with a triangulation based area-
scan laser range finder mounted on its wrist. The PUMA
and the scanner are each controlled by their host machines,
an SGI and a PC respectively and communicate with each
other through sockets with TCP/IP protocols. The imple-
mented sensor-based planner, SB-PRM incrementally builds

[N
[N

@ @
2 2
0.8 s1 §0.8 F1
2 k]
o o
20.6) 20.6
& Po-0065060000csco ©
N N
T0.4 T0.4
1S 1S
g g
£0.2 £0.2
15 15
% 30 % 30

0 0
numher of scans numher of scans

Figure 6: Average minimum distance between the land-
marks with successive iterations.

aroadmap that represents the connectivity of the known free
configuration space, as it senses the physical environment.
SB-PRM adapts the probabilistic roadmap approach of [15]
and was presented in detail in [24].

We ran several experiments in which the robot is started
in completely unknown and cluttered environments. Typ-
ically, the planner is able to reach (planning as it senses)
the goal configuration in about 7 - 25 scans (depending on
the scene complexity), while avoiding collisions with the ob-
stacles throughout. Each iteration of the planner (a scan,
update or plan and move cycle) takes between 1 - 2.5 min-
utes depending on the scene complexity and the size of the
roadmap; and the planner is able to plan a collision-free
path in about and 7-25 scans to find the goal configuration.

There is much exciting work to be done. In the short
term we hope to conduct further experiments and imple-
ment more efficient versions of basic computations (collision
detection, for example). We expect this will give run time
improvements of as much as order magnitude. We will also
be investigating the adaptation of the ACA approach of [2, 1]
for the sensor-based case (SB-ACA). A preliminary version
is reported in [18]. Finally, we plan to formally address
theoretical issues in sensor-based planning for articulated
arms — issues such as completeness, explorability of space.
As mentioned in the introduction, a key difference from the
mobile robot case is that the planning space (C-space) and
the sensing space (physical space) are different leading to
several interesting complexities.

Acknowledgments

This research is being carried out in co-operation with
National Research Council (NRC), Canada and with the In-
ternational Submarine Engineering (ISE) Ltd. and is jointly
funded by the National Science and Engineering Research
Council (NSERC) of Canada, NRC, Canada and ISE Ltd.
Thanks to Michael Greenspan, Juan-Manuel Ahuactzin and
Eric Jackson for stimulating discussions, and to Gilbert
Soucy for providing us with a robust and excellent scanner
at a reasonable cost.

References

[1] J. Ahuactzin, K. Gupta, E. Mazer, Manipulation Planning
for Redundant Robots: A Practical Approach, The Inter. J.
of Robotics Research, Vol. 17, No. 7, July, pp. 731 - 741

[2] P. Bessiere, J. Ahuactzin, et al. The “Ariadne’s Clew” Al-
gorithm: Global Planning with Local Methods, Algorithmic
Foundation of Robotics, A K Peters, Ltd, pp. 39-47, 1997.

[3] Clark, P. J. and Evans, F. C. ,Distance to nearest neighbor
as a measure of spatial relationship in populations, Ecolgy
35: 445 - 453, 1954

[4] Choset, H. and Burdick, J.W.Sensor Based Planning for a
Planar Rod Robot, Proc. IEEE conference of Robotics and

Automation



(5]
[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

T. Cormen, C. Leiserson, R. Rivest Introduction to Algo-
rithms, McGraw Hill, 1989

K. Gupta, A. P. del Pobil, Practical Notion Planning in
Robotics: Current Approaches and Future Directions, John
Wiley and Sons, 1998.

K. Kutulakos, V. Lumelsky et al Vision-Guided Exploration:
A step Toward General Motion Planning in Three Dimen-
stons , Proc. 1993 IEEE Inter. Conf. on Robotics and Au-
tomation.

V. Hayward and R. Paul, Robot Manipulator Control Un-
der UNIX: RCCL, a Robot Control Library, International
Journal of Robotics Research, pp. 94 - 111 Vol 5, No. 4,
1986

E. Kruse, R. Gutsche el al, Effective, Iterative, Sensor Based
8-D Map Building Using Rating Functions in Configuration
Space, Proc. 1996 IEEE Inter. Conf. on Robotics and Au-
tomation, pp. 1067 - 1072

J. C. Latomb, Robot Motion Planning, Kluwer Academic
Publications, 1991

Lumelsky, V.J.; Cheung, E, Real-time Collision Avoidance
in Teleoperated Whole-Sensitive Robot Arm Manipulators,
IEEE Transactions on Systems, Man and Cybernetics, Jan.-
Feb. 1993, vol.23, (no.1):194-203.

V. Lumelsky, K. Sun, Three-dimensional Motional Planning
in an Unknown FEnvironment for Robot Arm Manipulators
with Revolute or Sliding Joints, International Journal of
Robot and Automation, vol. 9, No. 4, pp. 188- 198.

V. Lumelsky A Comparative Study On the Path Length Per-
formance of Maze-Searching And Robot Motion Planning
Algorithms, IEEE trans. on Robotics and Automation, vol.
7, No. 1, pp. 57- 66, 1991

H. Noborio S. Fukuda and S. Arimoto, Construction of the
octree approximating three dimensional object by using mul-
tiple views, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, Vol, 10, No. 6, Nov. 1988., pp. 769 - 781
L. Kavraki, P. Svestka. J. Latomb, M. Overmars, Proba-
bilistic Roadmaps for Path Planning in High-Dimensional
Configuration Spaces, IEEE transactions on Robotics and
Automation. Aug, 1996, vol 12, pp. 556 - 580.

al b1

[16] H. Noborio, T. Yoshioka Sensor-Based Navigation for a Mo-
bile Robot Under Uncertain Conditions, in Pratical Motion
Planning in Robotics, Current Approaches and Future Di-
rections. Ed. by K. Gupta and A. Del Pobil, 1998

[17] M. Overmars, Petr Svestka, A Probablistic Learning Ap-
proach to Motion Planning, Algorithmic Foundation of
Robotics, A K Peters, Ltd, pp. 19-37. 1996

[18] A. Portilla, Planificacion de trayectorias de un brazo robot
en un ambiente desconocido, Universidad de las Americas-
Puebla, Mexico, 1999

[19] P. Renton, M. Greenspan et al, Plan-N-Scan: A Robotic
System for Collision Free Autonomous FExploration and
Workspace Mapping, Journal of Intelligent and Robotic Sys-
tem 24: 207 - 234, 1999

[20] Rimon, E. and Canny, J.F. Construction of C-space
Roadmaps using local Sensory Data — what should the sen-
sors look for?, Proceedings 1994 IEEE International Con-
ference on Intelligent Robot and System, pp. 117-124.

[21] H. Samet, The Design and Analysis of Spatial Data Struc-
tures, Addison-Wesley Publishing Company, 1989.

[22] G. Soucy, F. Callari and F. Ferrie, Uniform and Complete
Surface Coverage with a Robot-Mounted Laser Range Finder
, Proceedings 1998 IEEE/RSJT International Conference on
Intelligent Robot and System, pp. 1682 - 1688.

[23] Y. Yu, K. Gupta, An efficient On-line Algorithm for Direct
Octree Construction from Range Images, Proc. 1998 IEEE
Inter. Conf. on Robotics and Automation, pp. 3079 - 3084.

[24] Y. Yu and K. Gupta, On Sensor-based Roadmap: A Frame-
work for Motion Planning for a Manipulator Arm in Un-
known Environments, Proc. 1998 IEEE/RSJ Inter. Conf. on
Intelligent Robot and System, pp. 1919 - 1924.

[25] K. Gupta, Y. Yu and J. Ahuactzin Theoretical Analysis of
Sensor Based Articulated Robot Motion Planning, In prepa-
ration.

cl d1

Figure 7: A sequence of snapshots of the robot (column a),
Piree (column b) and Popstacte (column c), sensed by the
robot (b and ¢ are the internal models built by the planner),
and the roadmap (landmarks) in the C-space (column d).
Please see text for further explanation.



aa 88 0%
p %0 "8 @

o 07 B0 Gl
b O S
o SR

oty

Paper
B Purposs White

1524

Figure 7: Continued from last page.




