Motion Planning for Knot Untangling

Andrew M. Ladd and Lydia E. Kavraki

Dept. of Computer Science, Rice University, Houston, TX 77005, USA

Abstract. When given a very tangled but unknotted circular piece of string it is
usually quite easy to move it around and tug on parts of it until it untangles. How-
ever solving this problem by computer, either exactly or heuristically, is challenging.
Various approaches have been tried, employing ideas from algebra, geometry, topol-
ogy and optimization. This paper investigates the application of motion planning
techniques to the untangling of mathematical knots. Such an approach brings to-
gether robotics and knotting at the intersection of these fields: rational manipulation
of a physical model. In the past, simulated annealing and other energy minimization
methods have been used to find knot untangling paths for physical models. Using
a probabilistic planner, we have untangled some standard benchmarks described
by over four hundred variables much more quickly than has been achieved with
minimization. We also show how to produce candidates with minimal number of
segments for a given knot. We discuss novel motion planning techniques that were
used in our algorithm and some possible applications of our untangling planner in
computational topology and in the study of DNA rings.

1 Introduction

A knot is a simple, closed piecewise linear curve and is called an unknot if
there exists an ambient isotopy! transforming it to a triangle. Otherwise it is
a non-trivial knot [29]. Two key problems in computational knot theory are
testing whether a given knot is the unknot and testing whether two knots
are equivalent [6]. The explicit computation of isotopies between geometric
objects is the central topic of study in motion planning. A difficult example
exists in very tangled embeddings of simpler knots. In Figure 1, we illustrate
the untangling of a very complicated unknot. The computation of untangling
paths is the task addressed in this paper. There are two purposes for this
work. Firstly, we want to explore how motion planning techniques can be
applied to knot untangling and determine if it has advantages over other
methods. Secondly, by studying an easily posed high dimensional planning
problem involving manipulation of a reparametrizable deformable object and
motion in a non-manifold space we hope to learn new techniques for motion
planning and robotics.

Some of the current challenges at the frontiers of modern motion planning
applications stem from high dimensional or even non-parametric configura-
tion spaces, complex but ‘soft’ constraints on allowable motions imposed by

! Piecewise linear homeomorphism of the space around the knot.

2 Andrew M. Ladd and Lydia E. Kavraki

Fig. 1. Knot untangling of a tangled 133 segment unknot.

the energetics of an underlying physical system and the possibility of innova-
tive uses of planners for discovery. Recent problems of interest are daunting
but may have a great deal of structure that can be exploited to sidestep the
inherent complexity of high dimensional planning in constrained spaces. Mo-
tivating examples can be found in recent work on planning schemes for modu-
lar and reconfigurable robots [8,41,42], planning for deformable robots [28,5],
abstractions of random planning analysis to non-parametric, non-manifold
spaces [27], approximate dimensionality reduction of configuration space [40],
determining protein folding pathways [38], planning in the energy landscapes
of molecules [4], and computing stationary distributions of Markov chains
defined over roadmaps for analysis of Monte Carlo simulations of protein
folding phenomena [3].

Knots are artificial geometric objects. The space of all knots does not
have a finite basis and a given embedding of a knot might need hundreds
of parameters to describe. Many configurations of a given knot are nearly
degenerate and must be avoided to maintain the topology of the knot as it
is manipulated. The number of connected components in the space grows
roughly exponentially with the number of pieces in the knot. A given knot
configuration is reparametrizable: a fact which can be used or ignored in a
planner. The use of reparametrization is a critical difference from traditional
planning tasks. In particular, the space of allowable configurations of a knot

Motion Planning for Knot Untangling 3

is not a manifold. Other non-manifold configuration spaces can be found for
true deformable robots and for reconfigurable robots.

Problem Statement In this paper, we take the approach of using motion
planning to find a sequence of motions and transformations that reduces the
number of segments in a knot to the minimal number possible for that knot
type. During these motions and transformations the topological type of the
knot is preserved. We call this the knot untangling problem. When cast as
a robotics problem, untangling is about manipulation of a reparametrizable,
deformable object possibly requiring many parameters to describe important
configurations and a complex structure which lends itself to the definition of
energy functions.

Importance In computational topology, untangling can be used for unknot
detection and more generally for the computation of the minimum number
of segments to draw a given knot in 3d. This work hopes to gain insight into
other robotics problems such as deformable robots, reconfigurable robots,
protein and molecule robots, and, in general, planning with many linkages.
Finally, it is possible that this work can provide insight into designing com-
putational tools for reasoning about DNA rings as discussed in Section 2.

Contribution This paper describes the design and implementation of a novel
motion planner for knot untangling. It makes some use of energy minimization
and formulates a sequence of local goals that, when taken together, achieve
a global untangling. It is a randomized tree-based planner. We demonstrate
the effectiveness of this planner by applying it to some standard benchmarks
used in other implementations as well as applications to some random ex-
amples. Our experimental results are significantly better than comparable
implementations in the literature. We also discuss how the techniques em-
ployed might be applied to other high dimensional motion planning problems.
Finally, we discuss the context of these results in both physical knotting and
motion planning. Particular aspects of interest are the combined use of po-
tential field methods and tree-based planners, the formulation of local goals,
reparametrization for dimensionality reduction and the application of plan-
ning to computational topology.

Organization In Section 2 we discuss background material in computation
with knots and discuss some connections to biology and robotics. In Section
3 we briefly discuss the geometry of knots as it pertains to our work. In
Section 4 we describe the knot untangling planner. In Section 5 we detail some
experiments and their results. In Section 6, we provide some explanation for
the design choices in the planner we developed. In Section 7 we discuss the
techniques we used in the context of motion planning. Finally, Section 8 we
discuss future work and applications.

4 Andrew M. Ladd and Lydia E. Kavraki

2 Background

We will now describe two classic problems in computational knot theory [6].

Problem 1 (UNKNOT). Given a knot K, determine if K is the same knot
type as the unknot.

Problem 2 (KNOT EQUIVALENCE). Given two knots K; and Ko, deter-
mine if K; is the same type as Ka.

One possible proof that a given knot is the unknot is to exhibit an explicit
isotopy transforming it to the triangle, in other words, to find a path trans-
forming the given knot into a triangle. In the remainder of the background
section, we will discuss in more detail some of the previous work on the un-
knotting and untangling problems. First we describe current work on exact
algorithms, invariant calculation and complexity. Then we will describe some
approaches to untangling which employ energy methods. Thirdly, we briefly
discuss some interesting analogies with robotics. Finally, we will describe
some of the connections that knotting has to biology.

2.1 Computation with Knots

Classification of knots is often attempted by computing knot invariants [29,2,16].
Invariants are typically computable constants or polynomials that are invari-
ant over all embeddings of a knot type. If two knots differ over some partic-
ular invariant then they are different knots, however the converse does not
necessarily hold.

There are many interesting invariant quantities defined for knots. The
crossing number is the minimum number of crossings over all regular drawings
of the knot on the plane. The unknotting number of a knot is the minimum
number of the crossing flips required to transform the knot to the unknot.
The stick number is the minimum number of segments required to draw a
given knot in 3-space. The genus is the minimum genus over all surfaces that
the knot can be drawn on. For a knot K, we write ¢(K) for crossing number,
uw(K) for unknotting number, s(K) for stick number and g(K) for the genus.
An unknot K has ¢(K) = u(K) = g(K) = 0 and s(K) = 3. The simplest
non-trivial knot, the trefoil, has ¢(K) = 3, u(K) = g(K) =1 and s(K) = 6.

The UNKNOT problem is known to be in NP and KNOT EQUIVA-
LENCE is in PSPACE [15]. More recently the MAXIMUM GENUS prob-
lem, g(K) < k, has been shown to be NP-complete [1]. Another recent
constructive approach to unknot recognition works by enumeration of un-
knot diagrams and is polynomial in some cases [7]. Hass notes in [1] that if
MINIMUM GENUS, g(K) > k, is in NP then UNKNOT is in both NP and
co — NP.

There are several polynomial invariants that are computed on knots. Each
has various distinguishing powers. The Alexander-Conway invariant can be

Motion Planning for Knot Untangling 5

computed in PTIME but has limited distinguishing power [29]. Computing
the Jones, Kauffmann and HOMFLY polynomials are #P-hard [20]. These
polynomials can be computed in practice for small knots although is not
known if there are multiple knots with the same polynomial as the unknot.
Jenkins gives an efficient implementation of a HOMFLY calculator, although
the size of knots it can handle is limited by bit arithmetic in the code. If ¢
is the number of crossings in a link, then the HOMFLY polynomial can be
computed in time O(n!2"c?®) and in space O(n!c?), where n is bounded above
by 1/c+1 [21]. By using combinations of invariants [2], attempts to tabulate
all distinct knots have been made. A recent list consists of all prime knots
with at most sixteen crossings and consists of 1701936 distinct knot types.
[16]. b

A key tool used in polynomial invariant calculation is a regular plane
projection of a knot or knot diagram. These graph-like objects can be ma-
nipulated by three simple moves, called the Reidermeister moves, to obtain
all knot diagrams for that knot type [29]. Hass and Lagarias derive an upper
bound on the number of Reidermeister moves to transform a tangled unknot
into a triangle. If k is the number of crossings in a given unknot diagram, it
takes at most O(2°%) where ¢ = 10! [14] to transform this diagram to an
unknot. Some intuition for the difficulty here comes from the fact that for
some diagrams a non-minimizing Reidermeister move must be made, that is
to say a crossing must be added before others can be removed.

2.2 Energy Functions

Knot energy was originally defined as way of arriving at “ideal” knot config-
urations. A good survey of this area can be found in Scharein’s thesis [34].

There are several different varieties of energy functions in the literature.
Many of the early equations were for the case where the function was a
smooth curve and hence the energy was infinite for piecewise linear knots.
For further details on energy for smooth curves refer to [9]. Due to the com-
putational nature of our work, we restrict ourselves to energy defined over
piecewise linear knots and give only two important examples from the liter-
ature. Other examples of energy functions can be found in [30,11,13,34] and
include geometric energy, Mobius energy, spring energy, electrostatic energy
and others.

Minimum Distance Energy Minimum distance (MD) energy is an approxi-
mation of distance integral over all pairs of points. The approximation is for
the case of a piecewise linear knot and uses the minimum distance between
pairs of segments (dpp). Given a knot K with segments sy, ..., s, we define
MD energy of the knot as follows

[sills,]
E K) = E —
m(K) ~ dup(si,5;5)?
si,8; disjoint

6 Andrew M. Ladd and Lydia E. Kavraki

This energy function is a sum that can be computed in O(n?) time. We
describe a calculation of dy/p in Appendix A. The energy is bounded from
below by 27 - ¢(K) [37]. To our knowledge, no convergence guarantees have
been proved for a gradient descent energy minimization and experimental
evidence suggests the presence of local minima, large plateaus and nearly
non-unimodal behaviour [43,13].

A key problem with MD energy is that there is a tendency for tangled
portions of the knot to become small. This is a result of the length normalizer
term in the equation. In particular, the global minimum for non-trivial knots
do not conform well to intuitive notions of “ideal” configurations. It has been
suggested that this causes convergence problems during energy minimization
[30].

Symmetric Energy Another approach is to view the knot as a radiating tube
of small radius. Symmetric energy measures the amount of self-illumination
of the knot. This energy can be calculated for a knot K parametrized by z(t),

y(t),
// |dw x r||dy x 7|
lz—yl> 7

where dz = #(t)dt and r = (z — y)/|z — y|. This energy function does not
shrink tangled portions of the knot and has been used to make beautiful
drawings of knots with the software KnotPlot [34].

2.3 Energy Minimization

Given an energy function defined over the space of knots, there are various
techniques to find its global minimum. The objective is to optimize the rate
of convergence to the global minimum or at least to a good local minimum.

Random Perturbation and Annealing A simple technique for energy mini-
mization is the random perturbation method. Many variations are possible
and have been attempted. This technique has been used by Simon [37] and
Scharein [34]. An important extension to perturbation techniques is to use
simulated annealing to choose the magnitude of the random perturbation.
The annealing schedule proposed by Ligocki and Sethian generates new con-
figurations with a standard deviation proportional to an inverse logarith-
mic function of time [30]. Unfortunately, there seems to be a very poor rate
of convergence to the global minimum for several reasons: rejection of self-
intersecting perturbations, minima effects in the energy function and the
high-dimensionality of the space necessitates slow cooling.

An important criticism of perturbation and annealing methods is that
much of the time is spent checking for self-intersection. It is difficult to avoid
making 2 3" intersection checks when the vertices are moved and usually
many perturbations are required to escape a local minimum or difficult re-
gions. Experimental evidence suggests that there are many such regions.

Motion Planning for Knot Untangling 7

Gradient Descent Another standard energy minimization approach is to
use gradient descent which will quickly find a local minimum. Few self-
intersection checks are needed assuming an energy function that goes to infin-
ity as the knot approaches a singular embedding. To escape a local minimum,
heuristic perturbation methods can be used after convergence occurs. This
technique has been successfully implemented in Wu’s MING knot evolver
[43]. This evolver uses MD energy and was used to find a 22 edge unknot
which was a MD energy local minimum as well as other difficulties with MD
energy.

Stochastic Energy Functions An interesting approach to random perturba-
tion can be obtained by perturbing the energy function at random rather than
the object. Grzeszczuk, Huang and Kauffman [12,13] use spring energy, elec-
trostatic energy, randomly positioned point charges and reparametrization of
the knot to create a random family of energy functions. The magnitude of
the perturbation is determined by an annealing schedule. Kauffman and al.
report their method to be roughly twice as fast as that of Wu on a difficult
benchmark.

2.4 Analogies with Robotics

We would like to point out the relation between efforts in knot energy mini-
mization and potential field efforts in motion planning. Many of the same dif-
ficulties arise. In motion planning, potential field methods have largely been
replaced by global probabilistic planners [22,19,18,17,23,24,26,25,28,5]. It is
noteworthy to observe that Scharein, in his thesis, remarks that with some
human interaction, e.g., dragging vertices around, minimizations of some very
tangled knots could be achieved considerably more quickly [34].

2.5 Knots in Nature

The definition of energy functions on knots has had several purposes: to
guide the simplification of tangled embeddings, to find aesthetic, symmetric
drawings, to search for ideal energy minimal configurations and to explore
connections with the energetics of knotting phenomena in DNA.

This final purpose is motivated by the abundance of long ring-shaped
molecules in living organisms. The discovery of knotted DNA led to the ap-
plication of knot theory to the study of long rings. Since then a number of
DNA knots have characterized in detail, and their knot-types have provided
insights into the mechanisms of the reactions that produced them.

It is known that the probability that a random knot on a square lattice
is the unknot goes to 1 exponentially with the length of the knot [39,32].
Further work in this direction attempts to asymptotic knotting and linking
of simple curves moving at random in some space under various models.
This general body of work provided for theoretical evidence that knotting

8 Andrew M. Ladd and Lydia E. Kavraki

phenomena occur in long DNA rings. This has been validated experimentally,
for example Shaw and Wang have explicitly measured knotting probability
in DNA molecules as a function of concentration [35,36].

Recent studies have shown the formation of knots and links in DNA can
play an important role in cell replication. Knotted and linked conformations
are more spatially compact. However, during replication DN A must untangle.
There is some insight into the mechanism whereby this occurs and it may be
that knot energetics in DNA rings play an important role in the life cycle of
a cell [33,10].

3 Geometry of Knots

In the remainder of the paper, we will describe the design and implementation
of our planner. In this section, we discuss the geometry of knots, introduce
notation and describe the calculations used to avoid self-intersection.

A given knot K with n pieces is defined by a sequence of vertices p1, ..., Pp.
For convenience, we sometimes say p,4+1 to mean p; and py to mean p,.
Formally the knot consists of the subset of R® defined by the union of the
segments s; = pipiy1, for 1 < i < n. We say two segments belonging to a
knot are disjoint when they do not share an endpoint.

The clearance of a knot K with vertices p, ..., p, is the function

cr(K) = min {dyp(si,85)}-

8i, §j disjoint

dyp is the minimum distance between a pair of line segments in R2. This
expression measures the distance between disjoint segments. When clr(K) =
0, the knot K is singular. When clr(K) > € for some € > 0, K is e-non-
singular. The self-intersection equations we use are not numerically stable
for small values of clr(K) when evaluated with floating point precision. Also,
it is assumed that all knots we consider are non-singular.

Given two knots of n pieces, K, with vertices pi,...,p, and K with
vertices qi, ..., qn, we can define a linear interpolation between K, and Kj
parametrized by time ¢, K(t), which is the knot defined by vertices r;(t) =
pi +t - (g; — pi)- This interpolation preserves the topology of the knots in
question when the knots K (¢) are non-singular for all ¢ € [0, 1]. In particular,
existence of such an interpolation between K, and K} is a sufficient condition
for concluding topological equivalence of K, and K} as it implies an explicit
ambient isotopy. Detecting the existence of zeroes for clr(K (t)) for t € [0,1]
is the self-intersection detection problem for knot manipulation.

Adding and removing vertices can be accomplished via a so-called ele-
mentary or triangle move, illustrated in Figure 2. A vertex p; can be re-
moved from knot K with vertices pq, ..., p, to obtain knot K’ with vertices
D1y eees Die1, Ditl, -+ Dn if the triangle Ap;_1p;p;+1 is unpunctured by all seg-
ments disjoint from s;_; and s;. Alternately, when three vertices are collinear,

Motion Planning for Knot Untangling 9

-)
Fig. 2. An elementary move.

the middle vertex can be removed. This move and its inverse are the elemen-
tary moves and any two equivalent knots can be related by a sequence of
elementary moves. The best known upper bound on the number of moves
required to transform a given unknot by elementary moves to a triangle is
0(2°), where c is 107 and t is the number of tetrahedrons in a space trian-
gulation where the knot can be drawn on the 1-skeleton [14]. The authors
know of no non-trivial lower bounds in the literature.

Geometry of Line Segments

The geometry of piecewise linear knots is defined in terms of the geometry
of line segments. In this subsection, we briefly describe how we calculate the
zeroes for the clearance function.

Consider a pair of non-parallel infinite lines in 3-space l,(s) = p+ s-u
and lp(s) = g+ s - v. The lines will intersect when they are coplanar, that is
to say when they both lie on a plane with normal m = uw x v. This occurs
when

n-(¢g—p)=0. (1)

When both lines are moving along known polynomial trajectories, i.e.,
D, ¢, u, v are functions of ¢, a time variable, equation (1) is a polynomial in ¢,
the zeroes of which occur at the intersection points of I, and Ip.

The same holds for segments. The only possible intersection points occur
at the zeroes of equation (1). At each zero, it can be verified if the segments are
indeed intersecting by the minimum distance between them. The equations
we use for this calculation are detailed in Appendix A.

Suppose a pair of segments p; (t)p2(t) and ps3(t)ps(t) are moving along
polynomial trajectories where the degree of the ith trajectory is d;. The degree
of the intersection polynomial from equation (1) is found by making the
following simple observation. When

deg(n) = max{dy,d2} + max{ds, ds}
and if w is a vector between any pair of points on the opposite segments
deg(w) > max{min{d;,ds} + min{dz,ds}}

implies that the degree of the intersection polynomial is the minimum over
all choices for w of deg(n)+deg(w). It is important to know the degree of the
resulting polynomial when solving for the zeroes of dy/p, a naive calculation
can result in numerical failure.

10 Andrew M. Ladd and Lydia E. Kavraki

4 Untangling Planner

The untangling planner works to reduce the number of vertices in a given
knot. In this section, we will describe the design and implementation of our
untangling planner. Essentially it is a tree-based planner similar to an RRT
[23,24,26,25] or expansive space planner [19,17,18]. Rather than planning a
path towards a particular configuration such as the unknot, the planner is
used to find a configuration wherein a single vertex can be removed via an
elementary move. When no progress is being made, the energy of the knot is
optimized instead. If no progress optimizing energy is made, a random move
is made instead. Other important design decisions that were made involved
the sampling, energy and weighting functions used in the planner and the
choice to avoid configurations where the clearance is very low and that are
prone to numerical instability in the self-intersection detection.

Configuration Space Let K,, be the set of all non-singular knots K with n
vertices and let K = |J,,~ 3 K. This is the configuration space for the planner.

Let K be a knot with n vertices pi,...,p, and let K’ be a knot with
vertices g1, ..., ¢, We say that K ~ K' if the linear interpolation between
them has no intermediate configuration that is singular. In particular, this
proves that K and K' are the same topological knot.

Given a knot K with vertices p1, ..., p, and € > 0 such that clr(K) > ¢,
we define two local planners.

Linear Interpolation Planner The first planner moves a single, given vertex
as close as possible towards a target point. Given 1 < 7 < n and a point
q € R?, we define a parametric knot K(t) with vertices py,...,pi 1,p; + t -
(¢ —pi),Pit1, ---, Pn- We find all the zeroes of equation (1) applied to all pairs
of disjoint segments in K (t) where one segment contains the ith vertex. We
note that (1) will be a linear equation according to the analysis in Section 3.
Suppose the zeroes occur at 0 < t; < -+ < t,, < 1. Beginning at the first
zero, they are processed in order. The jth zero, ¢;, will occur between some
segment s with fixed endpoints and a segment s'(¢) which has p; as endpoint.
We calculate darp (s, s'(t;)) and verify that it is larger than e. If not, we find
the smallest integer r > 0 such that clr(K(;—j)) > € and set t* = ;—Jr If
after processing all the zeroes, t* is undefined then we calculate the smallest
integer r > 0 such that clr(K(277")) > € and set t* = 27". This allows us to
find a knot K’ = K(¢*) where K ~ K' and clr(K') > e. We summarize this
construction as K' = lip;(K,q), lip is a mnemonic for linear interpolation
planner. Since we are only moving a single vertex, this calculation can occur
in linear time.

Elementary Move Planner The second planner removes a vertex by an ele-
mentary move. Given 1 < ¢ < n, we take the midpoint ¢ of p;—; and p; 1
and compute t* as with the previous section. If * = 1, then the move is

Motion Planning for Knot Untangling 11

successful and we can safely remove the ith vertex with an elementary move
to obtain K’ with vertices p1, ..., pi—1,Dit1, ---, Pn- We summarize this by the
binary function elm;(K) which takes the value 1 if t* = 1 and the value 0
otherwise.

Algorithm 1 Untangle a knot K

1: Generate a permutation of 1,...,n called j1, ..., jn.

2: for ¢ ranges from 1 to n do

3: Check to see if elm;, (Ko) = 1.

4 If so return Ky with the j;th vertex removed.

5: end for

6: Create a weighted tree T with root Ko having weight 1.

7: while some number of iterations N do

8: Choose a knot K at random from T using the weight distribution.

9 Choose a vertex p; at random from K.

10: Check to see if elm;(K) = 1, if so return the path from Ko to K in T and
K’ which is K with p; removed.

11: Choose a point g distributed uniformly in the spanning sphere of K.

12: Compute K’ = lip;(K, q) and the associated ¢*.

13: Divide the weight of K in T by 2.

14: Add K’ to T with parent K and weight ¢*.

15: Check to if elm;(K’) = 1, if so return the path from K to K’ and K" which
is K' with the 4th vertex removed.

16: end while

17: Computes the energies of all nodes of K.

18: If there is a node with energy less than Ko return it and the path to it from

Koin T.
19: Choose a knot K at random from T using the weight distribution.
20: Return the path from Ky to K in T and K.

Vertex Freeing Algorithm 1 is called with some knot K, the input knot, and,
N, which is the number of iterations to run the main loop before aborting.
N should be chosen to balance the amount of energy optimization and the
aggressiveness of the planner in trying to free a vertex. Implicitly there is a
minimum tolerated knot clearance as a parameter as well.

The algorithm is split into three sections. Lines 1-5 are the first section,
lines 6-16 the second and lines 17-20 are the third section. Let n be the
number of vertices in K. The first section exhaustively searches for a vertex
that can be removed by an elementary move. The vertices are considered in
a random order to eliminate bias. The first section runs in time O(n?): each
call to elm costs O(n) geometric comparisons and n calls are made.

The second section is a probabilistic tree expanding planner which searches
for a move that frees a vertex. This section is more complex and requires some
simple data structures for a correct implementation. The tree is stored as a

12 Andrew M. Ladd and Lydia E. Kavraki

directed graph. The distribution of weights and associated probabilities for
the tree nodes can be stored in binary heap-like structure which supports
O(log N) weight insertion, weight modification and choose operation. There-
fore lines 8, 13 and 14 cost O(log N). Lines 10, 11, 12 and 15 each require O(n)
operations as they require a single traversal of the knot. The remaining lines
in section two can be implemented in constant time. Thus the section can be
implemented in time O(Nn + N log N). The space usage for this section is
dominated by the storage for the tree nodes and can be seen as O(nN). By
keeping only incremental updates and check-pointing periodically the space
can be reduced to closer to O(N) without sacrificing much of the runtime.
Finally, the third section requires energy calculations over all nodes in
the tree. We are assuming that the time to calculate the energy function
is dominated by an operation on pairs of the disjoint edges. The energy of
Ko can be calculated in O(n?). Since each other node is constructed by an
incremental change to one vertex, the energy can be calculated from the
previous node in time O(n) with appropriate book-keeping in the tree. Thus
line 17 can be done in time O(n? +nN) and this cost dominates section three.

Global Scheme The untangling algorithm is called repeatedly some number
of times until the knot is no longer becoming simpler. Depending on the
application in mind, it may be enough to simplify a certain amount or it
might be better to search aggressively for a minimal embedding.

Choosing an Energy Function The energy function that we used was based
on MD energy but we dropped the length normalizer to obtain

EK)= > L

YR
51,8, disjoint dup(si, s5)
This odd choice of energy function seems experimentally to be a good one
despite the obvious problem with it. Some explanation of why this seems to
be is offered in Section 7.

5 Experiments and Results

This section will describe experiments using our untangler. We will show that
our planner is significantly faster than the energy minimization approaches
in the literature. The software packages we are comparing against were the
simulated annealer of Ligocki-Sethian [30], KnotPlot by Scharein [34], MING
knot evolver by Y-Q. Wu [43] and stochastic energy optimizer by Grzeszczuk,
Huang and Kauffman [12,13]. Each of these packages either report some re-
sults in a related paper or are publicly distributed.

Motion Planning for Knot Untangling 13

Fig. 3. The Ochiai unknot.

Fig. 4. Ligocki-Sethian example 2 and Twisted Freedman unknot.

Ligocki-Sethian unknot The second Ligocki-Sethian unknot shown in Fig-
ure 4 is a nearly flat weave with 160 vertices that was used as a test case
for a simulated annealer. It was reported that it took more than 16000000
iterations to obtain an embedding that was recognizably a circle[30]. Each it-
eration involved O(n?) collision checks for each configuration generated. Our
untangler solves this problem nearly instantaneously.

Twisted Freedman unknot The Twisted Freedman unknot is another nearly
flat weave with 122 vertices that was used to show that MING evolver was
faster and more precise than perturbation methods [43]. It is shown in Figure
4. We ran MING for more than 12 hours on a 300MhZ SGI O2 without the
knot untangling to a circular embedding. Our untangler ran on a single cpu
of a dual AMD 1900MP and spent an average of approximately 8 minutes for
the runs that completed in less than 25 minutes. About a third of the runs
ran for more than 25 minutes and were terminated.

14 Andrew M. Ladd and Lydia E. Kavraki

Ochiai unknot The Ochiai is an unknot with 139 vertices that has foiled
many energy minimizers. It was originally given as an example of a general
construction in a paper by M. Ochiai in 1990. Since then it has often been used
to test computational knotting programs. It is reported in [13] that MING
running on an SGI O2 untangled it in 108 hours and stochastic minimization
took 48 hours. KnotPlot was not able to reduce it [34]. Our untangler averaged
about 10 minutes on a single cpu of a dual AMD 1900MP and had roughly
one sixth of its runs terminated after 35 minutes.

Random unknots We generated several random unknots in hopes of obtaining
more interesting examples to test on. We generated unknots by beginning
with a circle of vertices and then making a large number of random moves.
Even by running the tangler for many hours, we were not able to generate
any configurations that were not solved instantaneously by the untangler.

1
0.8 E
(@]
£
=)
&
2 06 :
>
©
2>
= 04 r R
©
o]
o
o
0.2 E
Knots
Ochiai unknot —_—
0 ‘ ‘Twisted‘ Freedm‘an unknpt ‘

0 5 10 15 20 25 30 35
time in minutes

Fig. 5. Probability of finding solution versus time in minutes

Summary of unknot experiments We summarize the results of our untangling
experiments in Figure 5. Once we factor in the difference in processor speeds,
it is clear that our method is orders of magnitude faster than the energy
minimizations in the literature. A second advantage is the probabilistic nature
of the algorithm allows to run many in parallel to obtain better times. In the
case of the Twisted Freedman and Ochiai this would mean solution times
closer to two or three minutes.

Stick number of non-trivial knots The results we have reported up to now
have been for unknots. Another application of the untangler is to minimize

Motion Planning for Knot Untangling 15

Fig. 6. The knot diagram for 1614¢ and 3d drawing with 17 sticks.

the number of segments used to draw a given knot. As an example we took the
non-alternating knot 1614s from the database of knots stored in the software
Knotscape by Hoste and Thistlethwaite and found a 3d presentation of it
with 17 sticks after a few minutes of computation. The initial embedding
had 50 segments.

6 Analysis of Heuristics

The algorithm we gave engendered several design choices. In this section, we
explain the motivations for these choices.

Use of trees Knot space has many properties that make it hostile to PRM
planners that build a roadmap [22]. It is very difficult to sample uniformly
from a single connected component. Determining whether two knots are in
the same component is an instance of UNKNOT or KNOT EQUIVALENCE
and is challenging for examples with many pieces. Even finding two random
knots K, K' such that K ~ K' for 30 segment knots requires the generation
of several million random knots. It is also difficult to find fast algorithmic
solutions to knot matching that takes into account the symmetries of knots.
For these reasons, we elected to use a tree expanding planner in the spirit of
other such planners [19,18,17,23,24,26,25] to avoid the difficulties with global
sampling.

Tree expansion In tree-based probabilistic planning, it has been observed that
it is undesirable for the tree to be concentrated in a small area of the space.
The planner will be much faster if it covers the space more quickly and other
tree-based planners have employed a number of heuristics for this reason

16 Andrew M. Ladd and Lydia E. Kavraki

[19,18,17,23,24,26,25] When moving all vertices simulataneously along some
linear path, the knot is constrained by the most constrained vertex. When
moving a single vertex at random n times, we observed that the final position
of the knot was typically much further from the start position. Since these
two schemes are roughly the same amount of work computationally, moving
one vertex at a time has a clear advantage. A further benefit is that the
intersection equations have lower degree.

Freeing a vertex Finding a path that takes a given tangled unknot to a
triangle requires finding a very long path. Worse, when trying to simplify
a knot of unknown type, the final configuration may not be known. One
possiblity for finding a path to untangled configuration is to construct a
very large search tree. This is impractical as it is very space intensive. In
addition, it is also very slow if backtrack after performing an elementary move
is possible, even for completely trivial input such as n vertices arranged in a
planar polygon. This trouble occurs because there can be at most n! ways to
reduce the knot to a triangle. By disallowing backtrack, essentially throwing
away the tree but for a path ending in an elementary move, we speed the
planner greatly at the cost of having some probability of putting the knot in
a bad configuration. We believe that such bad configurations are responsible
for the occasional long run times observed in the experiments section.

Energy hints versus random After running the loop in Algorithm 1 N times
the next configuration to consider is chosen. In our implementation we used
energy to make this choice. By eliminating lines 17 and 18 from the final
section of Algorithm 1, thus always executing the random guess on line 19, we
obtained very poor results. We ran 50 trials on the Ochiai unknot for nearly
an hour with almost no progress. We observed that the knot tended to stay in
high energy configurations when moving at random. This is consistent with
our observation that the planner seems to hampered by high energy knot
configurations.

Choice of energy function The energy function we used is non-standard and
was chosen for two reasons: it is easy to compute and it does not shrink tan-
gled portions of the knot like MD energy does. The length normalizer in MD
energy has a tendency to shrink certain tangled sections of the knot [30,13].
This is very undesirable and is one of the sources of convergence problems
for MD energy. The problem of the knot becoming very large is dealt with
by sampling in a sphere. We ran 50 trials on the Ochiai unknot with MD en-
ergy instead of unnormalized MD energy and very little progress was made.
We found it surprising that the difference between the two functions was
so striking because they superficially seem similar. When visualizing inter-
mediate configurations during the untangling we observed that MD energy
tended to shrink the tangled portions of the knot. The unnormalized MD
energy tended to seperate some large triangles or “ears” from the knot. The

Motion Planning for Knot Untangling 17

planner would have ample space to pass other parts of the knot through these
ears. That particular move seemed to be critical to making progress in the
untangling.

7 Discussion

In the section we will discuss some our implmented techniques as they relate
to motion planning and detail some future work.

Use of local goals Our planner decomposes the problem of finding an un-
tangling into local goals. These goals consisted of finding a position where
an elementary move can be made. This has two advantages: the local goal is
much easier to plan for and the final configuration does not need to be known.
This idea appears in robotics literature in task planning and in hierarchical
planning. In our case, formulating the planning problem in terms of sequence
of local goals was essential to obtain a usable planner. When it is possible to
find such formulation, we suggest that it will be often a major improvement
to the speed of the planner.

Use of energy There are several planning applications with natural energy
functions such as protein folding, molecular docking and realistic deformable
robots. Also, there has been some investigation in using energy when planning
for such systems [38,4]. Our planner is a potential field planner which uses
tree expanding planning to escape minima. In particular, we have demon-
strated that both planning and energy hints are necessary for the untangler’s
efficiency. Furthermore, we observed that for the knot untangling planner, low
energy configurations were typically better for the planner. We propose that
the reason for this is that high energy configurations are more constrained
and it is more difficult for the tree to escape from this strangely shaped
region of configuration spaace. Energy functions with similar properties, ei-
ther natural or artificially designed, might exist for other planning instances.
This topic merits further investigation and awareness of hybrid energy and
planning algorithms may lead to improvements in a variety of planners.

8 Future Work and Applications

Probabilistic completeness Although we have not shown probabilistic com-
pleteness for our planner, we give a conjecture which is both necessary and
sufficient for our planner to be probabilistically complete.

Congjecture 1. Let K be a piecewise linear knot with n pieces. Suppose s(K) <
n. Then there is a sequence of knots with n pieces K = Ky, K1, ..., K;;, with
K; ~ K;y1 and K, has three collinear vertices.

The remainder of the argument follows the scheme described in [27].

18 Andrew M. Ladd and Lydia E. Kavraki

Applications to Computational Topology In this paper, we provide a plan-
ner for knot untangling. The planner can be used for probabilistic unknot
detection. A more general application of our planner can be found in stick
number calculation of a knot. Our approach might give a fast method for
finding good candidates for minimal stick knots. Another application is to
calculate unknotting number of a knot. Given some knot, the task is to find
a path containing as few crossings as possible that transforms that knot to
the unknot. We propose a two-tiered planner combining our untangler with
higher level planner that plans across knot types using a crossing operator.

Applications to DNA knotting Determining low energy paths for DNA knot-
ting and unknotting is of interest in determining how certain processes occur
in cell biology [10]. To achieve this we would need to use more complex energy
functions that better reflect the energetics of DNA rings. This could mean
combining simulation in the spirit of our work on knot tying for simulated
rope [31] and planning. It may perhaps entail all paths analysis such that
done with Stochastic Roadmap Simulation [3].

Acknowledgements

Work on this paper by Andrew Ladd and Lydia Kavraki has been supported
in part by NSF 9702288, NSF 0114796, a Whitaker Biomedical Engineering
Grant and a Sloan Fellowship to Lydia Kavraki. Andrew is also supported
by FCAR. We would like to thank Nate Dean for discussions and insights.
We also thank Rob Scharein for providing us with the Ochiai and Ligocki-
Sethian unkots. Finally, we thank Jeff Phillips for our fruitful collaboration
in our earlier work and for discussions about this work.

References

1. 1. Agol, J. Hass, and W. Thurston. The computational complexity of knot
genus and spanning area. (preprint.).

2. C. N. Anerizis. The Mystery of Knots - Computer Programming for Knot
Tabulation. Series on Knots and Everything. World Scientifical Publishing Co.
Pte. Ltd., 1999.

3. M. Apaydin, D. Brutlag, C. Guestrin, D. Hsu, and J. Latombe. Stochastic
roadmap simulation: An efficient representation and algorithm for analyzing
molecular motion. In International Conference on Computational Molecular
Biology (RECOMB), April 2002.

4. M. Apaydin, A. Singh, D. Brutlag, and J. Latombe. Capturing molecular en-
ergy landscapes with probabilistic conformal roadmaps. In IEEE International
Conference on Robotics and Automation (ICRA), May 2001.

5. O. Bayazit, J.-M. Lien, and N. Amato. Probabilistic roadmap motion planning
for deformable objects. In IEEE International Conference on Robotics and
Automation, 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Motion Planning for Knot Untangling 19

. M. Bern, D. Eppstein, and al. Emerging challenges in computational topology,

1999.

J. S. Birman, P. Boldi, M. Rampichini, and S. Vigna. Towards an implemen-
tation of the b-h algorithm for recognizing the unknot. In KNOTS-2000, 2000.
Z. Butler, K. Kotay, D. Rus, and K. Tomita. Cellular automata for decentral-
ized control of self-reconfigurable robots. In IEEE International Conference on
Robotics and Automation, 2001.

X. Dai and Y. Diao. The minimum of knot energy functions. Journal of Knot
Theory and its Ramifications, 9(6):713-724, 2000.

R. Deibler, S. Rahmati, and E. Zechiedrich. Topoisomerase iv, alone, unknots
dna in escherichia coli. Genes and Development, 15:748-761, 2001.

Y. Diao, C. Ernst, and J. Rensburg. In search of a good polygonal knot energy.
Journal of Knot Theory and its Ramifications, 6(5):633—657, 1997.

R. Grzeszczuk, M. Huang, and L. Kauffman. Untangling knots by stochastic
energy optimization. IEEE Visualization, pages 279-286, 1996.

R. Grzeszczuk, M. Huang, and L. Kauffman. Physically-based stochastic sim-
plification of mathematical knots. IEEE Transactions on Visualization and
Computer Graphics, 3(3):262-278, 1997.

J. Hass and J. Lagarias. The number of reidemeister moves needed for unknot-
ting. (preprint.).

J. Hass, J. C. Lagarias, and N. Pippenger. The computational complexity of
knot and link problems. In IEEE Symposium on Foundations of Computer
Science, pages 172-181, 1997.

J. Hoste and M. Thistlethwaite. The first 1,701,936 knots. Math. Intelligencer,
20(4):33-48, 1998.

D. Hsu. Randomized Single-Query Motion Planning In Ezpansive Spaces. PhD
thesis, Department of Computer Science, Stanford University, 2000.

D. Hsu, R. Kindel, J. Latombe, and S. Rock. Control-based randomized mo-
tion planning for dynamic environments. In Algorithmic and Computational
Robotics: New Directions: The Fourth International Workshop on the Algorith-
mic Foundations of Robotics, pages 247-264, 2001.

D. Hsu, J. Latombe, and R. Motwani. Path planning in expansive spaces. In
Proc. IEEE Int’l Conf. on Robotics and Automation, pages 2719-2726, 1997.
F. Jaeger, D. L. Vertigan, and D. Welsh. On the computational complexity of
the jones and tutte polynomials. In Math. Proc. Camb. Phil. Soc., 108, pages
35-53, 1990.

R. Jenkins. A dynamic approach to calculating the homfly polynomial for
directed knots and links. Master’s thesis, Carnegie Mellon University, 1989.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. Trans-
action on Robotics and Automation, 12(4):566-580, June 1996.

J. J. Kuffner and S. M. LaValle. Randomized kinodynamic planning. In Proc.
IEEE Int’l Conf. on Robotics and Automation, pages 473-479, 1999.

J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-
query path planning. In Proc. IEEE Int’l Conf. on Robotics and Automation,
2000.

J. J. Kuffner and S. M. LaValle. Randomized kinodynamic planning. Interna-
tional Journal of Robotics Research, 20(5):378-400, May 2001.

20

26

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Andrew M. Ladd and Lydia E. Kavraki

J. J. Kuffner and S. M. LaValle. Rapidly exploring random trees: Progress and
prospects. In Algorithmic and Computational Robotics: New Directions: The
Fourth International Workshop on the Algorithmic Foundations of Robotics,
pages 293-308, 2001.

A. Ladd and L. Kavraki. A measure theoretic analysis of prm. In IEEE
International Conference on Robotics and Automation, May 2002.

F. Lamiraux and L. Kavraki. Planning paths for elastic objects. International
Journal of Robotics Research, 20(3), 2001.

W. Lickorish. An Introduction to Knot Theory. Springer, 1997.

T. Ligocki and J. A. Sethian. Recognizing knots using simulated annealing.
Journal of Knot Theory and Its Ramifications, 3(4):477-495, 1994.

J. Phillips, A. Ladd, and L. Kavraki. Simulated knot tying. In IEEE Interna-
tional Conference on Robotics and Automation, May 2002.

N. Pippenger. Knots in random walks. Discrete Applied Mathematics, 25:273—
278, 1989.

L. Postow, B. Peter, and N. Cozzarelli. Knot what we thought before: The
twisted story of replication. BioEssays, 21:805-808, 1999.

R. Scharein. Interactive Topological Drawing. PhD thesis, University of British
Columbia, 1988.

S. Y. Shaw and J. C. Wang. Knotting of a dna chain during ring closure.
Science, 260(23):533-536, April 1993.

S. Y. Shaw and J. C. Wang. Dna knot formation in aqueous solutions. Journal
of Knot Theory and Its Ramifications, 3(3):287-298, 1994.

J. Simon. Energy functions for polygonal knots. J. Knot Theory and its Ramif.,
3:299-320, 1994.

G. Song and N. Amato. Using motion planning to study protein folding path-
ways. In International Conference on Computational Molecular Biology (RE-
COMB), pages 287-296, April 2001.

D. Sumners and S. Whittington. Knots in self-avoiding walks. Journal Physics
A: Mathematicals General, 21:1689-1694, 1988.

M. Teodoro, G. Phillips, and L. Kavraki. A dimensionality reduction approach
to modeling protein flexibility. In International Conference on Computational
Molecular Biology (RECOMB), April 2002.

S. Vassilvitskii, J. Suh, and M. Yim. A complete, local and parallel reconfigura-
tion algorithm for cube style modular robots. In IEEE International Conference
on Robotics and Automation (ICRA), May 2002.

J. Walter, B. Tsai, and N. Amato. Choosing good paths for fast distributed
reconfiguration of hexagonal metamorphic robots. In IEEE International Con-
ference on Robotics and Automation, 2002.

Y.-Q. Wu. Ming user manual. www.math.uiowa.edu/ ~wu/ming/ming.pdf,
1996.

Motion Planning for Knot Untangling 21

Appendix A:
Calculating dy/p

A line segment is drawn between two points p and ¢. Equivalently, it is de-
scribed by a point p and vector v where v = ¢ — p. The minimum distance
dpyp(P1p2,P3Pa) between a pair of non-parallel line segments can be calcu-
lated by taking expressions over dot products of vectors between the points

dyp (P1p2, p3pa) = d(p1 + cl(pa)u, p3 + cl(up)v

where u = py — p1, v = pg — p3,

_ d1343d4321 — d1321d4343
"=

2 b
d2121 d4343 - d4321

_d1343 + f1ady321

Ho = d4343
<0 0
cdz)=<z>1 1,

otherwise =

and
dijri = (pi — p;) - (Pr — P1)-

