Proceedings of the 1999 IEEE
International Conference on Robotics & Automation
Detroit, Michigan » May 1999

The Gaussian Sampling Strategy for Probabilistic Roadmap Planners*

Valérie Boor, Mark H. Overmars, A. Frank van der Stappen

Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands
Email: {valerie,markov,frankst} @cs.uu.nl

Abstract

Probabilistic roadmap planners (PRMs) form a rel-
atively new technique for motion planning that has
shown great potential. A critical aspect of PRM is the
probabilistic strategy used to sample the free configu-
ration space. In this paper we present a new, simple
sampling strategy, which we call the Gaussian sampler,
that gives a much better coverage of the difficult parts
of the free configuration space. The approach uses
only elementary operations which makes it suitable for
many different planning problems. Ezperiments indi-
cate that the technique is very efficient indeed.

1 Introduction

Over the past two decades the motion planning prob-
lem has been studied extensively. Many different
approaches have been proposed, including potential
field techniques, roadmap methods, cell decomposi-
tion, neural networks, and genetic algorithms. See the
book of Latombe [11] for an overview of the situation
up to 1990, and the proceedings of ICRA and WAFR
for many more recent results.

The motion planning problem is normally formu-
lated in terms of the configuration space, the space of
all possible configurations of the robot. Each degree of
freedom of the robot corresponds to a dimension of the
configuration space. Each obstacle in the workspace,
in which the robot moves, transforms into an obsta-
cle in the configuration space. A path of the robot
corresponds to a curve in the configuration space con-
necting the start and the goal configuration. A path is
collision-free if the corresponding curve does not inter-
sect any obstacle, that is, it lies completely in the free
part of the configuration space, denoted with Cgree.

The probabilistic roadmap planner (PRM), also

*This research has been partially supported by the ESPRIT
LTR project MOLOG

0-7803-5180-0-5/99 $10.00 © 1999 IEEE 1018

called the probabilistic path planner (PPP), is a rel-
atively new approach to motion planning, developed
independently at different sites [3, 7, 9, 12, 13]. Glob-
ally speaking, the approach samples the configuration
space for free configurations and tries to connect these
configurations into a roadmap of feasible motions us-
ing a simple local planner. Over the past few years
the method has been successfully applied in various
motion planning areas, involving amongst others artic-
ulated robots [10], mobile robots with non-holonomic
constraints [14, 16], multiple robots [15], and flexible
objects [5]. The method turns out to be very efficient
but, due to the probabilistic nature, it is very hard to
analyse (see e.g. [8]).

Already in the earliest papers on probabilistic
roadmap planners it was noticed that the random
adding of free configurations is a bottleneck when
small difficult regions of Cgeeplay an essential role.
Various techniques were proposed to overcome this,
for example by adding extra configurations at promis-
ing places (see e.g. [12]), or by extending the roadmap
at difficult places [10]. Recently some more general ap-
proaches have been proposed. Hsu et al. [6] describe
a technique based on a dilation of the free configura-
tion space, that is, they allow configurations in which
the robot slightly penetrates the obstacles. In later
stages free configurations are created in the neighbor-
hood of these penetrating configurations. Amato et
al. [1, 2] describe a number of techniques that try to
add configurations near favourable points on obstacles
(e.g. along edges or near vertices). These approaches
have been shown to work well in particular environ-
ments. Unfortunately, they require rather complicated
geometric operations and they work on individual ob-
stacles, making them sensitive to the subdivision of a
scene in individual obstacles.

In this paper we describe a new, general sampling
approach that we call the Gaussian sampler. It is
based on the notion of blurring, used in image pro-
cessing. The technique adds configurations in difficult

Figure 1: A typical graph produced by PRM.

regions without doing any computations in the config-
uration space. It only uses simple intersection tests
in the workspace. This makes the approach suitable
for many different motion planning problems. Experi-
ments show that Gaussian sampling reduces the num-
ber of samples required considerably, in this way im-
proving the efficiency of PRM.

2 Probabilistic Roadmap Planners

Let us start with a very brief introduction on prob-
abilistic roadmap planners. There are a number of
versions of PRM, but they all use the same underlying
concepts. Here we base ourselves on the description in
[13].

The global idea of PRM is to pick a collection of
(random) configurations in the free space Cree. These
free configurations form the nodes of a graph G =
(V,E). A number of pairs of nodes are chosen and a
very simple local motion planner is used to try to con-
nect these configurations with a path. When the local
planner succeeds an edge is added to the graph. The
local planner must be very fast, but is allowed to fail
on difficult instances. A typical choice is to compute a
short path in the absence of obstacles, and then check
whether the path is collision-free. See Figure 1 for an
example of a graph created with PRM.

Once the graph reflects the connectivity of Cgree it
can be used to answer motion planning queries. To
find a motion between a start configuration and a goal
configuration, both are added to the graph using the
local planner. Then a path in the graph is found which
is converted into a motion for the robot.

There are many details to fill in in this global
scheme: which local planner to use, how to select
promising pairs of nodes to connect, what distance
measure to use, how to improve the resulting paths,
etc. See the various references for more information.

1019

In pseudo-code the algorithm for constructing the
graph looks as follows:

1. V0, FE«0;

2. loop

3. ¢ + a (random) configuration in Cree
4. V«Vu{c}

5 N, + a set of nodes chosen from V

6 for all ¢’ € N, in order of increasing
distance from ¢ do

7. if ¢’ and ¢ are not connected in G then

8. if the local planner finds a path
between ¢’ and ¢ then

9. add the edge c'c to E

The two time-consuming steps in this algorithm are
line 3 where a free sample is generated, and line 8
where we test whether the local method can find a
path between the new sample and a configuration in
the graph. The geometric operations required for these
steps dominate the work. Let T, denote the time re-
quired to create a free sample (line 3) and let 7, denote
the time required to add it to the graph (lines 4-9).
Then the total time for the algorithm is roughly

T =n(T, + T,)

where n denotes the total number of samples required
to solve the problem. In the standard implementation
of PRM T is much smaller than T,. This suggests
that we could improve the running time of the algo-
rithm considerably by sampling more carefully, that is,
by increasing T, to reduce n. The different sampling
schemes studied recently do exactly this.

Many sampling techniques globally work as follows:
they compute certain configurations, test whether they
are useful (e.g. whether they lie in the free space)
and, if so, add them to the graph. In this case we can
rewrite the above formula as

T= TltTt + naTa

Where n; is the number of tried samples, n, is the
number of successful samples that we add to the graph,
T; is the time required to test a sample, and T, is,
as above, the time required to add a sample to the
graph. Again T; is normally a lot smaller than T,.
Testing a sample typically involves checking whether
the robot in a particular configuration intersects an
obstacle. Adding the sample to the graph, however,
involves the computation of various paths, using the lo-
cal planner and testing these paths for collisions. This
suggests that it is advantageous to try many more sam-
ples (that is increase n;), but be much more selective
in the ones to keep (that is, decrease n,).

Figure 2: The sample distribution g(c; o) for a, from
left to right, decreasing scale o.

3 A Favourable Sample Distribution

What would be a good collection of samples for PRM?
Clearly, we don’t need many samples in large open re-
gions in the configuration space. We do need samples
that lie in difficult regions, close to obstacles (in the
configuration space!). Therefore, we want the proba-
bility that a sample is added to the graph to depend
on the amount of forbidden configurations nearby.

Borrowing from image processing terminology, we
can formally describe this as follows: We define a
Gaussian on the configuration space (with dimension
d) as:

1 e
p(ci0) = ———e 27
2mo?

o is the scale (or width) of the Gaussian!. We define
the function Obs(c) to be 1 when in configuration ¢
the robot intersects an obstacle and 0 otherwise. Let

fleo) = / Obs(y)b(c — v 7)dy

f(c;o) blurs the obstacles (in configuration space)
with the Gaussian. To avoid forbidden configurations
we define

g(c; 0) = max(0, f(c; o) — Obs(c))

that is, within the obstacles g(¢;o) = 0 and other-
wise it is g(c;0) = f(c;0). g(c; o) is the probability
distribution we want.

The scale o is an important parameter here. It in-
dicates how close we like the configurations to stay to
the obstacles. In Figure 2 an example is given of this
sample distribution in a 2-dimensional configuration
space for a very simple motion planning problem for a
point robot, for three different scales. The lighter the
color, the higher the probability a configuration will
be sampled.

INote that we might want to use a different scale for dimen-
sions in the configuration space that correspond to translations
and those that correspond to rotations. The formula can easily
be adapted to this.

1020

Figure 3: The collection of samples created by the
random sampler (about 13000) before the corridor was
adequately sampled.

4 Obtaining the Sample Distribution

We will now describe a simple algorithm to obtain a set
of configurations, distributed according to the distri-
bution described above. For efficiency reasons, and for
generality of the approach, we want to avoid computa-
tions in the configuration space. Following the philos-
ophy of PRM, we restrict ourselves to using only one
operation: determine whether the robot in a particu-
lar configuration intersects an obstacle, or, whether a
configuration is free. Such an operation can be imple-
mented very efficiently. Here is the algorithm:

1. loop
2. c1 + arandom configuration
3. d + a distance chosen according to
a normal distribution
¢z + a random conf. at distance d from ¢
if ¢; € Cpree and c3 & Ciree then
add ¢; to the graph
else if ¢y € Ciree and ¢; € Ciree then
add cp to the graph
else
0. discard both

200Nk

So we only add a free configuration to the graph (in
the way described in Section 2) if we found a forbidden
configuration close by (according to the normal distri-
bution). We call this sampling method the Gaussian
sampler, because it produces a set of samples accord-
ing to the distribution g(c; o).

Clearly, to obtain the favourable distribution, we
pay a price in efficiency. Let us compare the Gaussian
sampler with the standard random sampler where we
simply take a random configuration and add it when it
lies in the free space. The Gaussian sampler is slower
for the following reasons: it tests two configurations to
add one to the graph; and it discards them if both are

free. This last point might seem rather counterintu-
itive at first, but it is the crux of the algorithm: avoid
adding configurations in large empty regions. In Sec-
tion 7 we will give some experimental results, showing
that the Gaussian sampler is indeed much more effi-
cient in scenes with varying obstacle density.

5 Choosing the Parameter

As noted before there is one parameter that plays a
crucial role: the standard deviation o2 of the nor-
mal distribution, which corresponds to the scale o of
the Gaussian. If we choose a small standard deviation
most configurations will lie very close to obstacles. If,
on the other hand, we choose a very large standard
deviation the configurations are almost uniformly dis-
tributed over the free space.

In our applications, where the robot is an object
that translates and rotates, it turns out to be best to
choose the standard deviation such that most config-
urations lie at a distance of at most the length of the
robot from the obstacles. This keeps the configura-
tions close to the obstacles, but, where possible, allows
for rotation of the robot around its axis. It is easy to
automatically pick a standard deviation that achieves
this. The advantage of this is that no user-interaction
is required.

Clearly, the rotational degree of freedom needs to
be handled differently from the translational degrees
of freedom. Our current approach is to pick only the
position of the second sample according to the normal
distribution, and to pick the orientation at random.
This turns out to work well.

6 Experimental Setup

Here we briefly mention the choices we made regarding
the implementation and setup of our experiments. Qur
experiments deal with a two-dimensional workspace,
consisting of the unit square, in which the robot moves
(translating and rotating) from a given start to a given
goal configuration. These configurations are automat-
ically added to the graph, so it can be checked whether
the roadmap contains enough nodes, simply by check-
ing whether start and goal are in the same connected
component of the graph. We ran both the random
sampler and the Gaussian sampler, for various sizes of
sigma, until there were enough samples in the corridor
to find the connection.

The default value of sigma is chosen to be equal to
the distance of the reference point of the robot to its
furthest vertex.

1021

Figure 4: The collection of samples created by the
Gaussian sampler (about 150).

In the experiments, the nodes chosen to try to con-
nect to from a new configuration c, are the “neighbour
nodes”, as described in [13]. This means that of those
within a certain distance (dyez = %) from ¢, we con-
sider only the closest per graph component. As dis-
tance measure we use the Euclidian distance in config-
uration space, with the rotational dimension weighed
appropriately according to the robot geometry.

The local planner is a simple potential-field-like
planner, which has been shown to work well for free-
flying robots, see {12]. Collisions are tested by tak-
ing small steps along the path and testing the slightly
grown robot for intersection with the obstacles at each
step. The stepsize of the local planner is kept constant
throughout all testruns. (Although not the most fancy
local planner, it is good enough for comparing the dif-
ferent sampling approaches.)

As testcases we consider three difficult problems
that all have varying obstacle density, resulting in large
open areas and small passages. These are the types of
scenes where we expect the Gaussian sampler to be ef-
fective. If on the contrary the obstacles are reasonably
distributed with wide corridors, random sampling will
be more efficient?.

7 Experimental Results

We will now describe some experimental results on the
Gaussian sampler. All timing results come from a Pen-
tium II PC running at 400 Mhz. We have tested var-
ious sizes of sigma. As expected, the running time of
the algorithm increases when sigma is very small, mak-
ing it hard to find a pair of nodes that has both a for-
bidden and a free configuration, so the ratio n,/n: de-
creases (deteriorating performance). Also when sigma

2For example, the scene in Figure 1, where the robot is a
small rectangle, was solved by the random sampler in about
half the time needed by the Gaussian sampler.

Figure 5: A scene requiring a difficult twist of the
robot.

was very large, and the output of the sampler started
to approximate random sampling, performance dete-
riorated. Here we only report results for the default
value of o, even though this was not necessarily the
optimal value for the specific problem at hand. More
extensive results can be found in the full version of this
paper.

Our first testcase involves a scene with a small twist-
ing corridor between two large open areas. The robot
is a rectangle that has three degrees of freedom (trans-
lation and rotation). The ratio between robot width,
robot length, and width of the corridor is 2:4:5, so it
is difficult for the robot to get around the corners.

In Figure 3 you can see the collection of samples
created by the random sampler. In Figure 4 you find
the samples created by the Gaussian sampler. On av-
erage, the random sampler requires almost 70 times
more nodes to obtain enough samples in the narrow
corridor. The time T}, needed for creating a sample,
is about twice as high for the Gaussian sampler (that
needs to test 2 samples) as for the random sampler.
However, T, is about equal per node for both sam-
pling methods. The total running time using Gaussian
sampling is almost 60 times shorter than with random
sampling,.

Although this first example is difficult for the ran-
dom sampler, it can be solved rather easily using for
example geometric node adding [13] or the techniques
from Amato et al.[1). Our second example, shown in
Figure 5, is more difficult. Here a U-shaped robot has
to twist to get through the narrow gap in the center.
The robot just fits in. Again we compare the random
sampler with the Gaussian sampler. To connect the
start and goal configuration (as shown in Figure 5)
the random sampler took about 13 times longer than
the Gaussian sampler, and needed about 10000 nodes.
The Gaussian sampler required about 750 nodes.

Figure 6: A scene with 5000 obstacles.

Both of these examples deal with small sets of ob-
stacles. The method can easily be used for much more
complicated scenes. Figure 6 shows a scene with 5000
(intersecting) obstacles. The obstacle density varies
largely throughout the scene. The Gaussian sampler
needed 85 nodes to connect start and goal, and did
this about 4 times as fast as the Random sampler.
The random sampler required over 450 nodes.

8 Extensions

The Gaussian sampler can be extended in many ways.
Here we want to briefly mention one such extension.

When all obstacles are convex, difficult places lie
close to at least two obstacles. However, the Gaussian
sampler creates samples along all obstacles. For exam-
ple, in Figure 4 the only difficult part is the corridor,
but the Gaussian sampler also places samples along
the long vertical walls. There is a simple way to avoid
this: Rather than two, we pick three samples that lie
close to reach other according to the normal distribu-
tion. If one lies in Cgee and the other two intersect
different obstacles, we keep the free sample. See Fig-
ure 7 for the effect. The number of nodes is reduced
to about 100.

Even though this might look like an interesting im-
provement it is currenlty unclear whether this is indeed
a useful extension. The number of samples reduces
but the time to find them increases. In the example,
this was not compensated by the reduction in time for
adding the nodes to the graph. Hence, the total time
did increase rather than decrease. (In 3-dimensional
workspaces, where the time required for adding the
nodes increases, the approach might be advantageous.)
Also, the collection of samples becomes dependent on
the subdivision of the scene in obstacles; something we
wanted to avoid.

1022

Figure 7: A smaller set of samples by using triples
rather than pairs.

9 Conclusions

In this paper we have given some first results that we
obtained with the Gaussian sampler. The technique is
simple, general, and we demonstrated that it results in
large improvements over random sampling. This indi-
cates that it is a promising technique to study further.

A large number of issues remain. We like to get a
better understanding of the effect of the standard devi-
ation o2. Also, we want to apply the approach to more
general robots. We are currently implementing the
Gaussian sampler for a three-dimensional workspace
in which the moving object can have up to six degrees
of freedom. The approach carries over without ma-
jor modifications. We expect that the results will be
even more significant, because in a three-dimensional
workspace the time required for adding a node to the
graph (T,) is huge compared to the time required for
testing a sample (T5). So it is even more important to
add as few nodes as possible to the graph. It would
also be interesting to see how the approach works for
e.g. articulated robots.

References

[1] N. Amato, O. Bayazit, L. Dale, C. Jones, D.
Vallejo, OBPRM: An obstacle-based PRM for
3D workspaces, in: P.K. Agarwal, L.E. Kavraki,
M.T. Mason (eds.), Robotics: The algorithmic
perspective, A K. Peters, Natick, MA, 1998.

N. Amato, O. Bayazit, L. Dale, C. Jones, D.
Vallejo, Choosing good distance metrics and lo-
cal planners for probabilisitc roadmap methods,
Proc. IEEE Conf. Robotics and Automation, Leu-
ven, 1998, pp. 630-637.

N. Amato, Y. Wu, A randomized roadmap
method for path and manipulation planning,

1023

Proc. IEEE Conf. Robotics and Automation, Min-

neapolis, 1996, pp. 113-120.

J. Barraquand, L. Kavraki, J.-C. Latombe, T.-

Y. Li, R. Motwani, and P. Raghavan, A random

sampling scheme for path planning, Int. Journal

of Robotics Research 16 (1997), pp. 759-774.

C. Holleman, L. Kavraki, J. Warren, Planning

paths for a flexible surface patch, Proc. IEEE

Conf. Robotics and Automation, Leuven, 1998,

pPp- 21-26.

D. Hsu, L. Kavraki, J.C. Latombe, R. Motwani,

S. Sorkin, On finding narrow passages with proba-

bilistic roadmap planners, in: P.K. Agarwal, L.E.

Kavraki, M.T. Mason (eds.), Robotics: The al-

gorithmic perspective, A.K. Peters, Natick, MA,

1998.

L. Kavraki, Random networks in configuration

space for fast path planning, PhD thesis, Stanford

University, 1995.

L. Kavraki, M. Kolountzakis, J.C. Latombe,

Analysis of probabilistic roadmaps for path plan-

ning, Proc. IEEE Conf. Robotics and Automa-

tion, Minneapolis, 1996, pp. 3020-3025.

L. Kavraki, J.C. Latombe, Randomized prepro-

cessing of configuration space for fast path plan-

ning, Proc. IEEE Conf. Robotics and Automa-

tion, San Diego, 1994, pp. 2138-2145.

L. Kavraki, P. Svestka, J-C. Latombe, M.H. Over-

mars, Probabilistic roadmaps for path planning

in high-dimensional configuration spaces, IEEE

Trans. on Robotics and Automation 12 (1996),

pp- 566-580.

[11] J-C. Latombe, Robot motion planning, Kluwer
Academic Publishers, Boston, 1991.

[12] M.H. Overmars, A random approach to motion
planning, Technical Report RUU-CS-92-32, Dept.
Comput. Sci., Utrecht Univ., Utrecht, the Nether-
lands, October 1992.

[13] P. Svestka, Robot motion planning using proba-
bilistic roadmaps, PhD thesis, Utrecht Univ. 1997.

[14] P. Svestka, M.H. Overmars, Motion planning for

car-like robots, a probabilistic learning approach,

Int. Journal of Robotics Research 16 (1997), pp.

119-143.

P. Svestka, M.H. Overmars, Coordinated path

planning for multiple robots, Robotics and Au-

tonomous Systems 23 (1998), pp. 125-152.

S. Sekhavat, P. Svestka, J.-P. Laumond, M.H.

Overmars, Multilevel path planning for nonholo-

nomic robots using semiholonomic subsystems,

Int. Journal of Robotics Research 17 (1998), pp.

840-857.

(7]

[10]

(15]

[16]

