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Abstract

Several motion planning methods using networks of ran-
domly generated nodes in the free space have been shown
to perform well in a number of cases, however their perfor-
mance degrades when paths are required to pass through nar-
row passages in the free space. In [16] we proposed MAPRM,
a method of sampling the con�guration space in which ran-
domly generated con�gurations, free or not, are retracted
onto the medial axis of the free space without having to �rst
compute the medial axis; this was shown to increase sam-
pling in narrow passages. In this paper we give details of
the MAPRM algorithm for the case of a free-
ying rigid
body moving in three dimensions, and show that the retrac-
tion may be carried out without explicitly computing the C-
obstacles or the medial axis. We give theoretical arguments
to show that this improves sampling in narrow corridors, and
present preliminary experimental results comparing the per-
formance to uniform random sampling from the free space.

1 Introduction

Motion planning in the presence of obstacles is an important
problem in robotics with applications in other areas, such as
simulation and computer aided design. While complete mo-
tion planning algorithms do exist, they are rarely used in
practice since they are computationally infeasible in all but
the simplest cases. For this reason, recent attention has
focused on probabilistic methods, which give only weaker
forms of completeness in exchange for computational fea-
sibility and applicability. In particular, several algorithms,
known collectively as probabilistic roadmap planners, have
been shown to perform well in a number of practical situ-
ations, see, e.g., [9]. The idea behind these methods is to
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create a graph of randomly generated collision-free con�g-
urations with connections between these nodes made by a
simple and fast local planning method. Actual global plan-
ning is then carried out on this graph. These methods run
quickly and are easy to implement; unfortunately there are
simple situations in which they perform poorly, in particu-
lar situations in which paths are required to pass through
narrow passages in con�guration space.

The medial axis or generalized Voronoi diagram has a
long history of use in motion planning, see [2, 10]. This
stems from the fact that the medial axis MA(F ) of the free
space F (the set of all collision-free con�gurations) generally
has lower dimension than F but is still a complete represen-
tation for motion planning purposes. For example, in two
dimensions the medial axis is a one dimensional graph-like
structure which can be used as a roadmap. Paths on the me-
dial axis also have other appealing properties such as large
clearance from obstacles. However, the medial axis is dif-
�cult and expensive to compute explicitly, particularly in
higher dimensions.

In [16] we proposed a new algorithm, MAPRM, which
combined these two approaches by generating random net-
works whose nodes lie on the medial axis of the free space.
Our central observation is that it is possible to retract a
con�guration, free or not, onto the medial axis of the free
space without having to compute the medial axis explicitly.
We gave a detailed account for a planar con�guration space,
showed how sampling and retracting in this way gave im-
proved sampling in narrow passages, and sketched the al-
gorithm for the case of a rigid body moving in 3D. In this
paper we present details of the rigid body case and give some
analysis and results for this case.

1.1 Probabilistic roadmap methods

Probabilistic roadmap methods generally operate as follows,
see, e.g., [9]. During a preprocessing phase, a set of con�g-
urations in the free space is generated by sampling con�g-
urations at random and removing those that put the work-
piece in collision with an obstacle. These nodes are then
connected into a roadmap graph by inserting edges between
con�gurations if they can be connected by a simple and fast
local planning method, e.g., a straight line planner. This
roadmap can then be queried by connecting given start and
goal con�gurations to nodes in the roadmap (again using the
local planner) and then searching for a path in the roadmap
connecting these nodes. Various sampling schemes and local
planners have been used, see [1, 7, 8, 14]. The algorithms
are easy to implement, run quickly, and are applicable to a
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wide variety of robots.
The main shortcoming of these methods is their poor

performance on problems requiring paths that pass through
narrow passages in the free space. This is a direct conse-
quence of how the nodes are sampled from F . For example,
using uniform sampling over F , any corridor of su�ciently
small volume is unlikely to contain any sampled nodes what-
soever. Some work has been done on modi�ed sampling
strategies aimed at increasing the number of nodes sampled
in narrow corridors. Intuitively, such narrow corridors may
be characterized by their large surface area to volume ratio:
the methods in [1] and [6] have exploited this idea.

In [1], nodes are sampled from the contact space, the set
of con�gurations for which the workpiece is in contact (but
not collision), with an obstacle. This method has solved
some very di�cult problems, however its performance is dif-
�cult to analyze because the sampling distribution on the
contact space is unknown.

In [6], preliminary con�gurations are generated by al-
lowing the workpiece to penetrate the obstacles by a small
amount. The areas near these nodes are then resampled to
�nd nearby collision-free con�gurations. Again the idea is
that the allowed penetration dilates the free space by a small
amount (albeit not uniformly), and the sampling in a nar-
row corridor is increased roughly in proportion to the surface
area. As the authors point out, dilating the free space may
alter its topology, opening corridors where none existed. In
practice, the amount of dilation must be carefully regulated
to mitigate this e�ect.

1.2 Our results

In previous work [16] we introduced MAPRM, a sampling
scheme which retracts sampled nodes onto the medial axis of
the free space prior to their connection to form a roadmap.
We gave a detailed account for a planar con�guration space,
and sketched the case of a rigid body moving in 3D. In this
paper we present details rigid body case and extend the
analysis to this case. The key points are:

� It is possible to e�ciently retract almost any con�gura-
tion, free or not, onto the medial axis of the free space
without having to compute the medial axis explicitly.

� Sampling and retracting in this manner increases the
number of nodes found in narrow (small volume) cor-
ridors in a way that is independent of the volume of
the corridor. A consequence of the sampling method
is that the sampling is increased more near \thicker"
obstacles.

� In the case of a free 
ying rigid body in 3D, the medial
axis in the con�guration space has a simple interpreta-
tion in the workspace for a large class of con�guration
space metrics.

A typical approach using the medial axis in motion plan-
ning is to compute the medial axis of the free space, which
has lower dimension, and to carry out the planning there
instead. This is valid because MA(F ) is a strong deforma-
tion retract (SDR) of F , meaning that F can be continu-
ously deformed onto MA(F ) while maintaining its topolog-
ical structure. In fact, as we will show, almost the entire
con�guration space, free and collision con�gurations alike,
can be retracted onto MA(F ). Although a complete repre-
sentation of the medial axis of the free space is di�cult and
costly to compute, the �nal retracted image on MA(F ) of

a given free con�guration can be computed e�ciently with-
out such a representation. We exploit this fact by sampling
nodes from the full con�guration space and retracting them
onto MA(F ). These nodes, now all in the free space, can
be connected in the usual way to form a roadmap. We will
show that this has the e�ect of increasing sampling in nar-
row corridors in a way that is independent of the volume of
the corridor.

In the case of a point moving in the plane, the C-obstacle
boundaries are known explicitly and this makes it particu-
larly easy to carry out the retraction. In this paper we show
how the retraction map may be carried out in the six di-
mensional con�guration space SE(3) of a rigid body in 3D
without explicitly computing the C-obstacle boundaries.

We give a brief motivation using the planar case, and
then describe the details and give analysis and some exper-
imental results for the rigid body case.

2 Preliminaries

The con�guration space for a free-
ying rigid body U in R3

describes all possible positions and orientations of U ignor-
ing any obstacles that may be present. A particular con-
�guration of a rigid body may be described by specifying
the position and orientation of a moving coordinate system
attached to U , the body frame, with respect to a particular
�xed system, the world frame. Such coordinate systems are
related by a rotation matrix1 in SO(3) giving the orientation
of the body frame with respect to the world frame, together
with a vector in R3 specifying the location of the origin of
the body frame with respect to the world frame. We denote
the set of all such pairs by SE(3) = SO(3)�R3. A particular
pair (R; p) 2 SE(3) operates on the body frame coordinates
q of a point to produce the world frame coordinates Rq + p

of that same point.2 If c = (R; p), we write c �U or (R; p) �U
to mean the coordinates of all points of U with respect to
the world frame when U is in con�guration c. See [13] for
more detail on SE(3).

Given an obstacle V �R3 in the workspace, certain con-
�gurations of U are prohibited because they cause U to col-
lide with V . We call this set of con�gurations the C-obstacle
of V . This divides the con�guration space into two pieces:
F , the free space of collision free con�gurations, and B, the
blocked space, the union of the C-obstacles associated with
all obstacles present in the workspace. We use the following
setting:

� W =R3 is the workspace.

� The workpiece U is assumed to be a closed and bounded
subset of W .

� By taking the union of all obstacles in the workspace,
we assume there is a single obstacle V that is a closed
subset of W .

� C denotes the con�guration space, SE(3).

� We de�ne C(U;V ) to be the set of all con�gurations
of U in C that cause U to meet V , i.e.,

C(U;V ) = fg 2 C j (g � U) \ V 6= ;g:

C(U;V ) is known as the C-obstacle of V .

1SO(3) = fR 2R3�3 j RRT = I and det(R) = 1g
2As a group, SE(3) is the semi-direct product SO(3) nR3 where

the multiplication is given by composition, i.e., (R1; p1) � (R2; p2) =
(R1R2; R1p2 + p1).
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� The blocked space B is the subset C(U;V ) of the con-
�guration space.

� The free space of F is the closure of C n B.

� Con�gurations in @F are called contact con�gurations:
they put U in contact but not overlap with V .

The motion planning problem in this setting is to plan
a path of con�gurations in F between given start and goal
con�gurations in F .

3 MAPRM in the plane

For motivation, we �rst sketch the case of a planar con�gu-
ration space C. See [16] for full details. We take C to be a
rectangle in the plane containing polygonal obstacles B; the
free space F is the closure of the set C n B. (For simplicity
we also assume that the obstacles do not meet the boundary
of C.)

We �rst de�ne the medial axis of a closed polygonal re-
gion P in the plane, possibly with holes. For x 2 P , we
de�ne BP (x) to be the largest closed disc centered at x that
is a subset of P , i.e.,

BP (x) = B

�
x; �P (x)

�
;

where B(x;r) denotes the closed disc of radius r � 0 cen-
tered at x, and �P (x) = dist(x; @P ) is the distance to the
boundary.3 The medial axis MA(P ) of P is de�ned to be the
set of all points x of P whose associated BP (x) is maximal
with respect to containment; i.e.,

MA(F ) = fx 2 F j @ y 2 F with BF (x) ( BF (y)g:

Figure 1 shows an example of a polygon and its medial
axis. A point x 2 P is called a simple point if x has a

Figure 1: Medial axis of a polygon

unique nearest point x0 in @P (so that d(x; x0) = �P (x)).
Otherwise, x is called a multiple point.

It is easy to see that any multiple point will be in the
medial axis. To see that the interior P � of a polygon may
be continuously deformed or retracted onto the medial axis,
note that any point not on the medial axis must be a simple
point, i.e., it has a unique nearest point on the boundary
@P . Such points x may be moved away from their nearest
boundary points along the line connecting the two until the
medial axis is reached; this de�nes the canonical retraction
map rP : P � ! MA(P ). See Figure 2.

Observe that it is possible to compute the image rP (x)
of a single point x without actually computing the medial

3We de�ne dist(x; S) = infy2S d(x; y) and dist(R; S) =
infx2R dist(x;S) where d denotes the euclidean distance.

x

rP (x)

x′

x′′

Figure 2: Image of a point x under the canonical retraction
map.

axis �rst. We simply move the point x away from its nearest
boundary point x0 2 @F until x has an additional nearest
boundary point x00 2 @F . At that moment, the circle BF (x)
contains the two boundary points x0 and x00, so x has reached
the medial axis. This can be carried out to compute the
image to arbitrary precision using a bisection method; the
only required geometric primitive is the ability to compute
the nearest boundary point.

Returning to the motion planning example, we can now
easily retract any sampled con�guration in the free space F
onto MA(F ). See Figure 3(a).

(a) (b)

Figure 3: The canonical retraction map (a) and extended
retraction map (b). The shaded area is B.

From Figure 3(b), we can see how this map may be ex-
tended into the obstacle B as well. Any con�guration in
B nMA(B) will have a unique nearest point on the bound-
ary @B � @F:We can map such points through their nearest
boundary points and into the free space F and then retract
them to the medial axis of the free space. This map tak-
ing all of C n MA(B) onto MA(F ) is called the extended
retraction map.

The MAPRM algorithm is essentially the following mod-
i�cation to uniform random sampling: rather than keeping
only sampled free con�gurations, we keep all sampled con-
�gurations and retract them onto MA(F ). We will show in
Section 5 that this will increase the proportion of sampling
in narrow passages.

Figure 4 shows an example of a free space containing a
narrow corridor. Part (a) shows the result of sampling uni-
formly from the square until 100 nodes were obtained in the
free space: this required generating 168 random con�gura-
tions. Part (b) shows the result of sampling and retracting
100 nodes using the MAPRM algorithm. Most of the nodes
in the corridor are nodes that were initially in collision and
were retracted onto the medial axis. For this reason pushing
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the two obstacles closer together would not greatly a�ect the
number of nodes MAPRM generates in the corridor.

(a) (b)

Figure 4: Uniform sampling (a) vs. MAPRM sampling (b)

4 MAPRM for a rigid body

In this section we explain the extension of MAPRM to the
case of a rigid polyhedron moving among polyhedral obsta-
cles in R3. The goal in this setting is to perform the retrac-
tion in the con�guration space SE(3), which is six dimen-
sional. Speci�cally, we want to retract all con�gurations,
free or otherwise, onto the medial axis of the free space.
Again, we would like to avoid explicit computation of the
medial axis, but we also seek to avoid the costly compu-
tation of the C-obstacle boundaries in con�guration space.
Under a large class of metrics on the con�guration space,
the medial axis and retraction maps have a simple interpre-
tation in terms of geometry in the workspace, allowing this
calculation to be carried out without computation of the
C-obstacle boundaries. For computational feasibility, our
algorithm retracts all free con�gurations, but only a subset
of the collision con�gurations. This subset is still su�cient
to increase sampling in narrow passages.

4.1 Geometry on SE(3)

The theory is complicated by the issue of choice of metric
on the con�guration space: the de�nition of the medial axis
depends on the choice of metric, the retraction maps depend
on a notion of a shortest path between con�gurations, and
even the idea of uniform sampling from the con�guration
space depends on the choice of metric. Our approach is to
use a Riemannian metric, which imposes the necessary geo-
metric structure, but there are still many possible choices.

A natural means of choosing a Riemannian metric is to
require that it be independent of choice of coordinate system
on the workspace and the workpiece, or equivalently, that it
be invariant under changes in these coordinate frames. How-
ever, it has been shown that there is no Riemannian metric
on SE(3) which is simultaneously invariant under changes
of body frame and changes of world frame, see [11]. A met-
ric invariant under changes in either the body frame or the
world frame is easy to produce, however, see [15].

Rather than restricting our attention to a particular Rie-
mannian metric, we will enumerate our assumptions about
the metric being used and give a retraction algorithm which
will always work under these conditions. Under such a met-
ric, the medial axis and retraction maps will have a sim-
ple interpretation in terms of geometry and motions in the
workspace. First we will introduce the notion of the medial
axis for a subset of a complete Riemannian manifold.

4.2 The medial axis on a complete Riemannian manifold

We will not need to deal with many details of Riemannian
geometry here, but a few facts are needed, see [4] for details.
Roughly speaking, a smooth manifold M is a higher dimen-
sional analog of a surface and a Riemannian metric de�nes
an inner product on tangent vectors to M at a point; this
gives us the ability to measure the length of a vector and the
angle between a pair of vectors. In particular, integrating
the length of a tangent vector to a smooth curve along the
entire curve gives a measure of the length of the curve.

� A Riemannian metric induces a distance metric d(�; �)
in the metric space sense, i.e., a symmetric non-degenerate
function satisfying the triangle inequality. The metric
is obtained by assigning to each pair of points the in-
�mum of the lengths of all piecewise smooth curves
connecting the points.

� There is a distinguished set of smooth curves in M

called geodesics which minimize the distance between
any two nearby points on the path, along the entire
length of the path.4 The geodesics play roughly the
same role played by lines in euclidean geometry.

� A minimizing geodesic between points p and q is a
geodesic connecting p to q whose length is exactly
d(p; q).

� A Riemannian manifold is complete if closed and bounded
sets (in the metric) are compact.5 A complete Rieman-
nian manifold has a minimizing geodesic connecting
any given pair of points.

The plane with its usual euclidean geometry is an exam-
ple of a complete Riemannian manifold: the geodesics are
lines and there is always a line connecting any pair of points.
Note that the plane with a single point removed is no longer
complete: most of the interesting properties of the medial
axis fail to be true in such a setting. The manifold we are
ultimately interested in is SE(3) which will be a complete
Riemannian manifold with our choice of Riemannian metric.

Let M be a complete Riemannian manifold. Due to
the induced metric space structure on M , we can de�ne
the medial axis as before: given a proper closed subset F
of M , we can again de�ne the boundary distance function
�F (x) = dist(x; @F ), and maximal ball at a point BF (x) =

B(x; �F (x)). We de�ne the medial axis as before:

MA(F ) = fx 2 F j @ y 2 F with BF (x) ( BF (y)g:

Our retraction algorithm will work essentially as before.
(See Figure 2.) Let x 2 F , x not in MA(F ), and sup-
pose that there is a unique point rF (x) 2 MA(F ) such
that BF (x) � BF (rF (x)). Then x will be on a minimiz-
ing geodesic connecting rF (x) to the unique nearest bound-
ary point x

0 of x, i.e., there is a unit speed (j
0j � 1)
geodesic 
 : R! F with 
(0) = x

0, 
(d(x0; x)) = x, and

(d(x0; rF (x))) = rF (x). It is clear that x

0 is not a nearest
boundary point of 
(t) when t > d(x0; rF (x)), for otherwise
BF (
(t)) would contain BF (rF (x)). This allows us to again
use a bisection method to locate medial axis points to ar-
bitrary precision, provided we can �nd the closest point on
@F to a given point.

4Geodesics do not necessarily minimize the distance between any
two points on them, only between points that are su�ciently close
together.

5Completeness is usually de�ned in terms of the exponential map:
this is equivalent via the Hopf-Rinow Theorem, see [4].
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As in the planar case, we can extend this map to almost
the entire manifold M by mapping points outside F through
their nearest boundary point and slightly into the interior
of F ; the retraction algorithm described above can then be

applied. If we let B = M n F , any point in B nMA(B) will
have a unique minimal geodesic to the boundary which we
can follow to push the point through the boundary @F = @B

and slightly into the interior of F . We again call this the
extended retraction map.

Note that in order to carry out this procedure we re-
quire the ability to compute the nearest boundary point of
a given point, as well as the ability to compute and follow a
minimizing geodesic connecting them.

4.3 The medial axis on SE(3)

Returning to SE(3), there are many possible choices of Rie-
mannian metric, however some choices seem bizarre from
the point of view of motion planning. Rather than restrict
to a particular metric, we make two assumptions about the
metric and show how the extended retraction map may be
computed in such a case.

Given a workpiece U and obstacle V in R3, we assume we
are provided with a Riemannian metric on SE(3) satisfying
the following two properties:

1. Translation is always a minimizing geodesic; i.e., given
two elements (R; p1); (R; p2) 2 C, a shortest path be-
tween them is given by


(t) = (R; (1� t)p1 + tp2):

We assume the length of 
 in this case is the usual
euclidean length jp2 � p1j.

2. Take U to be at a particular free con�guration g 2
F . We assume that the shortest path from g to @F

(the set of contact con�gurations) is a pure translation
(i.e., with no rotation) toward the nearest workspace
obstacle point.

The second property essentially amounts to the assump-
tion that rotations are weighted heavily enough that among
all transformations taking a particular �xed point of U to
a prescribed location in the workspace, pure translation is
always the cheapest. Note that this assumption depends on
the particular object U .

As an example of a metric satisfying these properties,
we consider the product metric on SE(3). Note that R3 and
SO(3) each come equipped with a Riemannian metric: R3

has the usual euclidean metric, and SO(3) has a well-known
bi-invariant metric which is unique up to scale; we assume
this has been normalized, so that, e.g., a rotation about an
axis by � 2 [0; 2�] radians has distance � from the identity.
There is a family of similar product metrics on the product
manifold SE(3); these will be world-frame (left) invariant
under multiplication in SE(3). Such a product metric is
�xed once we decide the weights the translation and rotation
components should receive. Our �rst assumption forces the
translation component to have weight 1. For a particular
workpiece U , which is assumed to be a bounded set, we
weight the rotation component by R > 0 at least as large
as the distance from the (body frame) origin to the most
distant point of U . See [15] for details on the product metric
on SE(3).

4.4 The Algorithm

We now assume that we have C = SE(3) with a Riemannian
metric satisfying the above properties. Our assumptions on
the metric have the following consequences for the medial
axis:

� Let g 2 F . A nearest contact con�guration to g (i.e.,
a nearest point of @F ) is obtained by �rst �nding a
closest pair of points p 2 g � U and q 2 V . A nearest
contact con�guration g

0 is given by translating p to q;
i.e., g0 = (I; q � p) � g.

� Let g 2 F . If g � U has two distinct nearest obstacle
points, i.e., there are two distinct points y1; y2 2 V

such that dist(V; g �U) = dist(y1; g �U) = dist(y2; g �U),
then g is on the medial axis of F .

We assume U and V are given as unions of polyhedra.
The resulting algorithms are given in Algorithms 4.1 and
4.2. Our brute-force algorithm for computing the nearest
contact con�guration for a collision con�guration is essen-
tially an exhaustive search for the shortest translation.6 We
ignore the possibility (a probability 0 event) that a sampled
con�guration actually lands on MA(B).

Algorithm 4.2 �nds the nearest contact con�guration g
0

to a given con�guration g provided g
0 puts the workpiece U

into contact with the obstacle V at only a single point.7 If
the nearest contact con�guration g0 puts U into contact with
V at more than one point, Algorithm 4.2 does not return
g
0 but instead the returns the shortest translation from g to
a boundary con�guration (if possible). This is done for the
sake of computational feasibility. A con�guration g

0 placing
U in contact with V at more than one point is already on the
medial axis of F , so this shortcut only modi�es the sampling
at contact con�gurations on the medial axis of F , which we
expect to be a small subset of MA(F ).

5 Analysis

In this section we state in precise terms why the sampling
rate is increased in narrow passages, and we observe that
the amount of increase in the sampling rate depends in the
\thickness" of the obstacles bounding the corridor.

Overall performance results, including the in
uence of
the choice of metric on the performance, have not been de-
veloped.

5.1 Sampling in narrow corridors

It is fairly clear that MAPRM will increase the sampling
rate in small corridors: a nonzero volume of nearby con�g-
urations in B will be pushed into the corridor, increasing
the sampling by a constant that is essentially independent
of the volume of the corridor. In this section we make this
idea somewhat more precise.

The medial axis provides a convenient de�nition for what
is meant by a corridor. Let rF : F � ! MA(F ) be the
canonical retraction map. A corridor in F is a connected
open subset S of F � that contains the retracted images of all
of its points (i.e., rF (S) � S) while also including any points

6Some work has been done on this shortest translation problem,
but only for convex polyhedra, see [3, 5].

7One can show that if g0 is a nearest contact con�guration to g and
g0 puts U into contact with V at only one point, then the minimizing
geodesic connecting g to g

0 must be a pure translation (assuming
polyhedral U and V ).

5



Algorithm 4.1 MAPRM for rigid bodies in 3D

Preprocessing:

Input. N; the number of nodes to generate.
Output. N nodes in F connected into a roadmap.
1: repeat

2: repeat

3: Sample a con�guration (R; p) from C.
4: Run Algorithm 4.2 which returns either the nearest

contact con�guration (R; q) to (R; p), or failure.
5: until Algorithm 4.2 succeeds.
6: if (R; p) is free then
7: Take the retraction direction ~v to be �!q p , and let

the start point s be p.
8: else

9: Take the retraction direction ~v to be �!p q , and let
the start point s be q.

10: end if

11: Starting in con�guration (R; s), translate U in the di-
rection ~v until there are two nearest points on V to U .
This con�guration is on the free space's medial axis.

12: until N vertices have been output
13: For each pair of vertices: if the pair can be connected

with the local planner, insert an edge into the graph
connecting them.

that will be retracted into S under rF (i.e., r�1

F

�
S) � S).

These conditions essentially ensure that S is bounded on
\all" sides by obstacles.

Clearly any point of such a corridor S remains in S under
the extended retraction map. Furthermore, any point in B

whose nearest boundary point (on @B) is also in the closure

S will be mapped into S. Let bB : B n MA(B) ! @B

be the map that takes each point to its nearest boundary
point. (This is well-de�ned since any multiple point will be

in MA(B).) The volume of points that map into the S under
the full retraction map is:

�(S) + �(b�1

B
(@S));

where � is a volume measure8 on C.
Using uniform random sampling from C (with respect

to �) with collisions discarded, the probability that a single
sampled con�guration is contained in S is:

�(S)

�(C)
: (1)

Assuming the medial axis MA(B) has measure zero, the
probability that a single random sample from C is retracted
by MAPRM into S is:

�(S) + �(b�1

B
(@S))

�(C)
(2)

Assuming the term �(b�1

B
(@S)) is nonzero, (2) will exceed

(1); this shows that the sampling rate in the corridor is

increased, see Figure 5. Note that the term �(b�1

B
(@S)) only

involves the boundary of the corridor S and does not involve
the volume of S.

8A volume measure is provided, for example, by the Riemannian
metric on SE(3). We assume F , B, and S, etc., are �-measureable.

Algorithm 4.2 Finding Nearest Contact Con�guration

Input. A con�guration (R; p).
Output. A shortest translation (R; q) from con�guration

(R; p) that puts U in contact (but not collision)
with an obstacle, or failure.

1: if (R; p) is a free con�guration then

2: Return (R; p+ (x� y)), where x 2 (R; p) � U and
y 2 V are a pair of closest points between U and V .

3: else

4: For each feature (vertex, edge, face) of U , and each
feature of the V , �nd the con�guration (R; q) with
smallest jp� qj that puts these features in contact
in a single point.

5: Such a con�guration may put U strictly in collision
(not just contact) with an obstacle; discard any such
con�gurations.

6: If no con�gurations remain, output failure.
7: Otherwise, output a remaining con�guration (R; q)

with smallest jp� qj.
8: end if
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Figure 5: The hatched area is S, the heavy dashed line is
@B \ @S, and the dark shaded area is b�1

B
(@S).

Intuitively, we may regard the function A 7! �(b�1

B
(A))

de�ned on subsets A of the boundary of B as a measure of
how \thick" the obstacle is behind A. Equation (2) shows
that our algorithm gives a greater increase in the sampling
rate for corridors that happen to be bounded by thicker
obstacles.

In practice, taking a single uniform random sample from
C and running a collision check is much faster than a random
sample followed by retraction using Algorithm 4.1. However,
in our preliminary experiments (Section 6), MAPRM gen-
erates free nodes at a much higher rate, giving faster overall
performance.

The above analysis requires some rigorous justi�cation,
particularly the assertion that �(b�1

B
(@S)) is nonzero. It is

easy to see that this will be true, e.g., for moving a point
among polygons in the plane, but an argument for more
general B is required. Also, as discussed in Section 4.4, Al-
gorithm 4.2 is only guaranteed to compute the nearest con-
tact con�guration if this con�guration is not on the medial
axis of F , so the estimate �(b�1

B
(@S)) should be modi�ed to

be �(b�1

B
(@S nMA(F ))). This can make a signi�cant di�er-

ence, however we still expect the term �(b�1

B
(@S nMA(F )))

to be nonzero. Full justi�cation will be discussed in a future
paper.
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5.2 Complexity

The brute-force approach to �nd the nearest contact con�g-
uration in Algorithm 4.2 consists of enumerating all possible
single-point contacts between features of obstacle V and the
workpiece U in the given orientation, sorting them accord-
ing to translation distance from the given con�guration, and
�nding a free one with minimal translation distance. This
has time complexity O(nUnV log(nUnV )+nUnV tcd(nU ; nV ))
and uses O(nUnV ) storage, where nU and nV are the num-
ber of features of U and V , and tcd(n;m) is the collision
detection time for two objects of size n and m, respectively.

If both the workpiece U and obstacle V are convex, the
shortest translation that renders the interiors of U and V

disjoint can be found in O(nUnV ) time [5].

6 Experimental results

In this section we present experimental results to show the
sampling increases obtained by MAPRM on two examples
requiring traversal of narrow corridors.

We implemented MAPRM for rigid bodies using V-Clip
[12] to provide collision detection and closest pair calcula-
tions. We used a single local planner: translation with si-
multaneous rotation about the principal axis of rotation in
the body frame. In using probabilistic roadmap methods in
practice, the the time to connect nodes usually overwhelms
the time spent in the sampling phase. As a result, connec-
tions are not usually attempted between all pairs of nodes,
but only between promising pairs of nodes according to some
heuristic. In our examples, so few nodes are generated that
it was feasible to attempt connections between all pairs nec-
essary to determine the components of the roadmap.

6.1 Narrow corridor example

Our �rst example is shown in Figure 6. The workpiece is
a cube of side length 2; the obstacle is a solid cube of side
length 20 with the indicated corridor cut through it. The
corridor has 2.5 � 2.5 cross section.

We compared experiments using uniform sampling (with
collisions discarded) against sampling with MAPRM. The
same local planner, collision detection, connection scheme,
etc., were used for both methods. Con�gurations were sam-
pled with arbitrary rotation, and translations placing the
center of the workpiece anywhere inside the 20 � 20 �
20 cube. The retraction and collision checking calculations
were carried out with a spatial tolerance of 0.01. Execution
of each method was terminated when some component of
the roadmap reached from one mouth of the corridor to the
other.

The mean results for 15 runs are given in Table 1.9 Ob-
serve that on average the MAPRM algorithm solved the
problem in less than one-tenth of the time required by uni-
form random sampling. MAPRM generated nodes at about
13 times the rate of uniform sampling. Note the huge num-
ber of random samples required using uniform sampling.
However, observe that MAPRM generally required more
nodes in the roadmap to be able to solve the problem. We
attribute this to the non-uniform distribution of nodes gen-
erated by MAPRM along the medial axis: in general there
will be somewhat fewer nodes sampled near corners than in
the straight sections. However, the much greater sampling

9Experiments were run on a MIPS R10000 processor running at
200 Mhz.

rate of MAPRM far outstrips this demand for additional
nodes. This e�ect warrants further investigation.

Figure 6: Rigid body example. The workpiece is the small
cube and the obstacle is a solid block with the indicated
corridor cut through it.

Table 1: Experimental results (times in seconds)

MAPRM Uniform
Sampling time 690 7875
Connection time 82 79
Total preprocessing time 772 7954
# roadmap nodes required 404 351
# random con�g. sampled 39,568 114,058,889
Mean time to generate a node 1.706 22.652

6.2 Wider corridor example

We also compared performance on a simpler problem: the
same obstacle block but with a workpiece cube of side length
1.5 units (rather than 2 units). Mean results for 15 trials
are given in Table 2. In this case both methods solved the
problem very quickly, but uniform sampling was quicker on
average than MAPRM. Still, MAPRM generated free nodes
at a higher rate than uniform sampling. Again, note the
signi�cantly larger number of roadmap nodes required by
MAPRM.

We should also note that the variance from the mean was
very high in both of these examples. For example, in the nar-
row corridor case, the mean sampling time for MAPRM was
690 seconds with standard deviation 163; the mean sampling
time with uniform sampling was 7875 seconds with stan-
dard deviation 2514. This is probably due to the fact that
a few \key" nodes near the corners are su�cient to solve
the problem. In more realistic examples, connections are
only attempted between nearby pairs of nodes, so we would
expect these deviations to decrease.
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Table 2: Experimental results for smaller workpiece

MAPRM Uniform
Sampling time 14.6 10.5
Connection time 12.4 4.4
Total preprocessing time 27.0 14.9
# roadmap nodes required 109 57
# random con�g. sampled 881 157,333
Mean time to generate a node 0.133 0.184

7 Conclusions

We have described a new sampling method for probabilistic
roadmap motion planning for a rigid body. The method re-
tracts sampled con�gurations onto the medial axis of the free
space while avoiding explicit calculation of the C-obstacles
and the medial axis. A theoretical explanation was given
to show the this retraction method increased the probabil-
ity that a sampled (and retracted) node lands in a corridor.
Experimental results were given to show that this does in-
crease the sampling rate in simple cases.

Although the method does increase the sampling rate, it
employs more complicated geometric calculations than the
standard uniform sampling and is consequently more dif-
�cult to implement. It also takes longer to run per sam-
pled node, but in our examples the rate of generation of
free nodes was actually higher. For larger problems, we ex-
pect the time required for the calculation of the nearest con-
tact con�guration to become even more signi�cant. For less
crowded environments, uniform random sampling is likely
to perform better, suggesting that in general some hybrid
algorithm may outperform either algorithm individually.

It is unclear how this method would extend to articu-
lated robots, an area in which probabilistic methods have
been very successful. Finally, more theoretical analysis is
required to understand the overall e�ectiveness or probabil-
ity of success of the method and to understand the e�ects
of the choice of con�guration space metric.
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