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|. INTRODUCTION

Successful path planning and navigation of a mobile robot in a ' o o
human-made indoor environment requires the availability of bothF8- 1. Simultaneous localization and map building.
sufficiently reliable estimation of the current vehicle location, and a
sufficiently precise map of the navigation aréapriori model maps 3) SPmap overcomes the difficulties reported in previous works

are rarely available, costly to obtain, and when they are available, they dealing with singularities in the representation of geometric
usually introduce inaccuracies in the planning tasks. An automatic features

con_structlon Olfd Lhedmz_ip b(l)f thed fsr;]wrogment n Wh'Ch the rahot AR SPmap has been experimentally validated by a complete exper-
navigates would be desirable, and it has become an important research ot \yhich profited from ground-truth to accurately validate

direction in today’s robotics community. the precision and the appropriateness of the approach.

The precision of the constructed map is highly influenced by the . ticle al tend limi It ted in 1101 t
accuracy of the dead-reckoning system of the mobile robot, who IS article also extends our preliminary resufts reported in [10] to
monstrate the importance of maintaining the correlations between

location estimations drift with time. An improved solution would € timati f th tities involved in the simult locali
require the relocation of the mobile robot along its trajectory tH‘e estimation of tne entities involved In the simultaneous localiza-

avoid biases introduced by odometry, hence, an approach basec}'%'ﬁ am_j map bw_ldmg problem, t‘.) _av0|d °pt'm's“9 estimations of
Wncertainty associated to the precision of the locations of features.

the simultaneous localization and map building would be nece h t of the article is structured as foll Section Il d i
sary (Fig. 1). Exact mathematical approaches to the simultanequ € rest ot the articie 15 structured as 1oflows. Section 1 describes

localization and map building problem were originally addressetge probabilistic representation of uncertain geometric information.
by Smith et al. [1], [2] who introduced the concept aftochastic ections Ill and IV present our probabilistic framework for the
map a representation of spatial relationships, their uncertainties, aﬁawultaneous localization and map building problem. Experimental

their interdependencies with respect to a base reference. Later, [ﬁ%ults are described in Section V while some conclusions and further

concept was used in the works of Moutarleral. [3], Leonardet work are shown in Section V1.
al. [4]-[6], and Hebertet al. [7]. Recently, Uhimanret al. [8] have
reported interesting work related to the problem of correlations in the [l. SYMMETRIES AND PERTURBATIONS MODEL
simultaneous localization and map building problem. In our feature-based approach, uncertain geometric information
This article proposes a new probabilistic framework adapted {§ represented using a probabilistic model: the symmetries and
the problem of simultaneous localization and map building: theerturbation model (SPmodel) [11], [12] which combines the use
symmetries and perturbations map (SPmap) [9] which is based oBfgrobability theory to represent the imprecision in the location of
general representation of uncertain geometric information. Our majngeometric element, and the theory of symmetries to represent the
contributions are as follows. partiality due to characteristics of each type of geometric element.
1) SPmap represents a rigorous and complete solution to thdn the SPmodel, the location of a geometric eleméhtwith
simultaneous localization and map building problem for mobileespect to a base referené is given by alocation vectorxw . =
robots. (x, y, ¢)!. The estimation of the location of an element is denoted by
2) SPmap consistently formulates the representation and integka , and the estimation error is represented locally ljfeerential
tion of sensorial information gathered by different sensors. location vectord x relative to the reference attached to the element.

. ) ) ) Thus, the true location of the element is
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The covariance matrix of the SPmap represents the covariance of
the estimation of the robot and the map feature locations, the cross-
covariances between the robot and the map features, and finally, the
cross-covariances between the map features themselves

Cr Crr, Crry,
r .
W CRFl CFl CFll“NF
c” = ) ) ) . (7
Feature 1 Mobile . . . :
T T
Feature n CRFNF CFIFNF o Cry,

Note that we may represent any type of geometric entity within
this general framework. The proposed approach can include different
types of features obtained by different types of sensors, and thus it
is suitable to deal with a multisensor system.

IV. INCREMENTAL CONSTRUCTION OF THESPVAP

Base
Reference

This section describes the incremental construction of the SPmap
using suboptimal estimation techniques based on the extended
Fig. 2. Representation of the SPmap with generic features and the molxlgiman filter [13].
robot expressed with respect to a base referdficeThe location vector of
each entity is obtained by the composition of its estimated location vector and ) ) )
its differential location vector. A. Uncertain Displacement of the Mobile Robot

An estimation of the displacement of the mobile robot between
two intermediate points along its trajectory can be obtained by dead-

vector the vectorprz formed by the non null elements dfz. Both )
reckoning

vectors can be related by a row selection malix that we call

self-binding matrixof the geometric element Xr, R, = %r,_ R, ©dr, 8, 8)

—_— 1' Ve = ) N
de =Brpe;  pr=Bede ) wherexr, _,r, represents the estimated displacement of the robot

Then, theuncertain locationof every geometric entity is representeo"’mo_I dRIgflR{v ~ N(0, CRk*l_Rk) represents the imprecision In its
in the SPmodel by a quadrupBiw s = (Xw e, pe, Cr, Br) estimation (i.e., dead-reckoning errors). Other nonrandom sistematic
where the transformatiotyrz is an estimation taken as base fof''0rS aré not considered because they can be corrected by an

perturbationspr is the estimated value of the perturbation vecto@ppropnate callbratlon proc_edure. . .
and C its covariance. Thus, the predicted locatiorw 12, of the mobile robot at timé:

can be calculated by the composition

Ill. SYMMETRIES AND PERTURBATIONS MAP XWR, =XWRy_; D XRy,_{Ry

The symmetries and perturbations map (SPmap) is a complete
representation of the environment of the robot which includes the
uncertain location of the mobile robdtw r, the uncertain loca-
tions of the features obtained from sensor observatlops:;, i €
{1---Nr} and their interdependencies (Fig. 2).

The SPmap can be defined as a quadruple

=xwgR,_, ©dr, , DXRr, r, Ddr, R,

=Xwr, ®Ir,R,_dr,_, Ddr,_, R, 9)

where Jx, r, _, is the Jacobian of the transformaticty, », _,
between the location vectors of the robot at timand that at time
B — 1.

After the displacement of the vehicle, only the location of the
mobile robot changes as estimated by dead-reckoning, while the
location of map features, being static entities, remain the same
as the estimated in the previous time instant 1. Nevertheless,
the displacement of the mobile robot produces changes in the
dr dependencies existing between the location of the robot and those

SPmap = (fc””; p". v, BW) ©)

wherex" is theestimated location vectasf the SPmap ang" is

the perturbation vectorof the SPmap

;‘ff D of the map features. The complexity of this phase grows linearly
W _ L : wo_ _1 4) with the number of features)(Np).
KW F, Pry,. B. Matching Local and Global Maps

The predicted mobile robot location is improved by matching local
observations expressed with respect to the robot refer&aogith
map features represented with respect to the base refeF&nokt
- L . each point of the robot’s trajectory it is desirable to obtain as much
where the composition operatey applies in this case to each Ofpairings as possible because they represent the links between new

Vo P :

the componv_ents of the vgctors, aBd" is the blndl_ng_matnxof_ the observations and previous stored knowledge of the navigation area.
SPmap, a diagonal matrix formed by the self-binding matrix of the Fig. 3 exemplifies the pairing between a local observation
robot and the self-binding matrices of the map features

The true location of the robot and the map features is

x" =" o B")p" )

obtained at timekt and represented with respect to the robot by
©) Lrr = (Xrr, Pr, Cr, Br), and a global map featu® available

B" = di (B . By, -, By ) . : !
1ag\Brt, B P PN at timek — 1 and represented with respect to the base refer&ice
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(10). Linearization of (10) is done by considering a first order Taylor

expansion
v h, =fi wm(Pi . Pr) = Brekep
Observation f, m
Hm:ak,w :(HEO--'OH,’;O"'O)
P v oy
W f m X
[w] H? = % =BrrpJoop{xre, 0}Jrr
BApY. Pg)
Rase 7 af m e -
Reference H,I:L = QL = —Bj«'b'-]lgg{o, Xf'b‘}BJE
Pr W bp)
af m 5 T
ot G, = Tk m = BFEJQ@{XFE-/ O}B%@- (14)
IPE |pw o)

Fig. 3. Matching local observatiok with global featurefF'. . . .
g g 9 Integration of local observations ;. (i.e., new knowledge of the

navigation area) into the SPmap known up to the previous time instant
by Lwr = (Xwe, Pr, Cp, By). From their relative location we GMy 1 by using the EKF equations, produces a reestimation of its

formulate a nonlinear measurement equation [11] whole perturbation vectqs}” and the uncertainties represented by its
covariance matrixC}’ . Location estimations of the complete set of
fi, m(dr, Pr, PR) entities included in the SPmap are reestimated after the integration of
=Brexrr new information. Furthermore, correlations between their estimations

are also updated. The complexity of this phase grows polynomially
with the number of feature®(NZM), whereM is the number of
matched observations.

=Bre(Oxwr © xwr O XRE)
=Bre(OBLpr ©%rp ©Iprdr © BLpr)
—0 (10)

whereB 1 is the binding matrix of the pairingL1], a row selection D- Adding Nonmatched Features to the Global Map

matrix which selects the componentsofz which must be zero. Due  Local observations obtained at tirkewhich cannot be paired with
to uncertainty, a hypothesis test based on the squared Mahalan@ig of the global features ai{, ; are interpreted as knowledge
distanceD?, validates the compatibility betweefi and F about the environment which has not yet been learned. These local
9 . " o . observations are added to the SPmap by considering the composition
D” = (Brpxrp) [BrrC(xrr)Brp]™ (Brekrs)  (11)

XWE =XWR 6 XRE
where matrixC(xr ) is computed from the linearization of (10) —%wr @ Iprdr @ BLpe. (15)
taking into account the correlations between the map feafuend
thé robot: The covariance matrix of the SPmap is extended to represent the
. Pl correlation between the mobile robot and the nonpaired fediyre
Clxre) = J2e{xrp, 0}C(dp)doe {Xre. O} (12) " the cross-correlation between the previous map features and the non-

where paired featureF’, and the covariance of the nonpaired feature. When
’ the whole local map is composed only of nonpaired observations, the
C(d}) =JprCrILp +IprBLCrBpI L, robot’s location estimation obtained by odometry cannot be improved.
~JprBEChiIbr — IprCrrBriie
+BLCLB.. (13) V. EXPERIMENTING WITH THE SRvAP

) ) This section presents the experimental verification of the previous
Under the Gaussianity hypothesis;’ follows ax* distribution. For jgeas by considering a LabMat: mobile robot navigating indoors,
a given significance level, the local featuref’ is compatible with ang equipped with a two-dimensional (2-D) rotating laser scanner.
the global feature” if D* < x7 ., with » = rankB«;) degrees of e also analyze the effects of neglecting correlations between the
freedom, otherwise the matching between thand F' is discarded. |ocation estimation of the features. The vehicle was programmed to
In general, when there exist multiple possible pairings for a particulgyjiow a trajectory (53 m approximately), stopping at regular intervals
local feature, the pairing with the smallest Mahalanobis distancetis take measurements. Complementary information was taken, by
chosen. hand, with a pair of theodolites which provided real locations of the

robot with respect to a base reference.

C. Estimating the SPmap at Tinke From the laser readings gathered at each point along the trajectory,

The matching betweet and F is used both to relocalize the @ Straight-line segment-based local map/; was constructed. A
robot at the current trajectory point and, simultaneously, to update fgmentation algorithm [14] was used. The resultant 2-D segments
estimated location of the map features. The perturbation vector of {fdd. 4) were expressed with respect to the mobile robot reference
local observatiopz ~ A’(0, Cr) constitutes the measurement usedf@me R by using the SPmodel formulation; also, estimations of their

to improve the estimation b} through the relation established byl€ngths were computed from their endpoints. Typically the number
of straight-line segments was kept small for each local map (below

IMatricesJ ¢, andJag are the Jacobians of the composition of locationten segments per local map) by considering only meaningful (i.e.,
vectors [1] long) segments.

R — 9yoz) . . .
Jieix x2} = Z55 yox1. z=xs Pairings between local observations and previously stored knowl-
Joodxi, x2} = G(yarsz> edge of the navigation area were obtained by using a 5% significance

y=%1, 2=X2. level. In the following figures, precision of the results has been
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Fig. 4. Straight-line segment representation of a local environment of the

vehicle R at the first point of its trajectory. Lateral uncertainty for each
detected 2-D segment has been represented (magnified three times).

represented by 95% error ellipses (i.&-2¢ bounds). This proba-
bilistic matching technique has proven to be simple and effective for __
laser segments. However, other sensor systems, such as monocular
or stereo vision, require more robust matching strategies to properly )
solve the data association problem.

A. Neglecting Correlations Between Entities

When neglecting correlations, the EKF estimation phase is de-
composed into the estimation of the mobile robot location and
subsequently the estimation of the map features [10] from a common
set of observations. Fig. 5(a) shows the result of this process. It can
be seen that this two-step process produces optimistic estimations
of uncertainty because the same observations are used twice in the
estimation algorithms.

Table | presents the maximum errors and the error growing-rate
along the vehicle trajectory when neglecting correlations between
features. An increasing discrepancy of the estimated robot location
with respect to ground truth was observed (only 5.6% of the esti-

-------

mations were compatible with the real solution). This discrepancy : ,_+_,><
became larger as the vehicle moved to previously learned placé§

in the navigation area, and was due to optimistic estimations of * X
the uncertainty associated to the location of environment features; —————————————— Saaasancs ﬁ[_'_j_'*_t"**‘_ +-[—
producing a high rejection rate in the matching process. Thus, when ‘ ‘ ' '
the robot revisited places already learned, very few pairings were (b)

obtained and neither the mobile ro_bot was effectively relocalized Nefy. 5. Estimated robot trajectory and built map (a) neglecting correlations
the global map was accurately built. Most of the local map featurgstween entities, where the estimated solution diverges from ground-truth, and
were directly added to the representation, creating multiple locati@ using the SPmap approach. Arpriori model map is drawn for reference
hypotheses for the same map feature. Later, matchings involviPi¢fPOSes.
those false hypotheses (i.e., data association errors) induce the final
solution to diverge from ground truth. TABLE |

SUMMARY OF THE SOLUTIONS OBTAINED BY THE DIFFERENT APPROACHES

MAXIMUM ERRORS (Tmax, Ymax, AND tmax), DISTANCE d,.c; AND

B. Maintaining Correlations within the SPmap ANGULAR t,..; ERROR GROWING-RATES, AND Y2 TEST RESULTS

Fig. 5(b) shows the result of the robot localization and map

L S [ Odometry | Neg. Corr. | SPmap
building process considering the SPmap approach. Even though we

. - . . Tmez (IMI) 1518.22 416.24 272.09
simultaneously were bun_dlng the_ map _and rel_ocatlng the mobile Ymas () 2066.69 35936 208.99
robot, whenever the vehicle navigated in previously unknown ar- Gmas (deg) 1550 289 2.05
eas, uncertainty continually increased, that is, integration of new dyer (mm/m) 6.3 9.5 LX)
observations only reduced the uncertainty growing rate downtown rer (deg/m) 0.293 0.055 0.039
the measurement error of the sensor used, but not further. On the Xiest () 100 5.6 98.1

contrary, whenever the vehicle revisited places in the environment

already learned, uncertainty decreased, converging to the values of

the location uncertainty of the reobserved global map features. Also;Table | compares the largest errors obtained by the SPmap ap-
the “indirect estimation” effect appeared, that is, location uncertainproach with the approach neglecting correlations. Clearly, the SPmap
decreased for all the features of the SPmap, even for those not viséggroach obtained estimations for the mobile robot localization
from the current robot location but statistically correlated to curremtith an upper bound of around 5.9 mm/m of the total trajectory
observations through the off-diagonal elements of the covarianeagth for the distance error and 0°@4 for the orientation error,
matrix of the SPmap. which represented an order of magnitude below dead-reckoning
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1) sensor cooperation to obtain more robust and reliable observa-
tions from the navigation area [15];

2) increase in the structuration and the semantical contents of the
representation toward a topological description where human-
language-like instructions could be commanded to the vehicle;

3) search for optimal representations of the navigation area to
reduce the complexity?(N?) of the current approach, when
larger environments are considered;

4) design of strategies to maintain the constructed map, such as
those required to remove features not visible for a long time.

Also, we believe that when the vehicle revisited places of the
navigation area already learned after travelling for a long time
in unknown areas, the Mahalanobis distance would be insufficient
to match local observations with previously stored features in the
SPmap. In those cases, new data association mechanisms would be
required.

16 T T T T T

Odometry
yab| =~ Neg. Corr.
o——= SPmap

(1]

(2]

PHi-arror (deg)

1 (3]

(4]

w (5]

Time step

(b) [6]

Fig. 6. Comparison of errors along the robot trajectory: (a) distance error
and (b) angular error. [71

errors. Also, the location uncertainty of the map features was ndg]
underestimated, with a compatibility ofi.., ~ 98%, therefore,
pairings between local observations at tili@nd previously stored
knowledge up to timek — 1 were found at each point along the [g]
robot trajectory even when the vehicle returned to previously learned
places of the navigation area. An average of 74% of the number of
available observations were matched with previous known featuré
Fig. 6 compares the real errors along the robot path, obtained by
each approach. The highest errors correspond to odometry-based
navigation, while the smallest correspond to the SPmap approafti]
From the Fig. 6 note how the location uncertainty of the robot
decreases when the vehicle revisits previously learned places (i[?Z]
from trajectory point 40 onwards).

VI. CONCLUSION [13]

This article has presented the symmetries and perturbations nt&f
(SPmap), a probabilistic framework for the simultaneous localization
and map building problem for mobile robots. We have presented a
complete experiment, where a LabMate mobile robot equipped witte]
a rotating 2-D laser rangefinder navigated indoors. Experimentation
showed the importance of maintaining correlations between entities.
Satisfactory results have been obtained concerning the problem of
revisiting previously learned places of the navigation area.

Our recent work has motivated us with further extensions of
the concept of SPmap, both to extent its applicability to real-life
environments and to increase its robustness:
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