An Opportunistic Global Path Planner!

John F. Canny? and Ming C. Lin®

Abstract

In this paper we describe a robot path planning algorithm that
constructs a global skeleton of free-space by incremental local meth-
ods. The curves of the skeleton are the loci of maxima of an artificial
potential field that is directly proportional to distance of the robot
from obstacles. Our method has the advantage of fast convergence of
local methods in uncluttered environments, but it also has a deter-
ministic and efficient method of escaping local extremal points of the
potential function. We first describe a general roadmap algorithm,
for configuration spaces of any dimension, and then describe specific
applications of the algorithm for robots with two and three degrees of
freedom.

Key Words: Obstacle Avoidance, Global Path Planner, Roadmap
Algorithm, Robot Motion Planning, Artificial Potential Field.

IThis research was supported by a David and Lucile Packard Foundation Fellowship
and by NSF Presidential Young Investigator Grant number IRI-8958577

?Department of Computer Science, 543 Evans Hall, University of California, Berkeley,
CA 94720, USA. email: jfc@robotics.berkeley.edu

3Department of Electrical Engineering and Computer Science, 211 Cory Hall - Box #79,
University of California, Berkeley, CA 94720, USA. email: mlin@robotics.berkeley.edu

1 Introduction

There have been two major approaches to motion planning for manipulators,
(i) local methods, such as artificial potential field methods [1], which are
usually fast but are not guaranteed to find a path, and (ii) global methods,
like the first Roadmap Algorithm [2], which is guaranteed to find a path
but may spend a long time doing it. In this paper we present an algorithm
which has characteristics of both. Our method is an incremental construction
of a skeleton of free-space. Like the potential field methods, the curves
of this skeleton locally maximizes a certain potential function that varies
with distance from obstacles. Like the Roadmap Algorithm, the skeleton,
computed incrementally, is eventually guaranteed to contain a path between
two configurations if one exists. The size of the skeleton in the worst case, is
comparable with the worst-case size of the roadmap.

Unlike the local methods, our algorithm never gets trapped in local ex-
tremal points. Unlike the Roadmap Algorithm, our incremental algorithm
can take advantage of a non-worst-case environment. The complexity of the
roadmap came from the need to take recursive slices through configuration
space. In our incremental algorithm, slices are only taken when an initial
search fails and there is a “bridge” through free space linking two “chan-
nels”. The new algorithm is no longer recursive because bridges can be
computed directly by hill-climbing . The bridges are built near “interesting”
critical points and inflection points. The conditions for a bridge are quite
strict. Possible candidate critical points can be locally checked before a slice
is taken. We expect few slices to be required in typical environments.

In fact, we can make a stronger statement about completeness of the
algorithm. The skeleton that the algorithm computes eventually contains
paths that are homotopic to all paths in free space. Thus, once we have
computed slices through all the bridges, we have a complete description of
free-space for the purposes of path planning. Of course, it we only want to
find a path joining two given points, we stop the algorithm as soon as it has
found a path.

The tracing of individual skeleton curves is a simple enough task that we
expect that it could be done in real time on the robot’s control hardware, as
in other artificial potential field algorithms. However, since the robot may
have to backtrack to pass across a bridge, it does not seem worthwhile to do
this during the search.

For those readers already familiar with the Roadmap Algorithm, the fol-
lowing description may help with understanding of the new method: If the
configuration space is R¥, then we can construct a hypersurface in R**! which
is the graph of the potential function, i.e. if P(xz1,...,x) is the potential,
the hypersurface is the set of all points of the form (1, ..., xg, P(z1,...,2)).
The skeleton we define here is a subset of a roadmap (in the sense of [2]) of
this hypersurface.

This work builds on a considerable volume of work in both global motion
planning methods [2] [3], [4], [5], and local planners, [1]. Our method shares
a common theme with the work of Barraquand and Latombe [6] in that it
attempts to use a local potential field planner for speed with some procedure
for escaping local maxima. But whereas Barraquand and Latombe’s method
is a local method made global, we have taken a global method (the Roadmap
Algorithm) and found a local opportunistic way to compute it.

Although our starting point was completely different, there are some other
similarities with [6]. Our “freeways” resemble the valleys intuitively described
in [6]. But the main difference between our method and the method in [6]
is that we have a guaranteed (and reasonably efficient) method of escaping
local potential extremal points and that our potential function is computed
in the configuration space.

The paper is organized as follows: Section 2 contains a simple and gen-
eral description of roadmaps. The description deliberately ignores details of
things like the distance function used, because the algorithm can work with
almost any function. Section 3 gives some particulars of the application of
artificial potential fields. Section 4 describes our incremental algorithm, first
for robots with two degrees of freedom, then for three degrees of freedom.

2 A Maximum Clearance Roadmap Algo-
rithm

We denote the space of all configurations of the robot as C'S. For example,
for a rotary joint robot with k joints, the configuration space C'S is R*, the
set of all joint angle tuples (6y,...,0;). The set of configurations where the
robot overlaps some obstacle is the configuration space obstacle C'O, and the
complement of C'O is the set of free (non-overlapping) configurations F'P. As

described in [2], F'P is bounded by algebraic hypersurfaces in the parameters
t; after the standard substitution ¢; = tan(%). This result is needed for the
complexity bounds in [2] but we will not need it here.

A roadmap is a one-dimensional subset of F'P that is guaranteed to be
connected within each connected component of F'P. Roadmaps are described
in some detail in [2] where it is shown that they can be computed in time
O(n*log n(d°*))) for a robot with k degrees of freedom, and where free
space is defined by n polynomial constraints of degree d [7]. But n* may
still be too large for many applications, and in many cases the free space
is much simpler than its worst case complexity, which is O(n*). We would
like to exploit this simplicity to the maximum extend possibly. The results
of [6] suggest that in practice free space is usually much simpler than the
worst case bounds. What we will describe is a method aimed at getting
a minimal description of the connectivity of a particular free space. The
original description of roadmaps is quite technical and intricate. In this
paper, we give a less formal and hopefully more intuitive description.

2.1 Definitions

Suppose CS has coordinates z1,...,z. A slice CS|, is a slice by the hy-
perplane zy = v. Similarly, slicing F'P with the same hyperplane gives a set
denoted F'P|,. The algorithm is based on the key notion of a channel which
we define next:

A channel-slice of free space F'P is a connected component of
some slice F'P|,.

The term channel-slice is used because these sets are precursors to channels.
To construct a channel from channel slices, we vary v over some interval.
As we do this, for most values of v, all that happens is that the connected
components of FP|, change shape continuously. As v increases, there are
however a finite number of values of v, called critical values, at which there
is some topological change. Some events are not significant for us, such as
where the topology of a component of the cross-section changes, but there are
four important events: As v increases a connected component of F'P|, may
appear or disappear, or several components may join, or a single component
may split into several. The points where joins or splits occur are called
interesting critical points. We define a channel as a maximal connected union

CO—™

Channels

o>

Xl ——

Figure 1: A schematized 2-d configuration space and the partition of free
space into xi-channels.

of cross sections that contains no image of interesting critical points. We use
the notation FP|(a7b) to mean the subset of F'P where z; € (a,b) C R.

A channel through F'P is a connected component of F'F, ;) containing
no splits or joins, and (maximality) which is not contained in a connected
component of F' P 4 containing no splits or joins, for (¢, d) a proper superset
of (a,b). See Fig. 1 for an example of channels.

The property of no splits or joins can be stated in another way. A maximal
connected set C|(a7b) C FP|(a7b) is a channel if every subset C|(e7f) is connected

for (e, f) C (a,b).

2.2 The General Roadmap

Now to the heart of the method. A roadmap has two components:

(i) Freeways (called silhouette curves in [2]) and

(ii) Bridges (called linking curves in [2]).

A freeway is a connected one-dimensional subset of a channel that forms a
backbone for the channel. The key properties of a freeway are that it should
span the channel, and be continuable into adjacent channels. A freeway spans
a channel if its range of x; values is the same as the channels, i.e. a freeway
for the channel C|(a7b) must have points with all z; coordinates in the range
(a,b). A freeway is continuable if it meets another freeway at its endpoints.
i.e. if C|(,) and C'|(5,) are two adjacent channels, the b endpoint of a freeway
of C'|(a5) should meet an endpoint of a freeway of C'|(;). (Technically, since
the intervals are open, the word “endpoint” should be replaced by “limit
point”)

In general, when a specific method of computing freeway curves is chosen,
there may be several freeways within one channel. For example, in the rest of
this paper, freeways are defined using artificial potential functions which are
directly proportional to distance from obstacles. In this case each freeway is
the locus of local maxima in potential within slices F'P|, of F'P as v varies.
This locus itself may have some critical points, but as we shall see, the freeway
curves can be extended easily past them. Since there may be several local
potential maxima within a slice, we may have several disjoint freeway curves
within a single channel, but with our incremental roadmap construction, this
is perfectly OK.

Now to bridges. A bridge is a one-dimensional set which links freeways
from channels that have just joined, or are about to split (as v increases).
Suppose two channels € and €5 have joined into a single channel Cj, as
shown in Fig. 2. We know that the freeways of C; and (5 will continue into
two freeway curves in C5. These freeways within C'3 are not guaranteed to
connect. However, we do know that by definition C5 is connected in the slice
slice 1 = v through the critical point, so we add linking curves from the
critical point to some freeway point in each of C'; and C5. It does not matter
which freeway point, because the freeway curves inside the channels C; and
'y must be connected within each channel, as we show in Appendix [. By
adding bridges, we guarantee that whenever two channels meet (some points
on) their freeways are connected.

Once we can show that whenever channels meet, their freeways do also
(via bridges), we have shown that the roadmap, which is the union of freeways
and bridges, is connected. The proof of this very intuitive result is a simple

Freeways

Figure 2: Two channels (' and C joining the channel C3, and a bridge curve

n 03.

inductive argument on the (finite number of) channels, given in Appendix I.
The basic structure of the general Roadmap Algorithm follows:

1. Start tracing a freeway curve from the start configuration, and also
from the goal.

2. If the curves leading from the start and goal are not connected, enu-
merate a split or join point, and add a bridge curve “near” the split
or join (zi-coordinate of the slice slightly greater than that of the joint
point for a join, slightly less for a split).

3. Find all the points on the bridge curve that lie on other freeways, and
trace from these freeways. Go to step (2).

The algorithm terminates at step (2) when either the start and goal are con-
nected, in which case the algorithm signals success and returns a connecting
path, or if it runs out of split and join points, in which case there is no
path connecting the start and goal. This description is quite abstract, but
in later sections we will give detailed description of the approach in two- and
three-dimensional configuration spaces.

Three things distinguish our new algorithm from the previous Roadmap
Algorithm. The most important is that the new algorithm is not recursive.
Step 2 involves adding a bridge curve which is two pieces of curve found
by hill-climbing on the potential. In the original roadmap algorithm, linking
curves had to be defined recursively, because it is not possible to hill-climb to
a maximum with an algebraic curve. Another difference is that the freeways
do not necessarily lie near the boundary of free space as they did in [2]. In our
present implementation we are in fact using maximum clearance freeways.
But the most important difference is that we now only enumerate true split
or join points. For a robot with k degrees of freedom and an environment
of complexity n, it can be shown that there are at most O(n{*~1) potential
split or join points. (Please refer to Appendix II for the proof on the upper
bound for the maximum number of interesting critical points.) But many
experiments with implemented planners in recent years have shown that the
number of true splits or joins in typical configuration spaces is much lower.
In our new algorithm, we can make a purely local test on a potential split or
join point to see if it is really qualified. The vast majority of candidates will
not be, so we expect far fewer than O(n(k_l)) bridges to be required.

Definition
A point p in R**! is an interesting critical point if for every neighborhood
U of p, one of the following holds:

(i) The intersection U N :Cl_l(xl(p) + €) consists of several connected com-
ponents for all sufficiently small e. This is a generalized split point.

(ii) The intersection U N 7" (x1(p) — €) consists of several components for
all sufficiently small e. This is a generalized join point.

We will assume the environment is generic, i.e. there is no special topology
such that a small perturbation will change the clearance of the paths. This is
true for almost all practical situations: most of obstacles have a reasonably
large interior that a small perturbation will not affect much of the obstacle
configuration space. Based on the transversality condition of general position
assumptions in [2], the interesting critical points can be computed as follows.
The set S is defined by inequalities, and its boundary is a union of surfaces
of various dimensions. Let S, be such a surface; it will be defined as the
intersection of several configuration space constraint surfaces. Each of these
is given by an equation of the form f; = 0. To find the critical points of such
a surface w.r.t. the function x1(.), we first define a polynomial g as follows:

QZZJCZ'Q (1)

=1
and then solve the system
0 0
=¢, —¢g=0 -+ —g=0 2
g=¢ Z.9 909 (2)
where [is the number of equations which are zero on S,, the x,,..., x} are

coordinates which are orthogonal to z1, and € is an infinitesimal that is used
to simplify the computation (see [2]).

It can be shown [8] that the solutions of interest can be recovered from the
lowest degree coefficient in € of the resultant of this system. This normally
involves computing a symbolic determinant which is a polynomial in ¢ [9].
But a more practical approach is to recover only the lowest coefficient in €
by using straight line program representations and differentiating [10].

To enumerate all the interesting critical points is computationally ex-
pensive, since we have to solve O(n*=1)) systems of non-linear equations.
Thus, we also plan to experiment with randomly chosen slice values in some
bounded ranges, alternating with slices taken at true split or join points. The
rationale for this is that in practice the “range” of slice values over which a
bridge joins two freeways is typically quite large. There is a good probability
of finding a value in this range by using random values. Occasionally there
will be a wide range of slice values for a particular bridge, but many irrele-
vant split and join points may be enumerated with values outside this range.
To make sure we do not make such easy problems harder than they should
be, our implementation alternates slices taken near true split and join points
with slices taken at random z; values.

3 Defining the Distance Function

The idea of our approach is to construct a potential field which repels the
point robot in configuration space away from the obstacles. Given a goal
position and a description of its environment, a manipulator will move along
a “maximum potential” path in an “artificial potential field”. The position
to be reached represents a critical point that will be linked by the bridge to
the nearest maximum, and the obstacles represent repulsive surfaces for the
manipulator parts.

Let CO denote the obstacles, and = the position in R*. The artificial
potential field U,,:(x) induces an artificial repulsion from the surface of the
obstacles. U,.+(z) is a non-negative function whose value tends to zero as
any part of the robot approaches an obstacle. One of the classical analytical
potential fields is the Euclidean distance function.

Using the shortest distance to an obstacle O, we have proposed the fol-
lowing potential field Uy,+(x):

V) = min(D(O;. L)
where D(O;, Lj(x)) is the shortest Euclidean distance between an obstacle
O; and the link L; when the robot is at configuration z. D(O;, L;(z)) is

obtained by a local method for fast computation of distance between convex
polyhedra [11].

Notice that the proposed U,.+(2) is not a continuously differentiable func-
tion as in many potential field methods. U,.:(x) is piecewise continuous and
differentiable. This is perfectly all right for the application in our Roadmap
algorithm. In fact it will be a lower envelope of smooth functions. This is
all the better because it means that local maxima that do not occur where
the function is smooth are all the more sharply defined. The graph of the
distance function certainly has a stratification into a finite number of smooth
pieces [12]. Its maxima will be the union of certain local maxima of these
smooth pieces. So we can still use the system of equations defined earlier to
find them.

With this scheme, a manipulator moves in such a way to maximize the
artificial potential field U,,¢(x). But like any local method, just following one
curve of such maxima is not guaranteed to reach the goal. Thus, the need

for bridges.

4 Algorithm Details

The algorithm takes as input a geometric description of the robot links and
obstacles as convex polyhedra or unions of convex polyhedra. It also takes the
initial and goal configurations, and the kinematic description of the robot,
say via Denavit-Hartenberg parameters. The output is a path between the
initial and goal configurations represented as a sequence of closely spaced
points (more closely than the C-space distance to the nearest obstacle at
that point), assuming such a path exists. If there is no path, the algorithm
will eventually discover that, and output “NO PATH”.

The potential function is a map Ug,; : C'S — R. The graph of the function
is a surface in C'S X R. Let u and v denote two coordinate axes, the Roadmap
Algorithm fixes v and then follows the extremal points in direction u as the
value of v varies. But, the new algorithm differs from the original roadmap
algorithm[2] in the following respects:

e It does not always construct the entire roadmap

e In the new algorithm, v = z;, where z; is one of the CS coordinates
while u = h, where h is the height of the potential function. Yet, in the
original, v = z; and v = x; where z; and z; are both CS coordinates.

10

e The original Roadmap algorithm fixes the z; coordinate and follows
extremal points (maxima, minima and saddles) in x;, to generate the
silhouette curves. On the other hand, the new algorithm fixes z;, and
follows only mazima in h.

e The new algorithm is not recursive. Recursion was necessary in the
original because there is no single algebraic curve that connects an
arbitrary point to an extremum in u. But the new algorithm uses
numerical hill-climbing which has no such limitation.

4.1 Freeways and Bridges

A roadmap has two major components — freeways and bridges. They are
generated as following:

Freeway Tracing is done by tracking the locus of local maxima in distance
within each slice normal to the sweeping direction. Small steps are
made in the sweep direction, and the local maxima recomputed numer-
ically. Freeway tracing continues in both directions along the freeway
until it terminates in one of two ways:

(a) The freeway runs into an inflection point, a point where the curve
tangent becomes orthogonal to the sweep direction. It is always possible
to continue past these points by adding a bridge.

(b) The freeway runs into an obstacle. This is a normal termination,
and the tracing simply stops and the algorithm backtracks.

Bridges begin always at inflection points or critical points and terminate
always at freeway points within the same slice. The algorithm simply
follows the gradient of the potential function from the start point within
the slice until it reaches a local maximum, which must be a freeway
point.

Enumeration of Critical Points

Critical points are calculated as in Section 2. But most of these critical
points will not be interesting. We can check locally among all the critical
points to see if they qualify to be a “split” or “join”. This test checks if the

11

point has a neighborhood that is “saddle-like”. It is based on the orientations
of the CSpace boundary surface normals at the critical point.

Random Slicing

Optionally, the user may wish to add roadmaps of randomly chosen slices,
rather than calculating many critical points (or rather than calculating them
at all, but then of course, completeness will be lost). This is a recursive
procedure, and involves choosing a v value at random, making a recursive
call to the algorithm on this v-slice.

Random slicing may also be used within the slice itself, and so on, which
leads to a depth-k recursion tree. If this is done, some search heuristics
must be added to guide the choice of where in the tree the next slice (and
hence the next child) should be added. The heuristic also needs to trade off
random slicing and critical point enumeration. The goal of the heuristic is to
enumerate enough random slices that the algorithm will have a good chance
of success on “easy” environments (intuitively where there are large passages
between channels) without having to explore too many critical points. Yet
it should still find its way around a difficult environment using the critical
slices without having wasted most of its time taking random slices.

Given the general outline of our algorithm, we will now give an instanti-
ation on 2-D and a detailed description of how it can be applied to 3-D.

4.2 Two-Dimensional Workspace

Starting from the initial position p;,; € CS, we first fix one of the axes
of C'S and then take the x coordinate of a slice to be the = coordinate of
Pinit- Then we search this slice to find the nearest local maximum. (This
local maximum is a freeway point.) Next, we build a bridge between the
point p;u;; and this local maximum. At the same time, we begin tracing a
freeway curve from the goal. If the goal is not on the maximum contour of
the potential field, then we must build a bridge to link it to the nearest local
maximum. Afterwards, we trace the locus of this local maximum as = varies
until we reach an endpoint. If the current position pj,. on the curve is the
goal (&, then we can terminate the procedure. Otherwise, we must verify
whether pj,. is a “dead-end” or an inflection point of the slice x = 4. (See
Fig. 3.) If pi,c is a point of inflection, then we can continue the curve by
taking a slice at the neighborhood of the inflection point and hill-climbing
along the gradient direction near the inflection point. This search necessarily

12

> Pinflect
XxEx 1Y Pinflect
R
X y
® Portion of silhouette curve in CS x R ® Slice projection at x = Xgin R-y plane

Figure 3: A pictorial example of an inflection point in C'S x R vs. its view
in R x y at the slice x = ¢

takes us to another local maximum.

Fig. 4 demonstrates how the algorithm works in 2-d C'S. This diagram
is a projection of a constructed potential field in C'S x R onto the z-y plane
of the 2-d C'S. The shaded area is the C'O in the configuration space. The
solid curves represent the contour of maximum potential, while the dashed
curves represent the minima. Furthermore, the path generated by our plan-
ner is indicated by arrows. In addition, the vertical lines symbolize channel
slices through the interesting critical points and inflection points. When this
procedure has been taken to its conclusion and both endpoints of the freeway
terminate at dead-ends, then at this point it is necessary to take a slice at
some value of x. Our planner generates several random z-values for slices (at
a uniformly spaced distribution along the span of the freeway), interweaving
them with an enumeration of all the interesting critical points. If after a
specified number of random values, our planner fails to find a connecting
path to a nearby local maximum, then it will take a slice through an inter-

13

Boundary

Critical Points

Critical Point

Silhouetté
(freeway)

®Pinit

_—" Inflection Point

Inflection Point

Boundary [
X

Figure 4: An example of the algorithm in the 2-d workspace

esting critical point. Each slice, being 1-dimensional, itself forms the bridge

curve (or a piece of it does). We call this procedure repeatedly until we reach

the goal position G or have enumerated all the interesting critical points.
The algorithm is described schematically below:

e Algorithm

Procedure FindGoal (Environment, p;nit, G)

then Explore(pin;:) and Explore(G)
else return(FoundGoal);
even := false;
While (CritPtRemain and NotOnSkeleton(G)) do
if (even)
then x := Random (x-range)
else x := x-coord(next-crit-pt());

14

TakeSlice(x);
even := not even;

end(while);
End(FindGoal);

Function Explore(p)
% Trace out a curve from p

q := search-up&down(p);
% To move up & down only in y, using gradient near p
if new(q) then
% new() checks if q is already on the curve
begin(if)
<el,e2> := trace(q);
% trace out the curve from g, output two end points
if inflection(el) then Explore(el);
if inflection(e2) then Explore(e2);
% inflection(p) checks if p is an inflection point

end(if);
End(Explore);

Function TakeSlice(x-coordinate(p))
% This function generates all points on the slice and explore
% all the maxima on the slice.

old-pt := find-pt(x-coordinate);
% find-pt() find all the points on the x-coordinate.
% It moves up&down until reaches another maximum.
new-pt := null;
For (each pt in the old-pt) do
<up,down> := search-up&down(pt);
% <up,down> is a pair of points of 0,1,0r2 pts
new-pt := new-pt + <up,down>;
For (each pt in the new-pt) do
Explore(pt);

End(TakeSlice);

15

4.3 Three-Dimensional Workspace

For a three-dimensional workspace, the construction is quite similar. Starting
from the initial position p;.;; and the goal GG, we first fix one axis, X. We
trace from the start point to a local maximum of distance within the Y-Z
plane containing the start point. Then we follow this local maximum by
taking steps in X. If this curve terminates in an inflection point, we can
always reach another maximum by following the direction of the potential
gradient just beyond the inflection point in X. Eventually, though, we expect
to terminate by running into an obstacle.

When we wish to enumerate a critical point, the bridge curve is the same
as the first segment that we used to get from p;,;; onto the freeway. That
is, we trace from the critical point along the direction of the gradient within
the current Y-Z slice. There will be two directions outward from the critical
point along which the distance increases. We follow both of these, which
gives us a bridge curve linking freeways of two distinct channels.

If we decide to use random slicing, we select a slice F'P|, normal to the
z-axis and call the algorithm of the last section on that slice. We require it
to produce a roadmap containing any freeway points that we have found so
far that lie in this slice. This algorithm itself may take random slices, so we
need to limit the total number of random slices taken before we enumerate
the next interesting critical point (in 3-D), so that random slicing does not
dominate the running time.

4.4 Path Optimization

After the solution path is obtained, we plan to smooth it by the classical
principles of variational calculus, i.e. to solve a classical two points boundary
value problem. Basically we minimize the potential which is a function of
both distance and smoothness to find a locally optimal (smooth) path.

Let s be the arc that is the path refined from a sequence of points between
a and bin space, r be the shortest Euclidean distance between the point robot
and the obstacle, and x be the curvature of the path at each point. The cost
function for path optimization that we want to minimize is:

b

A
f(S,T‘,/i):/ (r—z—l—Bﬁ;Q)ds

a

16

where r, k, and s are functions of a point F; in a given point sequence,
and A, B are adjustment constants. Taking the gradient of this function
with respect to each point P; gives us the direction of an improved, locally
optimal path.

This can be done in the following manner: given a sequence of points

(P1, P, -+, Pt), we want to minimize the cost function
A 9 .
9(P) = 2 LpyrlASil + Br(B)IASI (3)

where AS; and k(F;) are defined as:

AS, P g Py
4Pi—17Pi7 Pi—l—l
P =
K(F;) AS)

Now, taking the gradient w.r.t. P;, we have

The most expensive procedure in computing the above gradient is to
compute the distance at each point. By using the incremental distance cal-
culation algorithm described in [11], we can compute the distance between
the robot and the closest obstacle in constant time. Since we have to do
this computation for a sequence of points, the computation time for each
iteration to smooth the curve traced out by our planner is linear in the total
number of points in a given sequence. After several iterations of computing
the gradient of the summation in Eqn.4, the solution path will eventually be
smooth and locally optimal.

5 Complexity Bound

Since our planner probably does not need to explore all the critical points, this
bound can be reduced by finding only those interesting critical points where

17

adding a bridge helps to reach the goal. If n is the number of obstacle features
(faces, edges, vertices) in the environment and the configuration space is R,
then the number of “interesting critical points” is at most O((2d)*n*=1).
As mentioned earlier, the algorithm is no longer recursive in calculating the
critical points and linking curves (bridges) as in [2], the complexity bound
calculated in [2] does not apply here. (Please refer to Appendix II for more
details.)

6 Summary and Discussion

By following the maxima of a well-designed potential field, and taking slice
projections through critical points and at random values, our approach builds
incrementally an obstacle-avoiding path to guide a robot toward the desired
goal. The techniques proposed in this paper provide the planner with a
systematic way to escape from these local maxima that have been a long
standing problem with using the potential field approach in robot motion
planning.

Our algorithm, computed from local information about the geometry of
configuration space, requires no expensive precomputation steps as in most
global methods developed thus far. In a two dimensional space, this method
is comparable with using a Voronoi Diagram for path planning. In three-
dimensional space, however, our method is more efficient than computing
hyperbolic surfaces for the Voronoi diagram method. In the worst case, it
should run at least as fast as the original roadmap algorithm. But, it should
run faster in almost all practical cases.

Appendix I: Proof of Completeness for an Op-
portunistic Global Path Planner

Careful completeness proofs for the roadmap algorithm are given in [2]
and [13]. These proofs apply with very slight modification to the roadmap
algorithm that we describe in this paper. The roadmap of [2] is the set
of extremal points in a certain direction in free space. Therefore it hugs the
boundary of free space. The roadmap described in this paper follows extrema

18

of the distance function, and therefore stays well clear of obstacles (except at
critical points). But in fact the two are very similar if we think of the graph
of the distance function in R™. This is a surface S in Rt and if we follow
the extrema of distance on this surface, the roadmap of this paper is exactly
a roadmap in the sense of [2] and [13].

The silhouette curves of [2] correspond to the freeway curves of this pa-
per, and the linking curves correspond to bridges. Recall the basic property

required of roadmaps:

Definition
A subset of R of a set S satisfies the roadmap condition if every connected
component of S contains a single connected component of R.

For this definition to be useful, there is an additional requirement that
any point in S can “easily” reach a point on the roadmap.

There is one minor optimization that we take advantage of in this paper.
That is to trace only maxima of the distance function, rather than both
maxima and minima. This can also be applied to the original roadmap.

For those readers not familiar with the earlier papers, we give here an
informal sketch of the completeness proof. We need some notation first.

Let S denote the surface in R(*tY) which is the graph of the distance func-
tion. S is an n-dimensional set and is semi-algebraic if configuration space is
suitably parametrized. This simply means that it can be defined as a boolean
combination of inequalities which are polynomials in the configuration space
parameters.

One of the coordinates in configuration space R™ becomes the sweep di-
rection. Let this direction be x;. Almost any direction in C'S will work,
and heuristics can be used to pick a direction which should be good for a
particular application. When we take slices of the distance surface S, they
are taken normal to the x; coordinate, so S|, means SN (z1 = a). Also, for
a point p in ROV | 2,(p) is the z;-coordinate of p.

The other coordinate we are interested in is the distance itself, which we
think of as the height of the distance surface. So for a point p in R+ h(p)
is the value of the distance at this configuration.

For this paper, we use a slightly different definition of silhouettes, taking
only local maxima into account. We will assume henceforth that the config-
uration space is bounded in every coordinate. This is certainly always the

19

case for any practical robot. If it is not bounded, there are technical ways
to reduce to a bounded problem, see for example [7]. The set of free config-
urations is also assumed to be closed. The closed and bounded assumptions
ensure that the distance function will attain locally maximal values on every
connected component of free space.

A silhouette point is a locally maximal point of the function A(.) on some
slice S|, of S. The silhouette ¥(S) of S is the set of all such points for all a.

The key properties of the silhouette are ([2], [13]):

(i) Within each slice of S, each connected component of S|, must contain
at least one silhouette point.

(ii) The silhouette should be one-dimensional.

(iii) The critical points of the silhouette w.r.t the function x(.) should
include the critical points of the set 5.

Clearly, using local maxima will satisfy property (i). This is true simply
because a continuous function (in this case, a distance function with the
value zero on the boundary and positive values in the interior) has a local
maximum in a compact set. For property (ii) we require that the directions
x1 and h be “generic” (see the earlier papers). This is easily done by picking
a general zq, but A may not be generic a priori. However, rather than the true
distance h, we assume that the distance plus a very small linear combination
of the other coordinates is used. This linear combination can be arbitrarily
small, and we assume that it is small enough that it does not significantly
affect the clearance of silhouette points.

For property (iii), we depart somewhat from the original definition. The
critical points of the silhouette curves that we have traced can be discovered
during the tracing process (they are the points where the curve tangent be-
comes orthogonal to z1). But we need to find all (or a sufficient set of) critical
points to ensure completeness. All critical points do indeed lie on silhouette
curves, but since our algorithm is incremental, we may not discover these
other curves unless we encounter points on them. So we need a systematic
way to enumerate the critical points of S, since these will serve as starting
points for tracing the silhouette curves that we need for completeness.

In fact, not all critical points of S are required. There is a subset of
them called interesting critical points that are sufficient for our purpose.

20

Intuitively, the interesting critical points are the split or join points in higher
dimensions. They can be defined as follows:

Definition
A point p in R+ is an interesting critical point if for every neighborhood
U of p, one of the following holds:

(i) The intersection U N :Cl_l(xl(p) + €) consists of several connected com-
ponents for all sufficiently small e. This is a generalized split point.

(ii) The intersection U N 7" (x1(p) — €) consists of several components for
all sufficiently small e. This is a generalized join point.

From the definition above, it follows that as we sweep the plane x; = a
through S, the number of connected components of S|, changes only when
the plane passes though interesting critical points.

Definition

Now we can define the roadmap of the surface S. The roadmap R(S) is
defined as follows: Let P (S) be the set of interesting critical points of x1(.)
on S, Pc(X) be the set of critical points of z1(.) on the silhouette, and P¢
the union of these two. The roadmap is then:

R(S) =x(S)u (U L(p)) (5)

pEP:

That is, the roadmap of S is the union of the silhouette ¥(5) and various
linking curves L(p). The linking curves join critical points of S or ¥ to other
silhouette points.

The new roadmap algorithm has an advantage over the original in that
it is not restricted to algebraic curve segments. This is because the original
was formulated to give precise algorithmic bounds on the planning problem,
whereas the new algorithm approximates the silhouette by tracing. Tracing
is just as easy for many types of non-algebraic curves as for algebraic ones.

This allows us to do linking in a single step, whereas algebraic linking
curves must be defined recursively. We generate linking curves in the present
context by simply fixing the z; coordinate and hill-climbing to a local max-
imum in A(.). The curve traced out by the hill-climbing procedure starts at

21

the critical point and ends at a local maximum (which will be a silhouette
point) of the distance within the same x; slice. Thus it forms a linking curve
to the silhouette. If we are at an interesting critical point, there will be two
opposing directions (both normal to x1) along which the distance function
increases. Tracing in both directions links the critical point to silhouette
points on both channels that meet at that critical point.

Theorem R(S5) satisfies the roadmap condition.

Proof Let ay,...,a,, be the x;-coordinates of the critical points Po, and
assume the a;’s are arranged in ascending order. The proof is by induction
on the a;’s.

Our inductive hypothesis is that the roadmap condition holds to the “left”
of a;_1. That is, we assume that R(S5)|<q,_, = R(S) ﬁxl_l(xl < a;_1) satisfies
the roadmap condition as a subset of 5|<q,_,.

The base case is 1 = a;. If we have chosen a general direction zq, the
set S|,, consists of a single point which will also be part of the roadmap.

For the inductive step we start with some basic results from Chapter 2 in
[12], which state that we can smoothly deform or retract a manifold (or union
of manifolds like the surface S) in the absence of critical points. In this case,
it implies that the set S|<,, can be smoothly retracted onto S|<q,_,, because
the interval (a;_1, a;) is free of critical values. There is also a retraction which
retracts R(S)|<q; onto R(S)|<q,_,. These retractions imply that there are no
topological changes in R(S) or S in the interval (a;_1,a;), and if R(S5)|<q;_,
satisfies the roadmap condition, then so does R(S)|<q,-

So all that remains is the transition from R(S)|<,, to B(S)|<q;. Let p; be
the critical point whose x; coordinate is a;. The roadmap condition holds
for R(S)|<a,, i.e. each component of S|c,, contains a single component of
R(S)|<a;- The only way for the condition to fail as z; increases to a; is
if the number of silhouette curve components increases, i.e. when p; is a
critical point of the silhouette, or if the number of connected components of
S decreases, which happens when p; is a join point. Let us consider these
cases in turn:

If p; is a critical point of the silhouette, the tangent to the silhouette at p;
is normal to x;. By assumption, a new component of the silhouette appeared
at p; as 1 increased to a;. This means that in the slice z; = a; — € (for €
small enough) there is no local maximum in the neighborhood of p;. On the

22

other hand, there must be a local maximum of distance in this slice, which
we can find by hill-climbing. So to link such a critical point, we move by € in
the —z direction (or its projection on S so that we remain on the surface)
to a nearby point ¢;. Then we hill climb from ¢; in the slice 1 = a; — € until
we reach a local maximum, which will be a silhouette point. This pair of
curves links p; to the existing roadmap, and so our inductive hypothesis is
proved for R(S)|<a;.

At join points, though, the linking curve will join p; to a silhouette point
in each of the two channels which meet at p;. If these two channels are in
fact separate connected components of S|,,, the linking curve will join their
respective roadmaps. Those roadmaps are by hypothesis connected within
each connected component of S|<,,. Thus the union of these roadmaps and
the linking curve is a single connected curve within the connected component
of S|<a; which contains p;. Thus we have proved the inductive hypothesis for
a; if p; is a join point. U

We have proved that R(S) satisfies the roadmap condition. And it is easy
to link arbitrary points in free-space with the roadmap. To do this we simply
fix 1 and hill-climb from the given point using the distance function. Thus
our algorithm is complete for finding collision-free paths.

Note that we do not need to construct configuration space explicitly to
compute the roadmap. Instead it suffices to be able to compute the inter-
esting critical points, and to be able to compute the distance function and
its gradient. This should not surprise the reader familiar with differential
topology. Morse theory has already shown us that the topology of manifolds
can be completely characterized by looking locally at critical points.

Appendix II: Geometric Relations between
Critical Points and Contact Constraints

Let n be the number of obstacle features in the environment and the robot

has constant complexity. Free space F'P is bordered by O(n) constraint sur-
faces. FEach constraint surface corresponds to an elementary contact, either

23

face-vertex or edge-edge, between a feature of the robot and a feature of the
environment. Other types of contacts are called non-elementary, and can
be viewed as multiple elementary contacts at the same point, e.g. vertex-
edge. They correspond to intersections of constraint surfaces in configuration
space.

Definition

An elementary contact is a local contact defined by a single equation.
It corresponds to a constraint surface in configuration space. For example,
face-vertex or edge-edge.

Definition

A non-elementary contact is a local contact defined by two or more equa-
tions. It corresponds to an intersection or conjunction of two or more con-
straint surfaces in configuration space. For example, vertex-edge or vertex-
vertex. There are O(n) of non-elementary contacts if the robot has constant
complexity.

We can represent C'O in disjunctive form:

CO: (\/ Oeivfj)v(\/ Oe]vfi)
e; € edges(obstacles) e; € edges(robot)
fi € faces(robot) fi € faces(obstacles)

where O, ;, is an overlap predicate for possible contact of an edge and a face.
See [2] for the definition of O, ;. For a fixed robot complexity, the number
of branches for the disjunctive tree grows linearly w.r.t. the environment
complexity. Each O, ;, has constant size, if the polyhedron is preprocessed
[11]. Each clause, O, y,, is a conjunction of inequalities. This disjunctive tree
structure is useful for computing the maximum number of critical points by
combinatorics. The interesting critical points (which correspond to the non-
elementary contacts) occur when two or more constraint surfaces lie under
one clause.

Using the disjunctive tree structure, we can calculate the upper bound for
the maximum number of critical points by combinatorial means (by counting
the number of systems of equations we must solve to find all the critical

24

points). Generically, at most k surfaces intersect in & dimensions. For a
robot with k degrees of freedom and an environment of complexity n, (i.e. n
is the number of feature constraints between robot and obstacles) the number
of critical points is

e ("EE) = ot

where d is the maximum degree of constraint polynomial equations. This is
an upper bound on the number of critical points from [14] and [15]. There-
fore, for a given robot (with fixed complexity), there are at most O((2d)*n*)
critical points in terms of n, where k is the dimension of configuration space
and n is the number of obstacle features. (NOTE: We only use the above
argument to prove the upper bound, not to calculate critical points in this
fashion.)

These O((2d)*n*) intersection points fall into two categories: (a) All the
contacts are elementary; (b) one or more contacts are non-elementary. When
all contacts are elementary, i.e. all contact points are distinct on the ob-
ject, free space in a neighborhood of the intersection point is homeomorphic
to the intersection of k half-spaces (one side of a constraint surface), and
forms a cone. This type of intersection point cannot be a split or join point,
and does not require a bridge. However if one or more contacts are non-
elementary, then the intersection point is a potential split or join point. But
because the O(n) non-elementary contact surfaces have codimension > 2,
there are only O(n{*~1)) systems of equations that define critical points of
type (b), and therefore at most O((2d)*n*~!) possible points. Interesting
critical points may be either intersection points, and we have seen that there
are O((2d)Fn*=1)) candidates; or they may lie on higher dimensional inter-
section surfaces, but these are certainly defined by fewer than & equations,
and the number of possible critical points is not more than O((2d)*n(*=1))
[15], [14]. Therefore, the number of interesting critical points is at most

O((2d)kn =),

References

[1] O. Khatib. Real-time obstable avoidance for manipulators and mobile

robots. IJRR, 5(1):90-98, 1986.

25

[2] J. F. Canny. The Complezity of Robot Motion Planning. MIT Press,
Cambridge, MA, 1988.

[3] T. Lozano-Pérez and M. Wesley. An algorithm for planning collision-free
paths among polyhedral obstacles. Comm. ACM, 22(10):560-570, 1979.

[4] J. Reif. Complexity of the Mover’s Problem and Generalizations, chap-
ter 11, pages 267-281. Ablex publishing corp., New Jersey, 1987.

[5] J.T. Schwartz and M. Sharir. On the ‘Piano Movers’ Problem, II. Gen-
eral Techniques for Computing Topological Properties of Real Algebraic
Manifolds, chapter 5, pages 154-186. Ablex publishing corp., New Jer-
sey, 1987.

[6] B. Langlois J. Barraquand and J-C. Latombe. Robot motion planning
with many degrees of freedom and dynamic constraints. In Proceedings

5th ISRR, pages 74-83, Tokyo, Japan, 1989.

[7] J. Canny. Computing roadmaps of general semi-algebraic sets. In

AAFECC-91, pages 94-107, 1991.

[8] J.F. Canny. Generalized characteristic polynomials. Journal of Symbolic
Computation, 9(3), 1990.

[9] D. Manocha and J. F. Canny. Efficient teniques for multipolynomial
resultant algorithms. Proceedings of ISSAC’91, 1991. Bonn, Germany.

[10] Canny and Rege. An efficient algorithm for computing perturbed poly-
nomial systems. In preparation, 1992. University of California, Berkeley.

[11] M. C. Lin and J. F. Canny. A fast algorithm for incremental distance
calculation. ITEEE ICRA’91 Proceedings, 2:1008-1014, 1991.

[12] C. G. Gibson K. Wirthmuller and A. A. du Plessis E. J. N. Looijenga.
Topological Stability of Smooth Mappings. Springer-Verlag, Berlin . Hei-
delberg . New York, 1976.

[13] J. F. Canny. Constructing roadmaps of semi-algebraic sets I: Complete-
ness. Artificial Intelligence, 37:203-222, 1988.

26

[14] J. Milnor. On the betti numbers of real varieties. Proc. Amer. Math.
Soc., 15:275-280, 1964.

[15] R. Thom. Sur I'homologie des varietes algebriques reelles. Differential
and Combinatorial Topology, pages 255-265, 1965.

27

