Proceedings of the 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems
Maui, Hawaii, USA, Oct. 29 — Nov. 03, 2001

A Voronoi-Based Hybrid Motion Planner

Mark Foskey Maxim Garber

Ming C. Lin

Dinesh Manocha

Department of Computer Science
University of North Carolina at Chapel Hill
http://www.cs.unc.edu/~geom/voronoi/vplan

Abstract

We present a hybrid path planning algorithm for rigid
and articulated bodies translating and rotating in a 3D
workspace. Our approach generates a Voronoi roadmap in
the workspace and combines it with “bridges” computed
by a randomized path planner with Voronoi-biased sam-
pling. The Voronoi roadmap is computed from a discrete
approximation to the generalized Voronoi diagram (GVD)
of the workspace, which is generated using graphics hard-
ware. By this use of the GVD, portions of the path can
be generated without random sampling, substantially re-
ducing the number of random samples needed for the full
query. The planner has been implemented and tested on
a number of benchmarks. Some preliminary comparisons
with a randomized motion planner indicate that our plan-
ner performs more than an order of magnitude faster in
several challenging scenarios.

1 Introduction

The problem of automated motion planning has seen impor-
tant progress in the past decade. The probabilistic roadmap
(PRM) approach has been of particular importance, providing a
straightforward method for handling configuration spaces of high
dimension with good efficiency [13]. In this paper we use ideas
from earlier geometric or “criticality based” methods to improve
the performance of a PRM planner on certain classes of problems.

In PRM planning, a graph characterizing the topology of the
free space is built up by generating robot configurations at ran-
dom and, among those for which the robot is not in collision, at-
tempting to connect nearby configurations using some very sim-
ple, fast planner. The method is probabilistically complete, in the
sense that PRM planners can be made arbitrarily likely to find
any solution by allowing a sufficient running time. They perform
well for a wide variety of problems, but they can be slow when
the robot must pass through a narrow passage to reach the goal.

The earlier criticality based methods rely on an explicit ge-
ometric description of the configuration space to provide a data
structure that can be searched for a path. Criticality based algo-
rithms are typically complete: They either return a correct path or
an indication that none exists. In low dimensions, many workable
algorithms of this type have been implemented [16]. For arbitrary
dimensions, known algorithms are prohibitively difficult to im-

0-7803-6612-3/01/$10.00€2001 IEEE

55

plement and have complexity exponential in the dimension of the
C-space. An example of a general algorithm is the roadmap plan-
ner based on Whitney’s stratified sets [1]. For our purposes, one
benefit of criticality based methods is that they are not hindered
by narrow passages.

Main Results: We present a hybrid path planning algorithm
for free-flying rigid and articulated bodies translating and rotat-
ing in a 3D workspace. Our approach utilizes a global geomet-
ric analysis of the workspace to generate an approximate path in
configuration space. We then identify invalid segments of this
estimated path, for which the robot is in collision, and compute
linking subpaths or “bridges” [3] to replace the invalid segments.
These bridges are generated by a randomized planner with care-
fully restricted sampling.

Our global geometric analysis uses a discrete approximation
of the generalized Voronoi diagram (GVD) of the workspace,
computed using graphics hardware [9]. The key distinctive fea-
tures of our approach are:

e We generate an estimated path based on the Voronoi dia-
gram of the scene, and only use randomized planning for
parts of that path.

® When we use randomized planning, it is guided by informa-
tion in the Voronoi diagram.

Our planner has been implemented and applied to a number of
benchmarks. We have also compared its performance with a one-
shot planner in the general PRM family developed by Hsu et al. at
Stanford [12]. Some preliminary results indicate that our hybrid
planner for rigid bodies is more than an order of magnitude faster
than the PRM planner on many of these benchmarks.

The rest of the paper is organized as follows. In Section 2 we
discuss related work. In Section 3 we introduce terminology re-
lated to the Voronoi diagram, and in Section 4 we explain our al-
gorithm. In Section 5 we give implementation details and present
performance results. In Section 6 we analyze the performance of
the algorithm, and in the final section we conclude and indicate
areas of future work.

2 Related Work

2.1 Voronoi Diagrams in Motion Planning
Generalized Voronoi diagrams have long been used as a basis

for motion planning algorithms [4, 5, 17, 23). The GVD repre-

sents the connectivity of a space but has a dimension lower by

one, and (in three dimensions) it is composed of surfaces of max-
imal clearance.

The disadvantage of using the GVD has always been that it
is difficult to compute robustly and efficiently. Recently, several
approaches to this problem have been proposed. Vleugels and
Overmars [22] give an algorithm that applies spatial subdivision
and isosurface extraction techniques to acquire an approximate
model of the diagram. Choset and Burdick [4, 5] define a re-
lated structure called the hierarchical generalized Voronoi graph,
which they compute using continuation methods. More recently,
Wilmarth, Amato, and Stiller [23, 24] have shown how points on
the GVD can be found without computing a representation of the
entire set. Finally, Hoff et al. [9] have introduced a method that
uses graphics hardware to generate a discrete model at a specified
resolution. We use this latter method in our work.

The Voronoi diagram can be used in several ways:

1. The Voronoi diagram of the configuration space (or the
Voronoi graph, described below) may simply be searched
for a path, once the start and finish points have been linked
to the diagram [2, 4, 5, 17]. Such an approach is only prac-
tical if the number of degrees of freedom (dof) is fairly low,
say three or less.

2. A path found using the GVD of the workspace may be used
to provide intermediate points to serve as temporary attrac-
tive wells for a potential field planner [10].

3. The GVD of the workspace can be used to bias sample gen-
eration in a randomized planner [8, 11, 20, 23, 24].

Our planner uses method 1 above to generate its initjal
workspace path. It also uses method 3 when computing linking
subpaths, because sampling is indirectly biased by the GVD.

22 Randomized Planning

The PRM method [14] was developed independently by
Kavraki and Latombe [13] and Overmars and Svestka [18, 19].
A PRM planner generates samples at random in configuration
space, attempting to connect each sample by a simple C-space
path to one of the points already found. Over time, the graph thus
produced will tend to represent the connectivity of the C-space
reasonably well, and a query can be rapidly performed by linking
the search points to the graph and then searching the graph. Many
variations on this idea have been developed. We use the one-shot
planner of Hsu et al. [12] as a baseline for comparison and as a
subroutine in our work. Some details of its algorithm are given in
Section 4.4.

3 Background and Notation

Generalized Voronoi Diagram: Let a set of geometric ob-
jects, or sites, be denoted 84, 82, . . ., 85. For each site s;, define
a distance function d;(x) = dist(s;, x). The Voronoi region of
s;isthe set V; = {x | di(x) < d;(x)Vj # 4}

The collection of regions Vi, ..., V4 is called the generalized
Voronoi diagram or GVD, which partitions the space into cells
suitable for proximity queries. The (ordinary) Voronoi diagram
corresponds to the case when each s; is an individual point.

The boundaries of the regions V; are called Voronoi bound-
aries, which are loci of points equidistant to at least two sites.
Sometimes we use the term GVD to refer to the union of the
Voronoi boundaries, rather than the collection of Voronoi cells.

56

Figure 1: An estimated path for the robot. The solid rectan-
gles indicate the initial and goal configurations. The robot
is in collision with the environment as it turns around the
corner.

In three dimensions, the intersection of two Voronoi regions is
a Voronoi face, the intersection of multiple Voronoi faces is a
Voronoi edge, and the intersection of multiple Voronoi edges is
a Voronoi vertex. Together the Voronoi edges and vertices form
a graph, the generalized Voronoi graph (GVG). The GVD is a
deformation retract of the workspace [2] which ensures that it re-
flects the topology of the workspace. The GVG, by contrast, can
be disconnected even if the workspace is connected [5].

4 Algorithm
Our hybrid planning algorithm can be outlined as follows.

1. Compute the generalized Voronoi graph.

2. Search the GVG to find a path for a point robot in the
workspace.

3. Use shape analysis to choose orientations for the actual
robot along the point robot path, generating an approximate
path in C-space.

4. Find all portions of the estimated path for which the robot
is colliding with the obstacles. See Figure 1 for an example.

5. Use Voronoi-biased randomized planning to replace each
path segment where the robot is colliding with the environ-
ment.

Details are given in the rest of the section.

4.1 Computing the GVG

Our method for computing the generalized Voronoi diagram
is based on the algorithm presented by Hoff et al. [9], and it uses
standard polygon rasterization hardware. We compute the dis-
crete Voronoi diagram in slices. For each slice L, determined
by a given z value, and each site s;, there is a real-valued dis-
tance function df given by df(z,y) = di(z,y,2). In words,
the value of d(z,y) is the distance in 3-space from (z,y, z)
to s;. As an example, consider the case of a Voronoi site s;
that is the single point (0,0, 1), and the slice Lo. In this case,
di(z,y) = /2? +y> + 1.

The graph of df is a surface for which we generate a triangular
approximation called a distance mesh. We assign each site s; a
unique identifying color, and we render its distance mesh df in
that color by using a parallel projection. After all the distance
meshes are rendered, we have, for each pixel, the identity of the

nearest site, determined by the color, and the distance to that site
recorded in the depth buffer. The algorithm reads back the color
buffer and the depth buffer. The depth buffer contains the distance
field, i.e. the distance to one of the nearest obstacle for each pixel
in the slice. B

In our discrete representation of the GVD, we regard the
Voronoi boundaries as lying between neighboring pixels. A dis-
crete Voronoi edge consists of a sequence of pixel edges, with
each pixel edge bounded by two pixels. The endpoints of pixel
edges are pixel vertices. If each pixel is regarded as filling 2 small
solid cube, then the pixel edges and vertices are the edges and ver-
tices of the cube. We compute the GVG by scanning the 3-D pixel
map, two slices at a time, seeking pixel edges whose neighboring
pixels exhibit at least three different colors. We store the resulting
locations in an edge list representation. The vertex data structure
contains the coordinates of the point and the clearance distance
to the obstacles (because it is a Voronoi vertex, the point will be
equidistant to at least four sites). The edge data structure has a list
of sampled coordinates of points on the edge, and the minimum
clearance distance for the whole edge. Note that all the sample
points are restricted to a uniform grid, so that the vertex and edge
points do not lie on the actual Voronoi boundaries, but instead on
nearby grid points.

As we construct the diagram, we construct a list for each
Voronoi site recording all the Voronoi vertices to which that site
is a nearest neighbor. When a Voronoi vertex is found, its nearest
neighbors are determined by the colors in the adjacent pixels, and
it is added to the lists for those sites.

42 Generating a Path in the Workspace

After generating the GVG, we use it to find an approxi-
mate path in the workspace for the robot to follow, called the
workspace path. Define a query configuration to be an initial or
goal configuration, and a query location to be the projection to
R3 of a query configuration. Then the workspace path links the
initial and goal query locations.

Before we can search the GVG for a path, we need to link
the query locations to the GVG. To link a query location, we first
determine the Voronoi cell containing it. We then compute line
segments from the query location to each Voronoi vertex of the
cell, and eliminate any segments that pass through obstacles.

‘We add the query locations and their linking line segments to
the GVG data structure as (formal) Voronoi vertices and edges.
Each newly added edge contains a list of points and the value of
the minimum distance to the environment.

After linking the query locations to the GVG, we use a gen-
eralized single-source shortest paths algorithm, where the length
of a path is determined by a combination of the Manhattan dis-
tance along the path and the maximal clearance over the whole
path. This path, the workspace path, is a solution to the query
for a point robot, and it satisfies a partial criterion of maximal
clearance.

It is possible for the GVG to be disconnected even when the
workspace is connected. It would be possible to add additional
edges to the graph to ensure proper connectivity, using informa-
tion derived from the full discrete Voronoi diagram. The resulting
graph would be similar to the HGVG of Choset and Burdick [S].

57

However, for simplicity our planner simply uses the PRM algo-
rithm on the query locations when no workspace path is found
using the GVG. In practice we have found such cases to be rare.

43 Orienting the Robot

After finding the workspace path, we must choose an orien-
tation for the robot at each point on the path. To do this, we
determine a major axis for the robot, and align it with the tan-
gent vector of the path, as determined by a finite difference esti-
mate. In this respect, or method bears comparison with methods
for “stick” or “ladder” robots, such as that described in Choset,
Mirtich, and Burdick [6].

For a complex shape, there are many reasonable definitions of
the “major axis.”” For our purposes, we want an axis around which
the robot fits as tightly as possible. To determine such an axis, we
use linear regression to compute a best-fit line approximating the
vertices of the robot. This line is chosen to minimize the root
mean square of the (Euclidean) distances of the vertices to the
line. The origin of the robot is defined to be the center of gravity
of the vertices. For articulated robots, we define a standard pose,
and compute the major axis with respect to that pose.

Once we have determined how to align the specified major
axis of the robot, it is still free to rotate about that axis. The choice
of orientation about the major axis (i.e., the “roll”) is made arbi-
trarily. We simply make sure that, up to discrete approximation,
the orientation varies continuously as the robot traverses the path.

4.4 Bridging Invalid Segments

In this section, we explain how the estimated path is modified
into a final path for the robot. First, using a simple straight-line
local planner, we attempt to connect each configuration with its
successor. Configurations for which the robot is colliding with
the obstacles, or which cannot be connected to a neighbor, are
marked “invalid”.

The path has now been decomposed into valid segments, for
which the robot is free, alternating with invalid segments, for
which it is not. For each invalid segment, we apply the ran-
domized planner [12], with the start and goal given by the free
configurations immediately before and after the invalid segment.
This planner maintains trees of free configurations rooted at the
start and finish. At each iteration (called an expansion iteration),
it chooses a configuration p from one of the trees, generates new
configurations in a neighborhood of p, and retains those which
can be linked to p by a free path. The local planner terminates
when the two trees are connected. This algorithm automatically
biases sampling towards configurations known to be free.

The configuration space for the planner is defined to be the
tightest axis-aligned box that contains bounding balls for the
robot at both query locations (see Figure 2). The only degrees
of freedom that are restricted in a special way for the randomized
planning phase are the translational coordinates. The orientation
of the robot as a whole, as well as joint positions for an articulated
robot, are given full freedom.

It is possible for the robot to get into a tight spot for which the
restricted configuration space does not provide enough room for
the robot to maneuver from the beginning of the invalid segment
to the end of it. To handle such situations we use a simple expe-

Configuration space for

Figure 2: The two dashed rectangles indicate valid con-
figurations that will be linked by randomized planning.
The larger dotted rectangle indicates the restricted C-space
used.

dient: If, after a fixed number of expansion iterations, the planner
has not linked the two ends of the invalid segment, the planner’s
configuration space is enlarged to the full original C-space, and
randomized planning is resumed. If this is not successful after an-
other predetermined number of iterations, then it is assumed that
the heuristics guiding the initial path estimate have failed, and the
planner simply uses the randomized planner to link the original
start to the original finish. Such cases tend to be difficult for the
randomized planner as well, so the time spent in trying to use the
estimated path (from GVDs) is typically a small fraction of the
total time.

4.5 Localized Sampling

‘While an invalid segment is being bridged, what was a nar-
row passage on the scale of the entire scene is now a relatively
open area within the restricted configuration space (see Figure 2).
However, there may be a portion of the invalid segment which
constitutes a narrow passage even on this smaller scale. To in-
crease sampling in these bottleneck areas, we generate a new con-
figuration near the narrowest point on the invalid segment (“nar-
rowest” being measured in terms of distance from Voronoi sites,
i.e., the obstacles). We find the new configuration by uniform
random sampling in a neighborhood of the narrowest point.

We then perform two randomized sampling steps, one linking
the beginning of the invalid segment to the new configuration near
the narrowest point, and the other linking the new configuration
to the end of the invalid segment. The new configuration acts as
a seed, causing a number of configurations to be generated near
the narrowest point on the narrow passage.

If the Voronoi site distance at the narrowest point is greater
than half the radius of the robot’s bounding ball, then this opera-
tion is not performed since in practice we have found that a single
randomized planning step works well in such cases.

5 Implementation and Performance

The algorithm has been implemented in C++. We used PQP
[15] for collision detection during randomized planning, and
Magic Software written by D. Eberly to compute the major axis
of the robot.

For rigid robots, we used several benchmark scenarios, de-
scribed below. We compare computation times using our algo-
rithm with the best times we were able to achieve using the ran-
domized planner alone.

58

Duct: Two open areas separated by a channel with two right an-
gle turns. The robot is a narrow box. See Figure 3.

Walls: A series of six walls, four of which have small holes
through which the robot, a narrow box, must pass (Fig-
ure 4). We require the robot to pass from one end of the
maze to the other, through all four holes. This benchmark
was designed at Texas A & M university [21].

Piano: Eight Chairs, a table, and a piano (Figure 5). The goal
is to move the piano through the window. The window is
smaller than the convex hull of the piano, forcing the piano
to rotate in order to reach the goal. This benchmark was
provided by LAAS, Toulouse.

2D Maze: A maze with a spike-shaped robot (Figure 6).

3D Maze: A stack of four connected mazes, each similar to 2D
Maze shown in Figure 6.

Pegs: Tilted pegs that a human figure must avoid (Figure 7).

The results of the benchmarks are summarized in Table 5. The
Voronoi resolution is the resolution of the discrete Voronoi dia-
gram, defined as D/S, where D is the length of the main diago-
nal of the scene, and S is the distance between sampled distance
values. All times are in seconds on a 300 MHz MIPS R12000
ProCessor.

The randomized planner has several adjustable parameters
that can affect performance. The timings for the PRM planner
reflect our best efforts to choose parameters that give optimal per-
formance of the PRM planner for the given scenes.

For articulated robots, we have tested the performance of our
framework on a number of benchmarks. These include:

Crane: A CAD model of a crane complex composed of more
than 128,000 triangles (Figure 8). The model contains 143
separate polyhedral parts, which are rendered in distinct col-
ors in the figure. The robot is an articulated robot arm part
with 10 degrees of freedom. The model was provided by
LAAS.

Maze: The maze is the one shown in Figure 6. The robot is a
series of boxes with 9 degrees of freedom.

The timing results (without any optimization) of these bench-
marks are summarized in Table 5.

6 Analysis and Discussion

In this section, we discuss the performance of our planner.
We consider properties of the robot and workspace that affect the
performance.

If there is a path for the robot which is, to the precision of
our Voronoi computation, wider than the bounding ball for the
robot, then our planner will generally find it very rapidly, with-
out randomized planning. Thus, for our planner, any region of
the workspace wider than the bounding ball of the robot does
not correspond to a narrow passage in C-space. We therefore de-
fine a workspace narrow passage to be a portion of the GVG for
which the site distance is less than the radius of the robot’s bound-
ing ball. By the above observations, any C-space narrow passage
corresponds to some patt of a workspace narrow passage.

Figure 3: Duct: An elongated, box-shaped robot must tra-
verse a bent duct to reach the goal configuration, shown
behind the partially transparent wall.

goal

Figure 4: Walls: A narrow box-shaped robot must pass
through the square openings in four different walls. The
path shown is the solution found by our planner.

Figure 5: Piano: The piano must avoid the other furniture
and maneuver through the window to reach the goal con-
figuration in the next room.

Figure 6: 2D Maze: The wedge shaped robot must navigate
through the maze of walls and passages to reach its goal at
the bottom right corner of the map.

.

init

el

Figure 7: Pegs: Twenty-five pegs of different sizes, tilted
at various angles. It is navigated by the stick figure robot
shown.

. e /

Figure 8: Crane: A complex crane assembly.

Scene Res | GVG | Query | PRM | Gain
Duct 128 10.4 0.70 894 88
Walls 128 | 2.98 055] 203 5
Piano 64| 5.05 419 603 14
2D Maze | 128 | 2.14 5.74 341 43
3D Maze | 128 249 23.8 450 9
Pegs 64 2.87 19.7 97.7 4

Table 1: Benchmark timings. Res: Voronoi resolution.
GVG: Voronoi graph computation time. Query: query
phase, after Voronoi computation. PRM: the randomized
planner alone. Gain: speedup factor.

Scene | Res | GVG | Query
Crane | 64 | 138.65 | 334.71
Maze | 128 573 | 59.66

Table 2: Benchmark timings in seconds for articulated
robots. Res: Voronoi resolution. GVG: Voronoi graph
computation. Query: query phase, after Voronoi compu-
tation.

Because invalid segments are determined by collision of the
robot with the environment, they can only occur in workspace
narrow passages, or along a segment joining a query configura-
tion to the GVG. Thus our planner primarily uses randomized
planning in a subset of the workspace narrow passages. It may
seem paradoxical that narrow passages, which can be notoriously
difficult for randomized planners, are precisely where we use ran-
domized planning. This strategy in fact works well because of the
three techniques we use to bias sampling:

o We initially restrict randomized planning to a region delim-
ited by the endpoints of the invalid segment, increasing the
chances that we will generate more samples in the narrow
passages. Essentially, in the context of this restricted C-
space, the narrow passage becomes a relatively open area.

e When a passage is especially narrow, measured in terms of
the workspace, we seed the PRM planner with an additional
configuration near the narrowest point. These additional
seed configurations have the effect of intensifying sampling
in the most restricted areas.

o We use a PRM planner that generates new samples near
samples already found at both ends of the narrow passage.
Trees of configurations rooted at the two ends of the nar-
row passage have a high probability of growing into it. This
phenomenon is discussed in terms of expansive components
in[12].

7 Conclusion

We have introduced a hybrid planner that uses simplified
global geometric analysis to generate an estimated path, and then
uses randomized planning guided by the generalized Voronoi di-
agram, to modify the estimated path into a collision free path. We
have tested the planner on several benchmarks and found that it
can be over an order of magnitude faster than a comparable purely
randomized planner.

Acknowledgements

We would like to thank Kenny Hoff for providing us his
Voronoi computation software. We are also grateful to David
Hsu and Jean-Claude Latombe for helpful discussion on PRM
and providing us with an earlier version of their randomized plan-
ner. Finally, we thank Jean-Paul Laumond and Nicola Simeon for
for providing us the piano and crane models This research was
supported in part by ARO Contract DAAGS55-98-1-0322, DOE
ASCII Grant, NSF grants ACI-9876914, DMI-9900157 and NSF
11S-982167, ONR Young Investigator Award, and Intel.

References

{11 J. Canny. The Complexity of Robot Motion Planning. ACM — MIT Press
Doctoral Dissertation Award Series. MIT Press, Cambridge, MA, 1987.

[2] J. F. Canny and B. Donald. Simplified voronoi diagrams. Discrete and Com-
putational Geometry, 3:219-236, 1988.

{3] 1.E CannyandM.C. Lin. Anopp
10:102-120, 1993.

ic global path planner. Algorit

60

[4) H. Choset and J. Burdick. Sensor based pl: part ii: I I con-
struction of the generalized voronoi graph. IEEE Conference on Robotics and
Automation, 1995.

[5

H. Choset and J. Burdick. Sensor based planning: The hierarchical generalized
voronoi graph. Workshop on Algorithmic Foundations of Robotics, 1996.

{6] H. Choset, B. Mirtich, and J. Burdick. Sensor based planning for a planar rod
robot: Incremental construction of the planar rod-hgvg. IEEE Conference on
Robotics and Automation, 1997.

[7] B.R.Donald. Motion planning with six degrees of freed
MIT Artificial Intelligence Lab., 1984. AI-TR-791.

Master’s thesis,

[8] L. Guibas, C. Holleman, and L. Kavraki. A probabilistic roadmap planner for
flexible objects with a workspace medial-axis-based sampling approach. In

Proc. of IROS, 1999.
[9!

—

KHoﬂ'TCulver,J Keyser, M. Lin, and D. Manocha. Fast computation of
generalized voronoi diag using graphics hard P gs of ACM

SIGGRAPH 1999, pages 277-286, 1999.

{10] K. Hoff, T. Culvet, 15 Keyser. M. Lm, and D. . Manocha. lmeracuve mouon
planning using hardware acc of g i dia-
grams. IEEE Confe on Rob and A pages pp. 2931-2937,
2000.

[11] C. Holleman and L. Kavraki. A framework for using the workspace medial
axis in PRM planners. International Journal of Computational Geometry and
Applications, 9((4 & 5)):495-512, 1999.

{12] D. Hsu, J.-C. Latomb
uration spaces. ional Journal of Ci
cations, 9((4 & 5)):495-512, 1999.

ive config-
y and Appli-

| 4 5 P

! G

{13] L. Kavraki and J. C. L be. Rand d ing of
space for fast path planning. IEEE Confennce on lbboucs and Automanou.

pages 2138-2145, 1994.

{14] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Trans. Robot. Automat., pages 12(4):566-580, 1996.

{15] E.Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast proximity queries with
swept sphere volumes. Technical Report TR99-018, Department of Computer
Science, University of North Carolina, 1999,

J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

C. O’Diinlaing, Micha Sharir, and C. K. Yap. Retraction: A new approach to
motion-planning. In Proc. 15th Annu. ACM Sympos. Theory Comput., pages
207-220, 1983.

M. H. Overmars. A random approach to motion planning. Report RUU-
CS-92-32, Dept. Comput. Sci., Utrecht Univ., Utrecht, Netherlands, October
1992.

{16]
7]

18]

{19] M. H. Overmars and P. Svestka. A probabilistic learning approach to motion
planning. In Algorithmic Foundations of Robotics. A. K. Peters, Wellesley,
MA, 1995.

[20] C. Pisula, K. Hoff, M. Lin, and D. Manocha. Randomized path planning for
arigid body based on hardware acceleramd voronoi sampling. In Proc. of 4th
International Workshop on Algorith dations of Rob , 2000,

D. Vallejo, C. Jones, and N. Amato. An adaptive framework for single shot
motion planning. In Proc. of IROS, 2000.

[21]

{22] Jules Vleugels and Mark Overmars. Approximating generalized Voronoi di-
Technical Report UU-CS-1995-14, Department of

CZmputer Scnencc. Utrecht University, 1995.

Steven A. Wilmarth, Nancy M. Amato, and Peter F. Stiller. Maprm: A prob-
abilistic roadmap planner with sampling on the medial axis of the free space.
IEEE Conf on Robotics and A ion, 1999.

[23

-

{24

=

Steven A. Wilmarth, Nancy M. Amato, and Peter F. Stiller. Motion plan-
ning for a rigid body using random networks on the medial axis of the free
space. Proc. of the 15th Annual ACM Symp on Computational Geome-
try (S0CG’99), 1999.

