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Abstract

We introduce the notion of ezpansivenessto characterize a
family of robot configuration spaces whose connectivity can
be effectively captured by a roadmap of randomly-sampled
milestones. The analysis of expansive configuration spaces
has inspired us to develop a new randomized planning al-
gorithm. This algorithm tries to sample only the portion of
the configuration space that is relevant to the current query,
avoiding the cost of precomputing a roadmap for the entire
configuration space. Thus, it is well-suited for problems
where a single query is submitted for a given environment.
The algorithm has been implemented and successfully ap-
plied to complex assembly maintainability problems from
the automotive industry.

1 Introduction

Path planning is an important problem in robotics [14].
Given the geometry of a robot and obstacles, a path
planner is required to generate a collision-free path be-
tween an initial and a goal configuration. There is
strong evidence that a complete planner, i.e., a plan-
ner that finds a path whenever one exists and indi-
cates that none exists otherwise, will take time expo-
nential in the number of degrees of freedom (dof) of
the robot [17]. However, recently, randomization has
been successfully exploited to provide an efficient and
general path-planning scheme for many-dof robots [2].

The Randomized Path Planner (RPP) [3] searches
for a path by following the negated gradient of an arti-
ficial potential field constructed over the configuration
space and escapes local minima of the potential func-
tion by random walks. It has been used in practice
with good results, but there are several cases where
RPP behaves poorly [4]. Usually this happens when
the robot is trapped in a local minimum and the only
way to escape is to go through a narrow passage. The
probability that a random walk goes through a narrow
passage 1s extremely small.

Another planner, described in [12], uses random
sampling to construct a roadmap of the configuration
space and tries to find a path between any two input
configurations by connecting them to the roadmap.
After paying a relatively high cost for building the
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Figure 1: A data set used to test the planner. It is a car
packaging model having 60,000 triangles.

roadmap, it answers queries very efficiently. This plan-
ner is particularly suitable for problems where multi-
ple path-planning queries have to be answered in the
same static environment. There are several different
techniques for constructing roadmaps, including uni-
form sampling followed by enhancement in difficult re-
gions [12], using random reflections at C-space obsta-
cles [8], and sampling o contact surfaces in the con-
figuration space [1].

These randomized planners have demonstrated good
performance empirically, but are not complete. Some
of them achieve the weaker notion of probabilistic com-
pleteness, i.e., they find a path with high probability
whenever one exists. Note that if no path exists, the
planner may never terminate. There have been several
attempts to provide theoretical justification for the ob-
served success of these planners. In [13], potential field
planners are analyzed based on the study of Markov
chains and diffusion processes. In [9], an estimate is
given for the probability that the roadmap planner can
find a path between two given configurations, assum-
ing that a path of certain clearance exists. A vari-
ant of the roadmap planner is described in [11], and
the connectivity property of roadmaps that it produces
is analyzed under an assumption called e-goodness of
the configuration space. Unfortunately this variant as-
sumes a complete planner is available to be invoked
in order to improve the connectivity of the roadmap.




This assumption is clearly not realistic.

In this paper we introduce the notion of an expansive
space, which involves a slightly stronger assumption
than e-goodness. We show that in an expansive config-
uration space, if we build the roadmap by sampling the
configuration space uniformly at random and checking
straight-line paths between each pair of sampled con-
figurations, then the resulting connected components
of the roadmap conform to the connected regions of the
free configuration space with high probability. Unlike
n [11], there is no need for a complete planner here.

Although the roadmap planner offers an efficient so-
lution for multiple-query path planning problems, it
is not suitable when only a single query is submit-
ted for a given environment. A good example is as-
sembly maintainability problems, where we must de-
termine whether there exists a path to remove a part
from an assembly for maintenance [5]. For single-query
path planning problems, the configuration space may
contain many connected components, but only one of
them is relevant to the query being processed if the
initial and the goal configuration are path-connected.
It is clearly unreasonable to perform expensive prepro-
cessing to construct a roadmap of the entire configura-
tion space. We would prefer to build only the part of
the roadmap relevant to the query, i.e., the part that
contains only the configurations that are connected to
either the mitial configuration ¢in;: or the goal config-
uration ¢goar-

Our analysis of the roadmap planner suggests one
such scheme in the case of expansive spaces. The idea
is to devise a strategy that samples only the connected
components containing either i Or ¢goar. We start
by sampling in the neighborhoods of gini: or 9400 and
then repeatedly choose new samples in the neighbor-
hoods of the configurations known to be connected to
Qinit OT (goar, Until a path is discovered. The intuitive
explanation for the success of this scheme is via an
analogy to the rapid mixing property of random walks
on expander graphs [15].

We have implemented this algorithm and tested it on
assembly maintainability problems from the automo-
tive industry. These problems contain complex CAD
models that describe cluttered environments having up
to 200,000 triangles. An example is shown in Figure 1.

2 Definition of Expansive Spaces

The configuration of a robot is a specification of the
position and orientation of the robot with respect to a
fixed frame in the workspace. The set of all configura-
tions forms a configuration space C. A configuration q
is free if a robot placed at ¢ does not collide with ob-
stacles. The set of all free configurations forms a free
space F C C.

To construct a roadmap graph R = (V, E) of C, we
sample configurations uniformly at random from C and
retain the free configurations in V as milestones. There
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Figure 2: A configuration space whose connectivity is dif-
ficult to capture via random sampling due to the presence
of a narrow passage.

is an edge between two milestones if they can be con-
nected by a straight-line path lying entirely in F.

Narrow passages in F pose significant difficulty for
planners that build a roadmap by random sampling,
because the probability of picking at random mile-
stones that can be connected by straight paths through
such passages is very small. In Figure 2, we show an
example where the free space consists of two globes
connected by a narrow passage. If we fail to sample a
pair of milestones that are connected by a straight-line
path through the narrow passage, then the roadmap
graph R will contain two connected components, one
in each globe, and therefore will not reflect the con-
nectivity of F, which has only one connected compo-
rent. In order to capture the complexity of a config-
uration space due to narrow passages, we parametrize
this complexity using three numbers, «, 3, and ¢ (see
Definition 1), and express the running time of a plan-
ner in terms of these three parameters. We can then
analyze the change in running time of a planner as «,
3, and ¢ vary. We may also seek techniques to im-
prove running times by decomposing the configuration
space into connected components such that each com-
ponent has large «, 3, and €. This is further discussed
in Section 7.

We now show how to characterize a configuration

space in terms of o, £, and ¢. For any subset S C F,
let ;(.S) denote its volume, where for convenience we
assume that p(F) = 1. Two configurations are visible
from each other if they can be connected by a straight-
line path in F. We will also say that they see each
other. Let V(p) denote the region of F visible from
some point p € F.
Definition 1 Let «, 3, and ¢ be constants in the open
interval (0,1). The free space F is (o, 3, €)-expansive
if each of its connected components F' C F satisfies
the following conditions:

o for every point p € F', u(V(p)) > ¢;
e for any connected subset S C F’, the set

LooKOUT(S) = {g € S| p(V(\S) > Bxu(F'\5)}

has volume p(LOOKOUT(S)) > a x u(S).

The first condition guarantees that F is e-good [11].
That 1s, every point in F can see at least an ¢ frac-
tion of the free space. In the second condition, the set
LOOKOUT(S) contains points in S that see a 3 fraction



Figure 3: A component F; in an expansive space.

of the complement of S in the component of the free
space containing S, and « measures the relative vol-
ume of such points. Parameters a and 3 characterize
the volume of points that can potentially contribute
new visibility regions. Refer to Figure 3 for an illus-
tration. If a space is expansive with large o and g,
then it is very easy to sample new points to expand
the visibility region. Suppose that we think of S C F’
as the visibility region induced by a set of points M.
If it is easy to find additional points ¢ € S to add to
M so that S expands significantly, S will eventually
cover the whole free space. We will then have enough
information about the configuration space to solve the
path planning problem.

Pathological cases, such as those shown in Fig-
ures 2 and 4, cannot have large o and 3. We can simply
take S to be one globe of the configuration space shown
in either figure. Then there is only a very small fraction
of 5 that can see a large portion of the complement of
S. Note, however, that there is a difference between
the two examples. In the case of Figure 2, if we require
[ to be large, then & must be small, i.e., the volume of
LOOKOUT(S) is small. If we take 3 to be large enough,
a will have to be zero, because all points in S has very
limited view due to the long, narrow passage. None of
them sees a # fraction of the complement. In the case
of Figure 4, however, a is always strictly greater than
zero regardless of the choice of 3, because those points
close to the narrow opening can see almost the whole
configuration space.

Figure 4: A space with small @ and 8. The free space
consists of two globes connected by a narrow opening. Most
points in .S can see little of of the complement of 5. A few
points close to the opening can see almost the whole space.

3 Analyzing Roadmaps in Expansive
Spaces

Our goal is to show that the connectivity of the
roadmap conforms to the connectivity of the free space
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with high probability. The precise statment is given in
Theorem 3.

We begin by defining the linking sequence of a point
p € F (see Figure 5).

Definition 2 The linking sequence of a point p € F is
a sequence of points py = p,pi,p2,... and a sequence
of sets Vo = V(po), V1, Vo,... C F such that for all
i > 1, p; € LookouT(Vi—y) and V; = Vi, UV(pi).

Note that the sets Vg, V1, Va, ... are completely deter-
mined by the sequence of points pg, p1,po, ..., and so
we will henceforth refer to just the sequence of points
Do, P1, P2, ... as a linking sequence for p.

The following two lemmas underscore the signifi-
cance of this definition. Lemma 1 shows that any set
of randomly-sampled milestones is fairly likely to con-
tain a linking sequence of a given length for any point
in the free space. Lernma 2 shows that the sets as-
sociated with a linking sequence of this length span a
large volume. The consequence is that the final sets
determined by long-enough linking sequences for any
two milestones p and ¢ must intersect, since their vol-
umes are large. In that case p and ¢ will be connected
by a path. This is a crucial observation which will be
used in Theorem 3 to estimate the probability that two
milestones in the roadmap are path-connected.

In both lemmas, we assume that C is (o, f,¢€)-
expansive.

Lemma 1 Suppose that a set M of n mulestones is
chosen independently and uniformly at random from
the free space F. Let s = 1/ac. Given any milestone
p € M, there exists a linking sequence in M (}f length
t for p with probability at least 1 — se=(n=t=1)/s
Proof. Let L; be the event that there exists a linking
sequence in M of length ¢ and L; be the event that
there does not exist such a sequence.

PI‘(L;') = Pr(fi lfz'—l) Pl‘(fi_l)
+PI‘(Z¢ I Lj._]_) PI‘(Li_l)
< PI‘(]Ti_l) + Pr(fi | Li—l)-

We would like to estimate Pr(L; | L;,—1). That is,
given that there exist py,pa,...,pi—1 € M forming a
linking sequence of length ¢ — 1, what is the proba-
bility that M contains no linking sequence of length
i for p? All we need is that M contains no point ly-
ing in LooKoUT(V;_1). Note that p,pi,pa,.-.,pi-1
are conditioned and we cannot expect them to lie in
LookouT(V;-1). However, the remaining n — ¢ points
in M are unconditioned and chosen uniformly and in-
dependently from F. Since V(p) = Vo C Vi1, we have
that
p(Vie) 2 p(V(p)) 2 €

by the first requirement in the definition of an (o, 3, €)-
expansive space F. Further, by the second part of the
definition, we obtain that

u(LookouT(Vi—1)) > a x pu(Vi—1) > ae =1/s.



It follows that the probability that M does not contain
a point in LooKoUT(V;-1) 1s at most

(1 . l/s)n——i S 6_(n—i)/5.
Hence we have
Pr(T:) < Pr(Lioy) + e~ (*=D/opm,

and

t

t—1
Pl‘(-L—t) < Ze—(n——i)/s — e—-(n—l)/s Zei/s
1=1 i=0
= ety
B ells —1°

Noting that e'/*—1 > 1/s, we obtain the desired bound
Pr(L,) < se(n=t=1)/s

That is, with probability at least 1 — se=(*=t=1/s g
contains a linking sequence of length ¢ for p. o
Lemma 2 Let v, = p(V;) denote the volume of the tth
set V; determined by a linking sequence po,p1,ps, .- .
for a point p € F', where F' is some connected com-

ponent of F. Then, fort > B 'lnd =~ 1.39/8,
v > Bu(F') /4.

Proof. Let us scale up all the volumes so that u(F’) =
1. Observe that since V; = V;_1 U V(p;), we obtain

(Vi) = plVieg) +p(V(pi) \ Vic1)
> p(Vier) + 8 x p(F '\ Viey).

The last inequality follows by the definition of an ex-
pansive space. Observing that u(F' \ Vi_1) = p(F') —
u(Vi-1) = 1 — w1, we have the recurrence

vi > vic1 + B(L—vi_1).

The solution to this recurrence turns out to be

i1
> (1= B vo+8Y (1= =1~ (1-8)(1- ).
Jj=0
Observing that vy > 0 and that (1 = 3) < e=# we
obtain \
vi > 1— e=P,
Clearly, for t > 37! 1n4, we have v; > 3/4. O

We are now ready to state our main result. It relates
the notion of a linking sequence to randomly-sampled
milestones. Suppose that a set S of milestones are sam-
pled from F. Let R be the roadmap graph obtained
by taking as vertices all the milestones in S, and intro-
ducing edges between any two milestones in S that can
see each other. Let M C S be a subset of milestones.
For each connected component F; in F, let M; C M
be the set of milestones belonging to F;, and R; be
the subgraph of R containing the set M; of vertices.
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Figure 5: Linking sequences for p and q.

Theorem 3 Let v be a constant in the open inter-
val (0,1). Suppose a set S of 2n milestones, for
n = [8In(8/eay)/ea + 3/8 + 2], is chosen indepen-
dently and uniformly at random from the free space
F. Then, with probability at least 1 — ~, each of the
roadmap graphs R; is a connected graph.

Proof. Suppose that we sample a total of 2n milestones
from F. Divide them into two sets, M and N, of n
milestones each.

It follows from Lemma 1 that any milestone m € M
has a linking sequence of length ¢ in M with prob-
ability at least 1 — se~(»~t=1/s  Consider any two
points p,q € M;. Let Vi(p) and V;(q) be the final
sets determined by the linking sequences of length ¢
for the two points. By Lemma 2, both sets have vol-
ume at least 3u(F;)/4 if we choose t = 1.5/8, and
hence they must have a non-empty intersection with
volume at least pu(F;)/2. We know that p(F;) > e,
because by the first condition in the definition of ex-
pansive spaces, the visibility region of any point in
F; must have volume at least ¢. Since the n mile-
stones in N are sampled independently at random, it
follows that there is a milestone z € N that lies in
the intersection (see Figure 5) with probability at least
L= (1= u(F)/2)" > 1= (1= /2 > 1 —emel?,
Note that both p and ¢ have a path to & consisting
of straight-line segments bending only at the linking
sequence points, which of course belong to the set of
milestones M;. This means that there is a path from p
and ¢ to z using only the edges of the roadmap graph
R;.
JLet B denote the event that p and ¢ fail to be
connected. We now calculate the probability Pr(B).
Event B occurs if the sets in the linking sequences of
p and ¢ do not intersect or no points of N lie in the
intersection. Hence, choosing n > 2t + 2 and recalling
that s = 1/we, we have

256——(n—t—1)/s + e—ne/Q

Pr(B) <
<

28€_n/25 _+_€—n/2s < 336—71/23.

The graph R; will fail to be a connected graph if any
pair of nodes p,q € M; fail to be connected. The
probability is at most

(g) 3se™ /%

(3) vt
—n/2s

1

In®se

IA



286——(71——43 Inn)/2s

IA A

-n/ds
2se ™"/ ,

where the last inequality follows from the observation
that n/2 > 4sinn for n > 8sln8s. Now if we further
require that n > 8s1n(8s/7), we have

95e~2 In(8s/~)

2s(v/8s)*
v.

2se /4

VAN VANR VAN

Clearly it is sufficient to choose n > 8sIn(8s/v) +
2t + 2 to get the desired bound. Substituting s = 1/cve
and t = 1.5/8 into the expression for n, the result
follows. ]

Note that as a, 8 and € get larger, the space be-
comes more expansive and the number of milestones
required decreases in inverse proportion; also, as the
failure probability v becomes smaller, n grows no faster
than In(1/%).

4 The New Planner

The key notion used in the above analysis is the linking
sequence of a point. If the visibility region associated
with the linking sequence of ¢,,;; intersects with that of
dgoal, then a path is found. This suggests a very simple
algorithm for single-query path planning problems in
expansive spaces: given two configurations ¢in: and
@g0a1, We sample at random from C, but retain only
those configurations path-connected to either s or
Jgoal- We thus build two trees rooted at ¢inie and ¢goal,
respectively. Each node in the tree represents a free
configuration that is path-connected to the root. These
two trees keep growing until the visibility region of one
tree intersects with that of the other. The visibility
region of a tree is defined as the union of the visibility
regions of its nodes.

Formally our algorithm iteratively executes two ba-
sic steps, erpansion and connection, until either a
path 1s found or the maximum number of iterations
is reached.

We assume that the configuration space is given im-
plicitly by a function, clearance:C — R, that maps
a configuration ¢ to the distance between the robot
placed at ¢ and the obstacles.

Expansion. We simultaneously build two trees
Tinit = (Vim'ts Einir and Tgoal = (Vgoaly Egoal- Since
these two operations are identical, we give a generic
description of the algorithm, which grows a tree T' =
(V, E) starting from a given configuration. We pick a
node z in the tree with probability 1/w(z) where w(z)
is the weight of . We then sample the neighborhood
of z uniformly at random and retain those configura-
tions that are most likely to contribute to the visibility
region. The details are given below.
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Algorithm ezpansion

1. Pick a node « from V with probability 1/w(z).

2. Sample K points from Ny(z) = {¢ € C |
dist.(q,z) < d}, where dist. is some distance
metric of C. (K and d are parameters.)

3. for each configuration y that has been picked do

4. calculate w(y) and retain y with probability
1/w(y).
5. if y is retained, clearance(y) > 0 and
link(z,y) returns YES
6. then put y in V and place a edge between
z and y.

In Step 5, link determines whether there is a straight-
line path between two configurations. Its implementa-~
tion will be discussed in Section 5.

We want to make sure that as the running time in-
creases, the set of nodes stored in Tini and Tyoq get
distributed rather uniformly over the connected com-
ponents that contain ¢n;; and ggoa respectively. To
achieve this, the definition of w(z) is essential. We de-
fine w(x) to be the number of sampled nodes in the tree
that lie in Ng(z). Intuitively this implies that regions
that contain few nodes will more likely be sampled. If
the space is expansive, then it may be argued that the
set of randomly sampled configurations quickly con-
verges to the uniform distribution.

Connection. We now have two trees, T}, and Tgoq.
In the connection step, the planner tries to establish a
path between ¢;n;; and ggo41.

Algorithm connection

1. for every x € Vini and y € Vyou do

2. if disty (z,y) <1 (I is a parameter.)
3. then link(z,y).

In Step 2, we try to limit the number of calls to link
by calculating the distance between x and y according
to another metric dist,(z,y) in C, because in most
spaces, two distant configurations are unlikely to see
each other.

If link returns YES for some @ and y, then a path
going through z and y is found between ¢;,,;; and ggoar.
The planner terminates successfully.

5 Implementation Details

We now discuss some implementation details of the
planner for a rigid-body robot translating and rotating
in 3-D workspace.

Parameterizing the configuration space. We
represent a configuration of a rigid-body robot by
a seven-tuple (qo,q1,---,q6) where (go,q1,92) speci-
fies the position of the robot and (¢s, ¢s,¢s,¢s) is a
unit quaternion specifying the orientation of the robot.
Compared to other representations, unit quaternion
best reveals the topology of the 3-D rotation space. Its
advantages include low memory usage and robustness



against floating point errors. Interpolating between
two quaternions is also very easy [18].

Distance between two configurations. We have
used two distance metrics in our algorithm, dist. and
dist,,. For dist,, we can simply treat C as the Carte-
sian space R’ and use either the Ls or Lo, metric so
that we can sample new configurations very efficiently.
We have to be more careful in defining dist,,, because
it must reflect the fact that two configurations that
are close under this metric are more likely to see each
other. We define dist,{p,q) to be the maximum dis-
tance traveled by any point on the robot when it moves
along a straight-line path between p and ¢. Computing
an upper bound of this metric is relatively fast.

Uni-directional versus bi-directional expansion.
The algorithm described in Section 4 grows two trees,
Tinit and Tyoq;, simultaneously. However, if the robot is
highly constrained around ¢;p;; and totally free to move
around ggoq, as in the case of assembly maintainability
problems, it will be much faster to build T}n;; only and
try to connect each node in Vi to ggoal-

Choosing d. The choice of d i1s important. If d is
set so large as to encompass the entire workspace, then
this new algorithm will suffer the same problem as the
roadmap planner. A lot of samples will fall into con-
nected components of C that are irrelevant to the cur-
rent query. On the other hand, if d is too small, most
samples will be in regions close to g;nit OF ggoar, mak-
ing it difficult to find a path between gini: and ggoar.
Generally speaking, the more constrained the space is,
the smaller d should be.

Choosing K. The algorithm is not very sensitive to
the choice of K. A small number such as 10 usually
works well.

Computing clearance. The function clearance is
called many times during planning. Tt can be imple-
mented in various ways. At one extreme, it can com-
pute the exact Euclidean distance between a robot and
obstacles, which is expensive. At the other extreme, it
can simply return YES or NO, in which case it becomes
a collision checker. There are many variations possible
in between the two extremes.

Collision checking is usually faster than distance
computation. It reduces the time spent for each call
to clearance. On the other hand, although distance
computation takes longer to execute, it provides more
information, which can be used to reduce the number
of calls to clearance. Our experience indicates that the
second approach works better. We will discuss this
further in the next paragraph. There is considerable
literature on collision checking and distance computa-
tion, notably, {6, 7, 16].

Checking straight-line connection. The function
link checks whether there is a straight-line path be-
tween two configurations p and ¢. Suppose that clear
ance computes the distance between a robot and ob-
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(g)

Figure 6: A computed example. The size of the square
obstacle is 128 x 128. The size of the holes is 30 x 30. (a)
and (g) shows the initial and goal configuration. (b)-(f) are
intermediate configurations along the path.

stacles. Let p and ¢ have clearance { and 7, respec-
tively. We say that p and ¢ are adjacent if dist,, (p, q) <
maz(¢,n). If p and g are adjacent, then the robot can
move between them along a straight-line path without
colliding with obstacles. Given p and g, link recursively
breaks the straight-line segment between p and ¢ into
shorter segments. It stops when the endpoints of each
segment are adjacent, or one of the endpoints is not in
the free space. In the first case, p and ¢ can see each
other. In the second case, they cannot. If we used
collision checking instead of distance computation, we
would have to continue breaking the segment until a
pre-specified resolution is reached. In general, this re-
sults in more calls to clearance and only guarantees
that p and ¢ can be connected by a straight-line path
up the resolution specified.

Termination condition. Since the planner will not
stop if no path exists, we must explicitly set the max-
imum number of expansion and connection steps to
be executed. Alternatively we can choose to terminate
the algorithm if the minimum weight over all the nodes
in the two trees exceeds a certain value, because this
indicates that we have sufficiently sampled the config-
uration space, but are still unable to find a path.

Path smoothing. Usually the path generated by
thie planner hag too many zig-zage, but it can be
smoothed by a simple algorithm [14, page 248].

6 Experimental Results

The planner is written in C++. Measurements re-
ported i this section are the average of five indepen-
dent runs for each problem. Unless noted otherwise,
running times were measured on a Silicon Graphics
Crimson workstation with one 100MHz MIPS R4000
processor and 256 MB of memory.



Figure 6 shows snapshots of a computed example.
The workspace is bounded by a box and contains only
one obstacle, which i1s a square with two holes. The
robot, which is an irregularly-shaped rigid-body bent
at several places, has to travel from under the obsta-
cle to above it. Since the square extends the full size
of the bounding box of the workspace, the robot can
achieve 1ts goal only by going through one of the holes.
We can infer that topologically, the free space F con-
sists of two regions connected by two narrow passages.
Table 1 shows the results for the problem with three
different hole sizes. Column 1 shows the size of holes.
In all three cases, the size of the square obstacle is
128 % 128. Column 2 and 3 show the number of tree
nodes and distance computations used, respectively.
Column 4 gives total running time!. As the hole size
gets smaller, the space becomes less expansive, and
the running time increases. In this particular example,
as the area of the hole decreases linearly, the number
of distance computations used increases at about the
same rate. The number of tree nodes needed and the
execution time increase at a slightly slower rate.

We have also tested this planner on assembly main-
tainability problems. The input to the planner is CAD
data describing an assembly of parts such as the one
shown in Figure 1. The environment usually consists
of tens of thousands of polygons and is very cluttered
due to designers’ desire to pack everything into lim-
ited space. The planner must determine whether there
exists a path to remove a gpecified part.

A typical problem that we have aitempted has
around 20,000 triangles and the planner can solve the
problem in about 4 to 10 minutes. Two examples®
are particularly interesting. In one case, we must take
out the oil pan under the engine without colliding with
the long protrusion underneath the engine and other
parts around the engine. In the other case, the electric
harness behind the dashboard must be removed. The
harness is a thin and long pipe-like object having three
branches. A slight change from its installed configura-
tion may result in one or more of its branches collid-
ing with parts nearby. Due to the special geometric
arrangement of these two assemblies, the parts to be
removed must execute complicated maneuvers in order
to clear all the obstacles. The planner solved the first
problem in 386 seconds and the second problem in 405
seconds. The number of distance computations used
are 4257 and 7822, respectively. The largest example
we have run contains 200,000 triangles. The objective
is to remove the casing of the transmission mechanism,
clearing the dashboard and shift stick. The planner
found a path in about 35 minutes.

Among the problems that we have worked on, there

I'These running times were obtained on a SGI Indigo 2 work-
station with a 200MHz MIPS R4400 processor and 128MB of
memory.

?Due to the proprietary nature of these data, we cannot show
images here.
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hole size | nodes | dist. comp. | exe. time (sec)
256 x 30 | 1213 23677 84.8
30x30 | 990 14490 55.6
40 x 30 | 688 10453 23.9

Table 1: Results for the problem shown in Figure 6.

is one case where the planner failed to find a path after
running for more than eight hours. We were unable to
determine whether a path actually exists or not.

7 Discussion

When there are narrow passages in the configuration
space, the parameters o, 8 and ¢ will be extremely
small. Our analysis suggests that the running time
of the planner will be significantly longer. However,
in some problems, the location of narrow passages is
obvious to the user. We can take advantage of this
and ask the user to input some intermediate points in
addition to g¢n;e and ggeq. That is, the user speci-
fies Ginit, 415 - -, Gn, 9goar. If the planner is successful in
finding a path between each pair of consecutive config-
urations, then of course a path is established between
¢init and ggoar. During our experiments, this simple
extension was able to solve some problems not solved
by the original algorithm and resulted in significant
reduction of execution time.

Again, the notion of expansive spaces helps to
cxplain the usefulness of this extension. By spec-
ifying the intermediate points, we effectively de-
compose F’, a connected component of the free
gpace, into a small number of expansive components
Ko, Kq,..., Ky, which can possibly be overlapping.
Let «;, B; and ¢; be the parameters that characterize
the expansiveness of K;. The parameters oy, 5; and ¢;
will be much larger than the corresponding parameters
of the original space, because each K; does not contain
passages that are very narrow with respect to its own
volume. See Figure 7 for an illustration. Our analysis
in Section 3 indicates that the running time should be
correspondingly shorter.

)
(> r:>

Figure 7: Expansive decomposition. By inserting ¢: and
q2, we effectively decompose the free space into three com-
ponents, each of which is expansive with large o, 4 and e.

.
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Note that this extension of the basic algorithm ig
different from cell decomposttion algorithms in litera-
ture. No explicit decornposition is computed here. It
also takes far fewer components to decompose the con-
figuration space into expansive cells than into convex



cells required by most of the cell decomposition algo-
rithms.

An open problem is, of course, to generate these in-
termediate points automatically. It would not only re-
lieve the user of the burden of specifying intermediate
points, but also help in situations where narrow pas-
sages are not obvious to the user. This problem may
not have an efficient general solution, but may be able
solvable in some specific planning environments.

8 Conclusion

We have introduced the notion of expansive configu-
ration spaces. In such a space, building a roadmap
via random sampling can effectively extract the con-
nectivity information of the configuration space. An
estimate is given for the number of milestones needed
to achieve this.

We have also presented a new randomized planner
for robots with many dofs. This planner grows two
trees rooted at the initial and goal configuration, re-
spectively, until the visibility region associated with
one tree intersects with that of the other. It is well-
suited for single-query path planning problems. We
have implemented this planner for a six-dof rigid-body
robot and successfully experimented with it on com-
plex problems, including real-life examples from the
automotive industry with environments having up to
200,000 triangles. The expansive property of the space
has helped to explain the success of this planner.

One direction of future research would be to inte-
grate the new planner with the roadmap planner [12]
for multiple-query path planning problems. Currently
the roadmap planner generates most of the milestones
by sampling uniformly at random from the configura-
tion space. Typically most of the configurations picked
(more than 99.5%) are in collision with obstacles [10]
and discarded. It would be highly desirable to sam-
ple collision-free configurations more efficiently. One
idea is to pick uniformly a small number of collision-
free configurations and use the new planner to expand
from these configurations in order to generate addi-
tional milestones.
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