A Terrain-Covering Algorithm for an AUV*

Susan Hert Sanjay Tiwari Vladimir Lumelsky

Robotics Laboratory
University of Wisconsin—-Madison
1513 University Ave.
Madison, WI 53706-1572

Abstract

An efficient, on-line terrain-covering algorithm is presented for a robot (AUV) moving in an
unknown three-dimensional underwater environment. Such an algorithm is necessary for produc-
ing mosaicked images of the ocean floor. The basis of this three-dimensional motion planning
algorithm is a new planar algorithm for nonsimply connected areas with boundaries of arbitrary
shape. We show that this algorithm generalizes naturally to complex three-dimensional environ-
ments in which the terrain to be covered is projectively planar. This planar algorithm represents
an improvement over previous algorithms because it results in a shorter path length for the robot
and does not assume a polygonal environment. The path length of our algorithm is shown to
be linear in the size of the area to be covered; the amount of memory required by the robot to
implement the algorithm is linear in the size of the description of the boundary of the area. An
example is provided that demonstrates the algorithm’s performance in a nonsimply connected,
nonplanar environment.

1 Introduction

We present an on-line terrain-covering algorithm for an autonomous underwater vehicle (AUV) mov-
ing in three dimensions in an unknown underwater environment. The goal is to generate an efficient
path for the robot that allows it to cover a given area in its entirety. The on-line nature of the
algorithm allows the AUV to explore and provide information about areas of the ocean floor where
the terrain is unknown. Such an algorithm may be used, for example, to create a mosaicked image of
the ocean floor. This is the context in which we present this algorithm. The algorithm was designed

with an emphasis on efficiency: not only does it guarantee that the entire area will be covered, but

*This work was supported in part by Sea Grant Program (National Oceanic and Atmospheric Administration, US
Dept. of Commerce) Grant NA46RG048, and the State of Wisconsin.

it ensures that no path segment will be traveled along many times, which is a serious consideration
in real-world applications; covering an area multiple times is generally seen as unnecessary and thus
a waste of effort.

The basis of our three-dimensional motion planning algorithm is a new planar terrain-covering
algorithm. To be able to generalize this planar algorithm directly to the three-dimensional environ-
ment, we require that the surface to be covered be such that any vertical line passing through the
surface intersects it at exactly one point. This assures that there is a one-to-one correspondence
between the points on the surface and those in its projection on the zy-plane. Thus, if the planar
algorithm generates a path that allows a robot to cover every point in a given planar area, a robot
following this path in a three-dimensional environment will also be able to cover every point on a
corresponding nonplanar surface. This obviously restricts the types of environments in which our
algorithm may be used (e.g., no caves are allowed in the environment).We discuss in Section 7 how
this constraint may be relaxed.

The robot’s sensors provide it with the information necessary to plan its path and maintain a
certain vertical distance from the floor. A system of navigation sensors such as an inertial navigation
system, a system of acoustic transponders, or a multisensor integrated navigational system, allows
the AUV to localize its position in space relative to a fixed coordinate system [Blidberg, 1995]. From
its known position in the environment, the robot must be able to detect and localize points on the
ocean floor, compute its distance from the floor and compute the slope of the floor in its vicinity. For
this purpose, high-resolution sonar and laser sensing may be used, as described, for example, in the
works of Henriksen [Henriksen, 1994], Burke and Rosenstrach [Burke, 1992], Gordon [Gordon, 1992],
and Rosenblum and Kamgar-Parsi [Rosenblum, 1992]. Though they must be considered in any
implementation of the algorithm, we do not address here the problems that arise due to noisy sensor
data.

For producing the mosaicked image of the ocean floor, the robot is equipped with a camera and
an internal stabilizer that keeps the camera pointing vertically downward, and the necessary lighting
equipment and control procedures [Chu, 1992]. Since a video mosaic provides a better comprehensive
picture of the ocean floor, a video or CCD camera is most appropriate. The robot must move over
the area of interest in such a way that its camera is able to take a picture of every part of the area.

Further, this must be done so there is sufficient overlap in the images to facilitate the creation of the

mosaicked image. Our algorithm is developed with these considerations in mind.

We do not address here the problem of creating the mosaicked image from its components. This
is addressed, for example, in [Marks, 1994] and [Haywood, 1986]. Both these works present methods
of creating mosaics automatically in real time, which is compatible with the on-line nature of our
algorithm. For example, in the work of Marks, et al. gaps between images are prevented by observing
and evaluating intermediate mosaic results. Since our algorithm is designed to work in real-time,
it would allow for such intermediate observation and for the consequent corrections that may be
necessary.

While other on-line terrain-covering algorithms for planar environments have been presented
in the literature, they either do not generalize well for use in nonpolygonal or three-dimensional
environments or are not efficient enough for practical use. OQommen, et al. [Oommen, 1987] present
an algorithm for covering an unknown planar terrain populated with convex polygonal obstacles;
the algorithm is based on an incremental acquisition of the visibility graph of the terrain. Rao
and lyengar [Rao, 1990] extend this method to terrains containing nonconvex polygonal obstacles.
Neither of these methods is particularly well suited for use in an underwater environment, where
boundaries are anything but polygonal and approximation techniques cannot be reasonably applied.
Lumelsky, et al. [Lumelsky, 1990] present a planar terrain-covering algorithm for an environment with
arbitrarily shaped planar obstacles. Our algorithm, which also allows arbitrarily shaped boundaries,
though under a slightly different model, represents an improvement over this method — its upper
bound on the path length of the robot is significantly better. Also, unlike the other works, we provide
a bound on the amount of memory required by the robot to implement the algorithm. This bound
is linear in the size of the boundary description.

The planar terrain-covering algorithm we present may be used for simply and nonsimply con-
nected environments. The simplicity of the algorithm lies in its recursive nature. A robot following
this algorithm will zigzag along parallel straight lines to cover a given area. Portions of the area that
either would not be covered or would be covered twice using the zigzag procedure are detected by
the robot and covered using the same procedure. These smaller areas (inlets) may, in turn, contain
other areas that are treated in the same way. By covering each inlet as soon as it is detected, they
are covered in a depth-first order.

The spacing of the parallel lines in the zigzag pattern is determined by the robot’s camera image

width. The shape of the boundary relative to these lines is what gives rise to inlets. Assumptions
we make about the sensing capabilities of the robot and the spacing of the parallel lines ensure that
every inlet may be detected. The algorithm causes each inlet to be covered exactly once.

The only special procedures necessary for efficiently covering the inlets (which we call diversion
inlets) that would not be covered or would be covered more than once as the robot zigzags are those
for entering and exiting them. The robot enters a diversion inlet by moving along its boundary. After
covering a given diversion inlet, the robot exits it by resuming its path of travel as if the diversion
inlet did not exist. The algorithm requires that the robot remember the location of every inlet it
covers. This assures that after a diversion inlet is detected it will be covered only once. When the
area to be covered is not simply connected and contains islands as well as inlets, the same basic
procedures are used with only minor modifications to ensure that the area surrounding every island
is covered. By remembering certain points along its path, the robot is able to convert the part of the
area around each island that would normally not be covered into an artificial inlet. Artificial inlets
are covered in the same way that real diversion inlets are covered.

Section 2 presents the assumed models of the robot, the three-dimensional environment and
its planar counterpart. Though formulated for a point robot, our algorithm may be easily ex-
tended for use by a robot modeled as a circle (in two dimensions) or a sphere (in three dimen-
sions) [Choi, 1995], using the standard technique of growing the boundary of the area by the radius
of the robot [Lozano-Pérez, 1983]. The algorithm for a planar region is developed and described in
Section 3. Section 4 discusses the generalization of the planar algorithm to the three-dimensional
environment. In Section 5, the complexity of the algorithm is presented. The correctness of the
algorithm is discussed in Section 6, followed by an example of the algorithm’s performance in Sec-
tion 7. A discussion of the generalization to more complex nonplanar environments is also given in

this section.

2 The Model

The robot is a point moving in three dimensions. A fixed orthogonal coordinate system X = (z,y, 2)
is chosen with its origin at the robot’s starting point S and z axis passing through the earth’s center.
The robot is equipped with sensors and a camera. The sensors allow the robot to determine its

own coordinates relative to X and those of any point detected in its sensing region. The sensing

h2

Sensing Region
["SensedArea T <
Inside sensing region
but not sensed.
h2 b
l \ \ Image Pyramid

Imaged Area

Figure 1: For a robot at position R, its sensing region is a rectangular polyhedron of dimensions
I x w x h with the robot at its center. The sensed area is portion of the intersection of the sensing
region an the ocean floor for which a straight line from R to any point in the region does not intersect
the floor at any other point. The imaged area is the intersection of the image pyramid and the sensed
area.

region is a rectangular polyhedron of dimensions [x w x h (length x width x height), with the robot at
its center. These dimensions are chosen such that, from a vertical distance of h/2 from a horizontal
plane, the robot’s camera will take a picture of a rectangle on the plane of dimensions [x w. The
value h/2 is determined by the focal length of the robot’s camera. The sensors also allow the robot
to determine the slope of the floor within its sensing region, which enables it to maintain the vertical
distance of h/2 from the floor.

The sensed area is the portion of the ocean floor that the robot can sense from a particular
position R. This area is, in general, different from the intersection of the ocean floor with the sensing
region. Rather, it consists of all points p on the floor that are in the sensing region and for which a
line segment pR does not intersect the surface at any other point (Figure 1).

We assume that the robot’s camera always points down and the robot continually records the
images from the camera as it moves along its path. A surface or area has been covered if the robot
has taken a picture of every (visible) part of it. The imaged area is the portion of the ocean floor of
which the robot takes a picture from a particular position R. This will be some subset of the sensed
area. In particular, it is the portion of the sensed area that lies within the image pyramid. This

pyramid has its apex at R in the center of the sensing region and base equal to the bottom of the

@ (b)

Figure 2: (a) The area shown is not projectively planar since the vertical line V' intersects the surface
at three points: (1, Q2, and Q3. (b) This area is projectively planar — no vertical line will intersect
the surface in more than one point.

sensing region (a rectangle of dimensions [x w) (Figure 1).

The nonplanar surface (area) to be covered, A, is a vertically projectively planar surface. That is,
a vertical line passing through any point p on the surface A intersects it at only one point (Figure 2).
Other than this, A may be of arbitrary shape. In particular, it need not be simply connected; it may
contain islands, or holes, of arbitrary shape (Figure 3). It is assumed that from the robot’s starting
point S it is able to sense some portion of the area A.

We assume that area A is bounded between two threshold surfaces, z = zmin and 2z = Zmax.'
Portions of the floor below zyi, or above zpyay are not to be covered (Figure 3). The area is also
bounded by a threshold slope, p. Portions of the floor where the slope is greater than p are not to be
covered. This threshold slope is inversely proportional to the image width w and is chosen to assure
adequate overlap of the images. The range of possible values for p is limited by the robot’s camera

parameters. In particular, if the focal range of the robot’s camera is [a, b], then g must be chosen to

satisfy the relation:

p < min(h/3w, (b—a)/(w/2))

"More generally, these surfaces may be represented as z = Amin (:4:7 y) and z = hmax(avs7 y:)7 where Amin and hmax are
arbitrary functions of z and y. For simplicity of explanation, we assume these functions are constant, i.e., the surfaces
are horizontal planes.

Generic Section

A L\ -
Py N Ps
P Py
Py /\ Generic Section

Z min

PR Py Py [Ps

Figure 3: (a) The robot will cover area A with boundary B. B is determined by the intersections of
the floor with the planes z = zyi, and z = zyax and the curves along the floor where the slope = p.
(b) A vertical cross section in the plane y = yo of the area of shown in (a). The threshold surfaces
Z = Zmax and z = zmin appear here as line segments. Points Py, P, and P5 are points where the

slope of the surface exceeds the threshold slope y. These points belong to the boundary B of A. (c)
Area A projected onto the xy-plane.

// TN
B
12 1\\
Wi A\
Ap \
|
Cy B\mf
/_4‘\\ b
\ y/
=K /
| /
/ /
T B2
2 y
S St
D~ 0 4
L L L L L L

Figure 4: In the planar area A, with planar boundary B,, the chosen coordinate system at the
projected starting point S, is shown. The grid lines L_s, ..., L3 are each at distance w/2 from the
adjacent lines. The boundary section x between grid lines L_y and Lqg with endpoints Cy and Cy is
a cape. The boundary section 3 between lines Lo and L3 and between points By and By is a bay;
there are two other unlabeled bays between L_4 and L_3 with endpoints on grid line L_5.

This assures that images of adjacent portions of the surface will overlap to some extent and every
part of the surface that is to be imaged lies within the camera’s focal range.

The boundary B of the area A consists of a number of simple, nonintersecting closed curves.
These are the intersections of the floor with the threshold surfaces and the curves along the floor
where the slope is equal to p (Figure 3). The robot detects the boundary by analyzing its sensor
readings (Section 4.2).

The planar area A, and planar boundary B, are defined as the projections of the area A and
boundary B on the zy-plane (i.e, plane z = 0). The outer boundary is the boundary curve that
contains all other boundary curves in its interior (Figure 3(c)). A grid plane P; is a vertical plane
defined by the equation z = iw/2 for some integer ¢ and sensing width w. A grid line L; is the
intersection of the grid plane P, and the zy-plane (i.e, a line in the zy-plane defined by the equation
z = tw/2, for some integer ¢ and sensing width w). This definition assures that, from a position on
grid line L;, the robot is able to sense everything between the two flanking grid lines L;_; and L;44
(Figure 4). It is assumed that every point on B, may be sensed from at least one grid line and that
the area A, is connected. Further, we assume that any straight line intersects B, in at most a finite
number of points. That the robot is able to detect a portion of A from the starting point S implies

that the projected starting point, S,, lies in the interior of A4,.

.
island cape
island cape

>/

Figure 5: The two island capes are (C1,C3) and (C's,C4). The island cape points are Cy,Cy,C3, and
Cy.

4
L |

)

A
\

Certain sections of the boundary B, called capes and bays, are of interest in characterizing its
shape relative to the chosen coordinate system. These terms are defined using the planar area A,
and its boundary B,. When viewed from the interior of 4,, capes appear as convexities and bays
as concavities. More precisely, a cape K = (Cy,(3) is a continuous portion of B, lying between
two consecutive grid lines, with endpoints €7 and C5 on the same grid line, such that points on
the line segment C7Cy in the neighborhood of each endpoint lie in the exterior of A, (Figure 4).
The endpoints Cy and C; of a cape k are referred to as cape points. A bay § = (B, B) is defined
similarly, with the difference that points in the neighborhood of the endpoints of BB, lie in the
interior of \A,. The points By and B, are referred to as bay points. Note that the outer boundary
of every area contains at least two bays. Also, the boundary of every island that crosses a grid line
contains at least two capes, one at each horizontal extreme. These capes are called island capes. The
four endpoints of the island capes are island cape points (Figure 5).

Every cape that is not an island cape gives rise to one or two inlets. An inlet is a portion of
the area .4, bounded by a grid line segment and an inlet boundary. In general, the inlet boundaries
associated with a cape k = (Cy,C4) are defined as follows. Assume the cape points Cy and Cy lie on
grid line L;. Let X; and X5 be the two intersections of L; and the boundary curve containing s on
either side of the cape points, with X; closer to C; than to C (Figure 6). For the cape &, the inlets’
boundaries are the boundary sections By = (Cy, X1) and By = (C3, X3) that do not include the cape

k. Note that By and By may cross any number of grid lines and may contain the boundaries of

@ (b)

Figure 6: (a) For cape k, there are two inlets 7, and Z,, with boundaries By and By. The cape points
C'1 and Cy are the entrance and exit points of inlets 7 and Z,, respectively. Points Xy and Xy are
the inlets’ exit points. The line segments 7, X1, and 7, Xz, are the inlet doorways. (b) For cape
Kk on the island, there is only one associated inlet, T.

Figure 7: The boundary of inlet T (E7X1) contains two bays, f7 and (1. Bay 37 is the inlet bay
for T since ff7; is on the boundary of inlet Z', contained in Z. Bay (1 is the inlet bay for T'.

10

SO | S,

B N G SN

@ (b)

Figure 8: (a) By starting at point S, and simply zigzagging along the grid lines, the robot produces
the path shown here (dashed line) that covers the entire area. (b) When there are inlets, the situation
is more complex. When the robot simply zigzags, inlet 1, is never covered. Inlet T must be covered
twice in order for the robot to reach inlet Zs.

other inlets (subinlets) (Figure 7). Note also that capes on island boundaries may give rise to only a
single inlet (Figure 6(b)). In each case, C; is the inlet entrance point and X; is the inlet exit point.
For inlet 7 these are denoted F7 and X7, respectively. The line segment E7X7 is the inlet doorway.
The robot may lock an inlet doorway by remembering its endpoints. A doorway is unlocked when
the robot removes the endpoints of this line segment from its memory. Associated with each inlet
7 is its inlet bay, f7. Each inlet’s boundary contains at least one bay; if 7 contains subinlets, its
boundary will contain more than one bay. Generally, bay 37 is the bay on the boundary of inlet Z
that is not part of any subinlet’s boundary (Figure 7).

Given this model, the task is to generate a path for a robot starting at point S that causes it
to cover the entire area A in an efficient manner. We first develop in Section 3 a terrain-covering
algorithm for a planar area .4, with boundary B,. This is then generalized in Section 4 to the

projectively planar surface A and boundary B.

11

3 The Planar Algorithm

Key to our terrain-covering algorithm is a simple zigzagging pattern of motion in which the robot
moves back and forth along successive grid lines, sweeping across an area from either left to right or
right to left. Figure 8(a) shows the path of a robot moving in this fashion in a simply connected area,
the boundary of which contains only two bays and no capes. By starting at one of the bay points
on the boundary B, and zigzagging until it encounters the other bay, the robot is able to cover the
entire area.

However, as Figure 8(b) illustrates, this simple zigzagging motion will not suffice to cover areas
with boundaries that contain capes, nor will it work when the area is not simply connected or when
the starting point is chosen arbitrarily. The inlet labeled Z; in Figure 8(b) is never encountered
by the robot as it zigzags along the grid lines, and thus remains uncovered. In contrast, the robot
must retravel its path in inlet Zy in order to reach the inlet I5. Inlets such as Z; and Z, are referred
to as diversion inlets, or simply D-inlets, since they require that the robot divert from its normal
zigzagging motion in order to cover them efficiently.

Given the assumed range of the robot’s sensors relative to the spacing of the grid lines, it will be
able to detect the presence of all cape points, and thus the presence of all inlets that it will not cover.
Therefore, one simple way to cause the entire area to be covered is to have the robot remember the
locations of the inlets it notices but does not cover and, after covering the rest of the area A, return
to these inlets and cover them. However, this backtracking is both undesirable and unnecessary.
Since the robot can notice each inlet as it is moving, it can immediately make a diversion from its
path to cover this inlet and then return to the point at which the diversion was made and continue
on its merry way. In this way, the entire area will be covered without any extensive backtracking.
This is the strategy of the algorithm presented here. Further, the procedures presented assure that
every inlet is covered only once.

By not assuming a polygonal environment for our algorithm, we have differentiated this work
from most on-line terrain-covering algorithms presented in the literature. The exception is the Seed
Spreader algorithm presented in [Lumelsky, 1990], which also assumes arbitrarily shaped boundaries.
The Seed Spreader algorithm also dictates that a robot zigzag along grid lines to cover a given area,
making diversions to cover obstacles (islands and inlets) it encounters along the way. The algorithm

we present here differs from the Seed Spreader algorithm in the following significant ways. It is

12

Figure 9: The area A, is divided into two smaller areas A; and Ay by the placement of the point
Sp. The line segment ().S, is the boundary between A; and Aj.

assumed in [Lumelsky, 1990] that there is a known rectangular boundary around the area to be
covered. Obstacles may cross this boundary, thus making it irregularly shaped. However, there is
a distinction made between the outer, polygonal boundary and the boundaries of the nonpolygonal
obstacles; they are treated differently in the algorithm with the result that the outer boundary
is traveled along at most once and the boundaries of obstacles (especially those that cross many
grid lines) may be traveled along many times. We make no such assumption or distinction in this
algorithm, which results in a statement of the algorithm with fewer special cases and a shorter path
length for the robot in the worst case. It should be noted that the Seed Spreader algorithm is designed
to handle environments in which there are portions of the boundary that are not visible from any grid
line segment. The algorithm presented here assumes there are no such boundary sections. In this
sense, the Seed Spreader algorithm may be said to be more general than our algorithm. However,
this algorithm is not as easily implementable since it is not explicitly stated in [Lumelsky, 1990] what
points must be remembered by the robot for proper execution of the algorithm or how obstacles or
occlusions are detected by the robot. These are issues we address in this paper. The detection
problems become more complicated when occluded boundary sections are allowed and have thus not

yet been addressed.

13

Since we make no assumptions about the location of the starting point of the robot relative to
the boundary of the area A, (other than that it is somewhere in the interior of A,), the starting
point may be seen to divide A, into two areas .A; and Ay, as shown in the example in Figure 9. The
boundary between .A; and A, is dependent upon the placement of S, and the shape of the boundary.
It represents the limit of the area covered by the robot when it moves in either direction along
the grid line Ly away from S, and follows the algorithm presented here. In general, this boundary
consists of a number of grid line segments and boundary segments. It arises as an artifact of the
algorithm and is never calculated by the robot. Since the robot uses the same algorithm to cover Ay
and Aj, it is guaranteed that the entire area A, may be covered by a robot starting at .S, using the

following three steps:

1. Cover the area Ajy;
2. Return to Sp;
3. Cover the area As.

The following sections describe the procedures required for these steps. Sections 3.1 and 3.2
explain, respectively, the procedures for covering simply connected and nonsimply connected areas.

Section 3.3 explains the procedure for returning to the starting point S,.

3.1 Covering a Simply Connected Area

To guarantee that a given area will be covered in its entirety, procedures are needed for detecting and
covering inlets that arise due to capes along the boundary. The robot must also be able to distinguish
between the inlets that it would normally cover only once and those that it either would not cover
or would cover twice (i.e., between nondiversion and diversion inlets). Since parts of the area that
are not inlets will be covered as the robot simply zigzags along the grid lines, these procedures are
sufficient to guarantee that the entire area is covered. Here we present such procedures.

Diversion inlets are covered as they are encountered, in a last-in-first-out manner, following the
same procedures for each. Though these inlets could be covered by a robot zigzagging from the
doorway toward the inlet bay, we choose to have the robot first move along the boundary of the
inlet until it encounters the inlet bay and then zigzag back toward the doorway. This makes the

procedures generalize easily for covering nonsimply connected areas.

14

The procedures presented here assure that each inlet is covered only once and that, after a D-inlet
has been covered, the robot will continue on as if it had not encountered the inlet. It locks every
D-inlet after covering it and, upon encountering the inlet doorway again, treats the locked doorway
as if it were a piece of the boundary and not a doorway. In other words, it does not reenter the inlet.

The boundaries of each of areas A; and Aj; contain exactly one more bay than cape (Section 6).
Every bay for which there is an associated cape is part of a D-inlet boundary; the remaining bay is
not. Traveling along a bay causes the robot to reverse its = direction of motion. Inside a D-inlet,
this is an indication that the robot should begin zigzagging back toward the doorway; outside a
D-inlet, this is an indication that the robot should stop zigzagging since the entire area will have
been covered.

The main procedure of our algorithm, Cover Area, which causes the robot to zigzag along the
grid lines and cover D-inlets as it encounters them, is shown in Figure 10. The steps in this procedure
for detecting, covering, and exiting D-inlets are explained in the following sections. Section 3.1.1
describes the means of detecting a D-inlet. The procedure for covering a D-inlet, C'over DInlet,
is shown in Figure 15 and described in Section 3.1.2. The means of detecting that the robot has
traveled along a bay or encountered a D-inlet doorway are described in Sections 3.1.3 and 3.1.4,
respectively. Section 3.1.5 describes the procedure EzitDInlet, which is shown in Figure 18. (The
call to the procedure FxzitDInlet and the other steps for exiting an inlet appear in the procedure

CoverArea since Cover DInlet calls CoverArea.)

3.1.1 Detecting a D-inlet Entrance Point

Since every inlet arises due to a cape, the robot detects a D-inlet entrance point by noticing a cape
and deciding, based on the manner in which it is moving at the time, which cape point is the entrance
point of the inlet it would not cover or would cover twice. A cape may be detected in one of two
ways: the robot will either move along the cape while following the boundary or it will notice the
cape points in its sensing region.

While moving along the boundary, the robot may detect that it has traveled along a cape as
follows. Assume that, while traveling along grid line L;, the robot encounters the boundary at a
point Cy. If it then moves along the boundary to a point C5, which is also on L;, and any movement

along L; from (5 toward C; would cause the robot to move into the exterior of A,, then it has

15

Input:
MoveDir : direction to move along current grid line,
either yT or y~, for the positive or negative y direction
TurnDsir : direction to turn when boundary is encountered, either Le ft or Right
t : the current grid line index
7 : inlet robot is currently inside (NULL if robot is not inside an inlet)

procedure CoverArea
{
Done + False;
while not Done do
{
do
Move along L; in direction MoveDir;
if a D-inlet entrance point is detected then C'over DInlet();
until boundary is hit or S, is reached;
if robot at S, then
Done < True;
else
Turn in direction TurnDir;
do
Move along boundary;
if a D-inlet entrance point is detected then C'over DInlet();
until reach L; for some j;
if at the doorway of inlet Z then
EzitDInlet(Z);
Lock doorway of inlet Z;
Unlock doorways of inlets contained in Z;
Done + True;
else if the robot moved along a bay then
Done + True;
else
i
MoveDir < Opposite(MoveDir);
TurnDir < Opposite(TurnDir);

Figure 10: The procedure for covering an area.

16

| sensing
¢ region

Rt~

@ (b)

Figure 11: (a) When the robot arrives at the point Cy on L; and cannot move toward C; along L;
without crossing the boundary B, this means that it has traveled along a cape. (b) From its position
on grid line L;1q, the robot is able to sense the cape point Cy on grid line L; as the endpoint of a
boundary section on the left side of its sensing region.

moved along a cape; Cy and Cy are cape points, and Cy is a D-inlet entrance point (Figure 11(a)).
Note that the impossibility of the movement from Cy toward C in the interior of A, requires no
movement by the robot; it can be determined with the robot’s sensors.

Cape points may be detected by the robot’s sensors as the endpoints of boundary segments in the
sensing region. These endpoints appear on either the left or right side of the region (Figure 11(b)).
When the first cape point is sensed, the robot remembers it but takes no action until the second
cape point is sensed. At that time, the robot decides which of the cape points is the D-inlet entrance
point F7, depending on its direction of motion and whether it is already inside a D-inlet or not.

When the robot is not inside a D-inlet, every cape it detects within its sensing region gives rise
to an inlet that it would not encounter by simply zigzagging along the grid lines. That is, one of
the cape points would not be visited. This cape point is the D-inlet entrance point Fz. Specifically,
assume that the robot will move from grid line L; to L;1+q. If the cape lies between L; and L;4; with
cape points on L;4q then F7 is the first cape point detected. If the cape lies between L; and L;_4

with cape points on L;_1, Fz is the second cape point detected (Figure 12).

17

Figure 12: While not inside another D-inlet and moving from L; to L;+q, the robot detects a cape.
The path shown is the one the robot would follow without the diversion to cover the inlet. (a) If the
cape points are on grid line L;1q, cape point Cy would not normally be encountered by the robot.

Thus Ez = Cy. (b) If the cape points are on grid line L;_q, cape point Cy will have already been
visited and Cy will be missed. In this case, F'1 = (.

Figure 13: While covering the inlet Z, the robot detects the cape (C1C3) with endpoints on the

previous grid line. Cape point Cy has already been visited. Thus, Cy is the entrance point for
D-inlet T'.

18

€) (b)

Figure 14: A D-inlet T that contains another D-inlet 7' is shown. In each case, if the robot moved
along the boundary of inlet T from Et1 to X7, it would move in the counterclockwise direction and
encounter cape point Cy before Cy. Therefore C; = Ez (a) The robot is moving in the y* direction
along L;11 when the cape points are detected; C is the second cape point sensed. (b) The robot is
moving in the y~ direction along L;11 when the cape points are detected; 'y is the first cape point
sensed.

19

When the robot is inside a D-inlet 7 and detects cape points within its sensing region, it will
generally be traveling from the inlet bay back toward the inlet doorway. Therefore, a pair of cape
points that appear on the previous grid line indicates the presence of a D-inlet Z’ that would not
normally be covered. In this case, the entrance point for the subinlet Z’ is the cape point that the
robot has not already visited. This is the second cape point sensed (Figure 13). For cape points that
appear on the next grid line, we designate that F7/ is the cape point that the robot would encounter
first if it were simply following the boundary of the containing inlet Z from E7 to X7. This ensures
that the robot will not reach the doorway of inlet 7 before covering all its subinlets. To determine
which cape point is the D-inlet entrance point in this case, it is necessary for the robot to determine
the general direction of motion (clockwise or counterclockwise) along the inlet boundary from E7 to
X7. This is easily determined when the robot enters the inlet Z. If the direction is counterclockwise,
as in Figure 14, then if the robot is moving in the positive y direction (y), the entrance point is the
second cape point detected; if the robot is moving in the negative y direction (y~), the entrance point
is the first cape point detected. When the robot is moving clockwise from E7 to X7, the situations
are reversed: If the robot is moving in the yT direction, the entrance point is the first cape point;

for motion in the y~ direction, the entrance point is the second point detected.

3.1.2 Covering an Inlet

When a D-inlet entrance point E7 that is not part of a locked doorway is detected, the robot
remembers F7 (so it can know when it has returned to the doorway of this inlet (Section 3.1.4),
immediately moves to it (if it is not already there), and begins to cover the inlet. D-inlets are
covered using the C'over Area procedure, after the robot has moved along the boundary of the inlet
to the inlet bay (Section 3.1.3). It covers any other D-inlets it encounters in the process in the same

way, in a last-in-first-out order. The procedure for covering D-inlets is shown in Figure 15.

3.1.3 Detecting a Bay

To recognize that an entire area has been covered and to properly cover any D-inlet, the robot must
be able to detect when it has traveled along a bay on the boundary. This requires that the robot
remember at all times the last encountered point of intersection of a grid line and the boundary. Let

L; be the grid line and ¢); the point of intersection. If the robot follows the boundary and arrives at

20

Input:
Z: the inlet to be covered;

procedure CoverDInlet
{
Move to F7t;
Store F7;
do
Move along boundary;
if a D-inlet entrance point is detected then
CoverDInlet();
until robot has moved along a bay;

CoverArea();

Figure 15: The procedure for entering and covering a D-inlet in a simply connected area.

a second point ()9 on L; without crossing any other grid lines, and if it is possible to move from ()5
toward (); along L; and still remain in the interior of A,, then the boundary section traveled along
from (1 to Q2 is a bay. Note that it is not necessary for the robot actually to move toward (J¢; the

possibility of this motion can be detected using its sensors.

3.1.4 Detecting a D-Inlet Doorway

After covering a D-inlet Z, the robot must know when it has arrived back at the inlet’s doorway. It
may arrive there at either endpoint, F7 or X7. When it enters the inlet, the robot stores Fz in its
memory and can thus easily recognize if it revisits this point. To detect that it has arrived at the exit
point X7, the robot must simply recognize that it has exited all D-inlets encountered after entering

inlet Z and has followed the boundary to a point on the entrance point’s grid line (Figure 16).

3.1.5 Exiting a D-Inlet

Upon reaching a D-inlet doorway, either at the entrance point F7 or at the exit point Xz, to ensure
that the doorway has been covered, the robot moves along it to the other endpoint. Then the robot
must resume moving as if it had never entered the D-inlet. If the robot moved along a cape to F7,

then, after covering the inlet doorway, it simply continues on as if it had not yet reached a grid line.

21

Figure 16: When the robot arrives at each of the points ()1 and (), which are on the same grid

line as Er, it will know it is not at the doorway of inlet 7 since these points are on the boundary of
subinlet 7.

@ (b)

Figure 17: (a) The robot moved along cape r to enter D-inlet Z. When it arrives at Xz, it moves
along the doorway to F7 and then continues as if it had not entered 7, by moving back to X7 and
along the boundary toward L;+1. (b) At point R, the robot detects the D-inlet entrance point Fz
and moves to it. Upon arrival at point Xz, the robot moves along the doorway to F1 and from there

back to R.

22

Input:
Z: the inlet the robot is exiting

procedure EzitDInlet

{

Move along doorway;

if the robot did not move along a cape to enter 7 then
Move to F'r;
Move back to point from which F7 was detected;

Figure 18: The procedure for exiting an inlet.

That is, it continues to follow the boundary, designating the doorway of the inlet as a portion of the
boundary (Figure 17(a)). If the robot entered the D-inlet because it detected Ez with its sensors,
then when exiting it moves to Fr after covering the doorway, and from there back to the point at
which it detected E7 (Figure 17(b)). This exiting procedure is summarized in Figure 18.

When the robot exits a D-inlet Z, it locks the doorway to prevent itself from reentering this
inlet. The locked doorways of the subinlets within 7 can be unlocked since no locked inlets are ever

reentered and thus the subinlets will never be encountered again.

3.2 Covering a Nonsimply Connected Area

When the area A, contains islands that are not completely contained between successive grid lines,
the procedures outlined in Section 3.1 are not sufficient. To see why, note that, unlike the capes on
other portions of the boundary, island capes have no associated bays (just as the outer boundary
has two bays with no associated capes) (Figure 5). When the robot detects one of the island capes
while following the procedures in Section 3.1, it will move to one of the island cape points as if it
has encountered a D-inlet. It will then follow the boundary of the island in search of a bay, covering
other D-inlets as it encounters them. However, since neither island cape has a bay associated with
it, the robot will never stop following the island boundary. For example, in Figure 5, if the robot
starts at the point S, and moves in the y™ direction, it will detect the island cape (C4,C3) and move
to C'7 as if it were entering a D-inlet. It will then follow the boundary indefinitely. What is needed,

then, is the ability to recognize islands and to cover the area around them efficiently

23

unl C}cked 5/ - ~

Figure 19: The robot moves along the island cape to point F and begins to follow the boundary as
if entering a D-inlet. After moving along bay (3, the robot assumes it has encountered the inlet bay
associated with the entrance point F. It zigzags along the grid lines until it travels along the cape
k, and begins to follow the island boundary again. When the robot arrives back at point F, it will
have traveled along three capes and only one bay. It may therefore conclude that it has encountered
an island. At this point, it recognizes that [is actually the inlet bay associated with cape k, the
next cape traveled along after 3. However, the doorway to this inlet is still unlocked, so the robot
locks it and then proceeds to cover the area around the island.

The procedures presented in this section allow the robot to detect islands and to make note of

the island cape points so it may properly cover the area surrounding the islands.

3.2.1 Detecting an Island

The robot can detect that it has encountered an island instead of an inlet in one of two ways: it
may make a full circuit of the island boundary and arrive back at a presumed inlet entrance point F
after moving along some number of capes and a fewer number of bays (Figure 19); or it may arrive
back at the starting point S, before traveling along a bay that is not inside a D-inlet (Figure 20). In
either case, it will have already covered all inlets created by the island boundary. It may be that not
all of these inlets” doorways are locked, though, as shown in Figures 19 and 20. Therefore, before
proceeding to cover the area around the island, the robot must lock these doorways. Each doorway
will have been remembered as the grid line segment traveled along immediately prior to moving along
a cape.

If the robot locks the doorway of an inlet containing the starting point S, it is prevented from

returning to S, after covering the area A; (Section 3.3). Therefore, it updates the location of S,

24

=

...................x................... .
Ry

unlocked doorway

AN

REE LT

Figure 20: Starting at point S,, the robot zigzags along the grid lines until it encounters the entrance
point Fz forinlet Z. It will then cover inlet T and, after locking its doorway F'z X1 (bold line segment)
will continue to zigzag. At point R it will notice the cape point F. It will then begin to follow the
boundary of the island. When it arrives at the bay (3, it will again begin to zigzag until it returns
to S,. At this point it knows that it has encountered an island and that S, is contained in one of
the inlets created by the island’s boundary. The grid line segment Q1Q), traveled along immediately
prior to traveling along the cape k is considered an unlocked inlet doorway. By locking that doorway,
the robot is prevented from returning to S,. Therefore, S, is modified to be the point E = Szlﬂ‘

25

to S’

»y Where S}’9 is the inlet entrance point associated with the first cape the robot encountered for

which there was no associated locked doorway when the robot returned to S, (Figure 20).

When the robot detects that it has encountered an island, it makes note of the endpoints of capes
on the island boundary for which there are no associated locked doorways (and thus no associated
bays). These are the island cape points.

Using one of the island cape points as an artificial bay point, the robot creates an artificial bay.
This bay is to be associated with the other island cape, thus creating an artificial inlet. An artificial
bay is a section of a grid line lying in the interior of .4, and between two consecutive boundary
intersection points, which the robot treats like a D-inlet bay. That is, after traveling along it, the
robot may then begin to zigzag along the grid lines and cover the artificial D-inlet. The robot creates

an artificial bay by noticing that it has revisited one of the island cape points, as explained below.

3.2.2 Covering the Area around an Island

By creating artificial D-inlets with artificial bays, the area surrounding an island may be covered in
exactly the same way that D-inlets are covered. The only difficulty that arises is deciding which of the
four island cape points is to be the artificial D-inlet’s entrance point and which is to be the artificial
bay point. Generally, the entrance point will be the first of the island’s cape points encountered after
detecting the island; the artificial bay point will be the first island cape point encountered after the
entrance point.

Assume the robot detects the island by making a full circuit of its boundary and returning to the
cape point F. If Fis one of the island cape points, it is designated as the artificial inlet entrance point.
After returning to F and locking the doorways associated with the other capes on the boundary of
the island, the robot continues to follow the boundary of the island as if it were entering a D-inlet
with entrance point £/. When it reaches one of the other island cape’s endpoints, it recognizes that
it is at an artificial bay point (Figure 21).

If F' is not one of the island cape points, then the robot must have detected the cape points in its
sensing region. After returning to F, the robot will resume its motion as if it had not encountered
the island. That is, the robot will simply move back to the point from which F was detected and
continue (Figure 22). When the robot encounters one of the island capes again after resuming its

motion, the appropriate point is designated as the D-inlet entrance point (as for any other cape)

26

idé\nd cape

@ (b)

Figure 21: (a) The robot has arrived back at point F and determined that it is on an island. (b)
Since F is an island cape point, the robot continues to follow the boundary of the island until it
arrives at the island cape point C', the artificial bay point. The robot moves along the artificial bay
CQ and then turns to zigzag back toward the artificial inlet’s doorway EX.

S
?%

@ (b)

Figure 22: (a) From grid line L;, the robot senses the cape points)1 and F of cape k and moves from
its current position R to the presumed D-inlet entrance point EY. When it arrives back at F after
traveling around the island, it will lock the line segment Q,Q), traveled along immediately before
returning to E. (b) The robot then moves back to R and continues on as it was before. After it
moves along the island cape on the left of the island, it will continue to follow the island boundary
until it arrives at the next island cape point, C', which is the artificial bay point. The robot moves
along the artificial bay C'QQ and then covers the artificial inlet T as it would any other D-inlet.

27

SO SUUUNY AU

@ (b)

Figure 23: (a) After the robot returns to S, and determines that it has encountered an island
(Figure 20), it will continue to move along Lo and then follow the boundary of the island (including
the locked doorway F'1X71) back to the point E' = S}. (b) After moving back to F, the robot moves
back to R and continues to zigzag. At the point R’, an island cape is detected. The robot follows
the boundary of the island until it reaches the next island cape point C', the artificial bay point. The
robot moves along the artificial bay, CQ and covers the artificial inlet I' as it would any other inlet.

and the robot will begin to follow the boundary of the island. The first of the other island cape’s
endpoints the robot encounters while following the boundary will be designated as the artificial bay
point.

If the robot detects that it has encountered an island by returning to the starting point S, it
must first exit the locked inlet containing S,. To do this, it will move along Lo until it encounters
the island boundary again and then follow the island boundary in the same direction it followed it
before returning to S,. The robot will follow the island boundary until it reaches the point 52/9 € L;,
which is the next cape point detected that is not part of a locked doorway. If this point is an island
cape point, the robot will proceed as described above for the case when the robot arrived back at

an island cape point after making a full circuit of the island’s boundary. If the point S}’9 is not an

28

island cape point, the robot will proceed as if it had not encountered the island. That is, if it first
moved to), along the boundary while zigzagging, it will continue to zigzag by moving along L; away
from S as if it were still following the boundary. If 5] was first detected within the robot’s sensing
region, the robot will move back to the point from which S}'9 was originally detected and continue
(Figure 23). When the robot encounters one of the island capes again, it designates the appropriate
point as a D-inlet entrance point, moves along the boundary of the island until it encounters another
island cape point, and designates this point as the artificial bay point.

Upon reaching an artificial bay point in any of these cases, the robot will then proceed along the
artificial bay and cover the artificial inlet as it would any other D-inlet. Upon exiting and locking
an artificial inlet, the artificial bay is converted into a locked doorway to prevent the robot from
covering the area around the island a second time.

The procedure C'over DInletOrIsland shown in Figure 24 is a modified version of the C'over DInlet
procedure (Figure 15); it incorporates the steps for detecting islands that cross grid lines in a non-

simply connected area and creating artificial bays in order to cover the area around them.

3.3 Returning to the Starting Point

Whether in a simply connected or nonsimply connected area A,, when the robot first travels along
a bay that is not inside a D-inlet, it will have covered the area .A;. It must then return to S,
(either the original starting point or as modified by procedure Cover DInletOrIsland, described in
Section 3.2.2), in order to cover area Ay (Figure 9). This it does by simply continuing to follow the
boundary after moving along the bay. Any locked doorways encountered while moving back to S,
are treated as portions of the boundary: the robot moves from one doorway endpoint to the other
and then away from the inlet boundary. If any new D-inlet entrance points are encountered while
moving along the boundary, the robot covers these before proceeding. If the robot encounters the
grid line Lo before the point S, while moving along the boundary in this way, it moves along Lg
toward S, (Figure 25). This procedure for returning to the starting point is shown in Figure 26.

After arriving at S, the robot begins to cover area A; in the same fashion as A;.

29

Input:
Z: the inlet to be covered;
Local Variable:
52’9 : the first presumed inlet entrance point encountered while moving around an island
for which the robot did not encounter a doorway before returning to Sy;

procedure CoverDInletOrlIsland
{
Move to F71;
Store F7;
do
Move along boundary;
if a D-inlet entrance point is detected then
CoverDInletOrIsland();
until robot has moved along a bay or reached an artificial bay point
or returned to an inlet’s entrance point or returned to S,;
if robot moved along a bay then
CoverArea();
else if an artificial bay point is reached then
CoverArea();
Convert artificial bay to locked doorway;
else (an island is detected)
Lock doorways for capes other than the island capes;
if robot is at S, then
Move along Lg until boundary is hit;
Move along boundary until Szlo is encountered;
Sp S
if robot is at an island cape point then
do
Move along boundary;
until island cape point is reached;
CoverArea();
else
Remember island cape points as potential artificial bay points;
Return to point from which F7 was detected;
7 + NULL;

Figure 24: The procedure for covering inlets and islands in a nonsimply connected area is shown.
After encountering a cape on the boundary, the robot assumes it is entering a D-inlet until it discovers
otherwise. This procedure incorporates the means of detecting an island and its artificial bay point.
For a nonsimply connected area, calls to this procedure should replace calls to Cover DInlet in the
procedure Cover Area.

30

g
Kl

K]

K]

K]

i

Kl
724

f
"-\ * Sp
§L«
I_0 L0
@ (b)

Figure 25: (a) The robot covers area A;. Upon reaching bay point B the second time, the robot
realizes it must return to S,. (b) The path the robot follows back to S,. The locked doorways
of D-inlets already covered are shown as thick line segments. When the robot encounters a locked
doorway, it moves along the doorway as if it were a part of the boundary. When the robot reaches
grid line Ly, it moves along it to the point S,.

procedure ReturnToS
{
do
Move along boundary;
if locked doorway is encountered then
Move along doorway;
Turn away from locked inlet’s boundary;
if a D-inlet entrance point is detected
CoverDInletOrIsland();
until reach Lo or .Sp;
Move along Lg until S, is reached;

Figure 26: The procedure for returning to the starting point S, after area A; has been covered.

31

4 Motion in Three Dimensions

4.1 Motion within a Grid Plane

For an AUV to use the planar terrain-covering algorithm of Section 3 in the three-dimensional
environment assumed in our model, it cannot simply move along grid lines in the zy-plane. It will
instead move within the vertical grid planes that contain each grid line, following the slope of the
terrain to maintain a certain distance from the surface. As stated in Section 2, the limits on the
distance the robot maintains from the surface are determined in part by the parameters of its camera.
We assume this simple method of three-dimensional terrain exploration since the two-dimensional
algorithm extends easily in this case. If this assumption is not valid, a different approach may be
necessary.

Since, from any position, the distance to different points of the ocean floor within the robot’s
sensed area is not the same, the robot must estimate its distance from the floor using an average of
its sensor readings. The robot will adjust its height so as to maintain that average at about A/2 from
the floor. The use of this average prevents the robot from being overly sensitive to small fluctuations
in the terrain. Similarly, the robot must use an average slope to determine its instantaneous direction
of motion.

How the average distance and slope are computed may depend on the particular application.
For example, one way to compute them is by using all points in the imaged area that are within a
certain range of vertical distances from the robot. If this range of distances is small, the robot will
be sensitive to small decreases in the distance to the lowest point; if the range of distances is large,
it will be less sensitive to small perturbations in the height of the floor but may have to compensate
for this by moving closer to the floor.

Let Ag denote the set of points that are used to compute the robot’s average vertical distance.
An example of the robot’s motion when the range of values over which the average taken is small
and includes the lowest point in its imaged area is shown in Figure 27. From position Ry, the robot
moves along a horizontal line, maintaining distance h/2 from the flat surface. It continues to move
horizontally until it reaches the point Ry, when it notices the surface begin to slope downward.
Notice that it does not adjust its height in response to the small bump B in the surface. The points
on the bump are not in the area Ag, since, from every point at which this bump is sensed, there are

other points in the sensed area with lower z coordinates. Along the path segment R;Rj, the robot

32

Figure 27: The path the robot follows to maintain an average vertical distance of h/2 from the lowest
points on the floor. The robot does not adjust its height in response to small rises in the surface (B)
but responds immediately to any indentation (I). For more significant rises, or hills, in the surface
(H), the robot adjust its height in response to this rise only when some point on the hill is in Ag.
When the surface slopes in different directions at the points in Ag, such as at the point Rg, the slope
of the path of the robot will be the average of these slopes.

moves down following the slope of the indentation to maintain its vertical distance of A/2. It moves
horizontally while the lowest points in the indentation are within its imaged area then moves up to
the point R3 to follow the slope on the opposite side of the indentation. Again, it moves horizontally
at distance h/2 from the flat surface until the point Rs at which it begins to follow the slope of the
hill H. Note that the robot first detects the rise in the floor H at point R4, but it does not respond
to this rise until the flat portion of the floor is no longer within its imaged area. When the robot is
atop the hill at point Rg, the surface slopes in different directions at the points in Ag. In particular,
the slope at the point p is positive and at the point ¢ it is negative. The slope of the robot’s path is

the average of the slopes.

4.2 Motion Between the Grid Planes

To move from one grid plane to the next, the robot must follow the boundary B. This is done in one
of two ways, depending on whether the portion of the boundary is defined by a threshold surface or
by the threshold slope (Section 2). If the robot reaches one of the threshold surfaces while moving

in a certain grid plane P; (i.e, there is a point p = (pg, py, p-) in its imaged area such that p, = zmin

33

Figure 28: The curve C' is one of the boundary curves for the area A. It represents the intersection
of the ocean floor with the upper threshold surface z = zy,x. At the point Rs, the robot detects the
point pc in its imaged area that is on this curve. It then turns to follow the boundary and moves
parallel to the threshold surface, keeping the points on the curve C' in its imaged area.

OF Py = Zmax), it Will follow the boundary by moving parallel to the threshold surface away from P,
toward P41 or P;_y as the algorithm dictates (Figure 28).

On the other hand, the robot may determine that it has reached the boundary because the rate
of change in its height z in the direction of maximal increase is equal to g. In this case, it will follow
the boundary by using its sensors to determine the contour of the floor along which the threshold
slope is reached. It follows this contour in the direction leading to the next grid plane (Figure 29).
Again, the robot must use averaged sensor readings to determine the general slope of the floor in its
sensing region.

In summary, the motion planning algorithm for a three-dimensional, projectively planar environ-
ment differs little from that for a planar environment. The projection of the path the robot follows
in the three-dimensional environment A is the path it would follow in the corresponding planar envi-
ronment A,. In A,, the robot zigzags from one grid line to the next; in A, this same = and y motion
leads the robot from one grid plane to the next. The difference is that the zy-motion is augmented

by vertical movement within each grid plane to account for changes in the height of the terrain.

34

Figure 29: The curve C represents the contour along the floor at which the slope of the surface is
equal to p. This is one of the boundary curves for the area A. At the point Rs, the robot detects
a point pc € C' and turns to follow this boundary by maintaining the points on the curve C' in its
imaged area.

5 Algorithm Complexity

The complexity of the algorithm presented is measured in two different ways: in terms of the distance
traveled by the robot and in terms of the amount of memory required to store the input information.
We show below that the length of the robot’s path is, in the worst case, linear in the lengths of the
outer boundary and the island boundaries and in the length of the grid line segments in the interior
of A,. The upper bound on the robot’s path length is first developed for the planar environment;
the upper bound in a nonplanar environment follows as a corollary to this result. It is also shown
that, if the boundary B, is described by a semi-algebraic set, the amount of memory required by the
robot in a planar or nonplanar environment is linear in the size of this description.

In what follows, let P be the total path length of the robot in a planar environment, P’ the length
of the planar outer boundary curve, and P” the sum of the lengths of the planar island boundaries.
Also, let L" be the sum of the lengths of all the grid line segments in the interior of .4, that are not
inlet doorways, and let L” be the sum of the lengths of all inlet doorways. Further, let ' be the

sum of the lengths of all capes on the boundary B,.

Theorem 5.1 The path length P of the robot following the planar terrain-covering algorithm satisfies

35

the inequality
P<L'4+3L"+2P +3P"+2Q". (1)

Proof: The robot’s path is generated by the four procedures CoverArea, Cover DInletOrlIsland,
EzitDInlet, and ReturnToS described in Section 3. For each of these procedures, we provide an
upper bound on the length of the path generated. The theorem follows as the sum of these path
length estimates.

The procedure Cover Area causes the robot to zigzag along the grid lines. In this process, each
grid line in a given area is traveled exactly once and each boundary section is traveled no more than
once. (Some portions of the boundary will not be traveled along at all.) This is assured because if
the robot revisits a given grid line, this means it must have traveled along a section of boundary and
arrived back at the given grid line without crossing another grid line. That is, it must have traveled
along a bay. When the robot travels along a bay, the procedure Cover Area stops. Every portion of a
given area (with the exception of D-inlet doorways) is covered by a call to the C'over Area procedure.
Since D-inlet doorways are locked after the inlets have been covered, no area is covered more than
once by this procedure. Thus the contribution to the robot’s path length from this procedure is no
more than L'+ L" + P' 4+ P".

For each call to the procedure C'over DInletOrlsland, the robot must first move to the D-inlet
entrance point if it is not already there. The distance traveled in doing this will be no more than
the length of the cape that causes the inlet. For all inlets, this amounts to no more than Q' in path
length. After moving to the entrance point, the robot then either moves along the boundary of the
D-inlet until it reaches the inlet bay or moves around the boundary of the island until it returns to
the entrance point. This contributes no more than P’ 4+ P” to the robot’s path length. Once each
island has been detected, part of its boundary will be traveled along once again as the boundary of
an artificial inlet. This requires the robot to travel a distance of no more than P”. Note that if the
robot’s starting point is contained in an island inlet and it must follow the boundary of the inlet
to the new starting point SZ’), this portion of the island boundary will not be part of the boundary
of the island’s artificial inlet. This contribution to the robot’s path length is therefore included in
the estimate P”. Since each inlet covered by this procedure is locked after it has been covered, this
procedure will be called only once for each D-inlet, artificial or otherwise (and thus once for each

cape). The total contribution to the robot’s path length from procedure Cover DInletOrlIsland is

36

no more than P+ 2P" + Q.

When the robot exits each inlet using procedure FxitDInlet, it must move along the D-inlet
doorway at least once. Note, however, that since L” is the total length of all inlet doorways and
since the procedure CoverArea does not cause the robot to travel along any D-inlet doorways,
the contribution to the path length for this single traversal of the doorway is already included in
the estimate given for C'over Area. In some cases, FxitDInlet causes the robot to travel the inlet
doorway a second time, which, in total, adds no more than L” to the robot’s path length.

After covering the doorway in procedure FzitDInlet, if the robot did not travel along a cape
to reach this inlet, it must move back to the point from which it detected the inlet entrance point.
This distance will be no more than the length of the cape. Since the robot can not enter a D-inlet
more than once, it also can not exit it more than once. Thus the total addition to the robot’s path
length from the FzitDInlet procedure is no more than L” + Q.

Finally, the procedure ReturnT oS contributes no more than an additional L” to the path length.
This represents the maximum possible distance traveled along the locked D-inlet doorways that the
robot encounters. In returning to S,, the robot also travels along portions of the outer boundary
and the island boundaries. However, this contribution to the path length is already included in the
estimate given for the procedure Cover DInletOrlIsland. To see why, note that when covering an
inlet, the robot moves along the inlet boundary, but when returning to S, the robot never moves
along an inlet boundary. Thus the sum of all these boundary segment traversals can be no more than
the P’ + P" already included in the estimate given for Cover DInletOrlIsland. Note also that the
distance traveled along grid line Lo to S, may also be considered included in the estimate P’ from
CoverDInletOrisland. To return to Lo from some point in the area A;, the robot can not make a
full circuit of the boundary (as is indicated by the estimate P'). The segment of L it travels along
to reach S, must be shorter than the section of the outer boundary it did not travel along.

Having shown path length estimates for all portions of the robot’s path, the bound given in the
theorem follows as the sum of these estimates. m

The upper bound on the path length given in Theorem 5.1 requires at most 3 traversals of any
boundary section in a nonsimply connected area. When the area A is simply connected, this upper
bound is reduced to L' + 3L" 4+ 2P" + 2Q)'. Further, if the area is simply connected and contains no

inlets, the robot will travel along each grid line exactly once and the outer boundary no more than

37

twice. That is, the length of the robot’s path is no more than L’ 4+ 2P’ in this case.

To determine the relative merit of our algorithm compared to other planar terrain-covering algo-
rithms, the only candidate for comparison is the Seed Spreader algorithm of [Lumelsky, 1990], since,
as mentioned in the introduction, it is the only other algorithm that handles arbitrarily shaped
boundaries. The upper bound on the path length produced by the Seed Spreader algorithm is given

as:

P <2+ L")+ 2nw 4 4(P' + P") 4 2nn0pmac + PmacXi—inj(n; +1). (2)

where n is the number of obstacles (which is proportional to the number of islands and inlets in
our model) in the environment, w is the horizontal spacing between grid lines, n, is the number
of obstacles that cross a grid line, n; is the number of obstacles completely between grid lines L;
and L;4q, r is the number of grid lines in the area A,, and pyq, is the maximum perimeter of an
obstacle. The last term of inequality (2) accounts for the path length required to cover obstacles
that lie completely between two grid lines but cannot be completely seen from one of these. Since we
assume that no such obstacles exist in our environment, this term can be ignored in our comparison.
The term 2nw of (2) accounts for the path length needed to divert to areas not covered while
zigragging and is roughly equal to the 2Q)" in (1). These terms can therefore also be ignored.

Without knowing what percentage of the grid lines are doorways in the worst case, it is difficult to
determine by a comparison of the relevant termsin (1) and (2) (L'+3L" and 2(L'+ L"), respectively)
which algorithm results in shorter path length along the grid line segments in the environment.
However, inequality (1) is the clear winner in the comparison of the number of times the polygonal
boundary curves are traveled along (2P’ 4+ 3P" versus 4(P'+ P")). Additionally, the term 2nn,p,,q;
of inequality (2) has no counterpart in (1). It is present in (2) since, with the Seed Spreader
algorithm each obstacle may, in the worst case, be traveled around once for every other obstacle
in the environment. This can never happen in our case since we remember certain points on the
boundary of each obstacle (inlet or island in our model) to prevent re-exploration of the obstacle.
By remembering these few specific points, we are able to reduce significantly the path length of the
robot. When measured in terms of the number of polygonal boundary curves, our algorithm is linear
while the Seed Spreader algorithm is quadratic.

In a nonplanar, three-dimensional environment, the upper bound on the path length differs from

the bound in the planar environment by no more than a multiplicative constant that is dependent

38

on the threshold slope, as shown by the following corollary to Theorem 5.1.

Corollary 5.1 The path length P of the robot following the terrain-covering algorithm in a three-

dimensional environment satisfies the inequality

P < /14 u2P,

where P is the length of the path in the corresponding planar environment.

Proof: The maximum slope of the terrain over which the robot will travel is ;. Therefore, no segment
of the projected path can have a slope of more than u. For any vector U= (ug, Uy, u,) in the three-
dimensional environment that projects onto the planar vector U = (uy, u,), the following relation
holds ;

u, < p|U|,

therefore,

1012 < (1+ 63U

from which the relationship in the corollary follows. m

The amount of memory required by the robot is given as the maximum number of points for
which the robot must remember coordinates. This we estimate in terms of the size of the boundary
description. The bound shown applies whether the environment is planar or nonplanar. Let B;,j =
1,...,m, represent the m simple curves that constitute the boundary of A,. Assume the curves
B; can be described as semi-algebraic sets. In other words, each B; can be obtained as a result of
set-theoretic operations (intersections, unions, and complements) on a finite set of algebraic curves
[Canny, 1988, Latombe, 1991]. This boundary description is used for the sake of argument only. It
is never necessary for the robot to compute these curves.

Let A be the number of grid lines in the interior of .4, and n the maximum number of connected
boundary sections lying between any two grid lines. Assume that each such boundary section can

be described by no more than p algebraic curves of maximum degree d.

Theorem 5.2 The mazimum number of points stored in the robot’s memory is bounded above by

Anpd.

39

Proof: The only points the robot must remember for this algorithm are intersections between the
boundary and the grid lines. Since a straight line can intersect a curve of degree d in at most d
points, a given grid line cannot intersect the boundary in more than npd points. Thus the total
number of intersections of grid lines with the boundary can be no more than Anpd. =»

As an example, consider Figure 3. Assume that the three boundary curves shown there can each
be described by 10 parabolas or circular arcs (a fairly complex description of the environment). In
this case p = 3 x 10 = 30 and d = 2. Further, assume that A = 20 and n = 5. The maximum number

of points the robot must store in its memory in this case is Anpd = 20 x 5 x 30 x 2 = 6000.

6 Algorithm Correctness

The correctness of the algorithm presented in Sections 3 and 4 is established in this section. Due to
lack of space, only the relevant statements of the lemmas, corollaries, and theorems are stated here.
The text of the proofs may be found in [Hert, 1995].

In what follows, assume, without loss of generality, that a coordinate system has been chosen in
the area A, to be covered. Let B;,7 =1,..., m, represent the m simple closed curves that constitute
the boundary of A,. For any given boundary curve B; of area A,, let x(B;) be the number of capes
on the curve and 3(B;) be the number of bays. Further, for a given portion A’ of the area A,, let
Z(A’) be the number of D-inlets in the area A" and B(.A’) be the boundary of A’.

To prove that the algorithm is correct for a simply connected area, it is sufficient to show that
any area without inlets is covered by the algorithm and that, for all other areas, every inlet will be
covered. To establish the truth of these statements, the following relationships between the number

of bays, capes, and D-inlets are shown.

Lemma 6.1 For any closed planar curve B;,

Corollary 6.1 For any open planar curve B' = (byby) with by, by € L; for some i, such that the open

grid line segment biby does not intersect B,
B(B") = r(B') + 1.

40

Corollary 6.1 implies that the boundary of each of the areas A; and A, and of each inlet contains
one more bay than cape. The following lemma establishes that the number of D-inlets in a given

area is equal to the number of capes on the boundary of the area.

Lemma 6.2 For any simply connected area A’,

Given the relationships shown in Corollary 6.1 and Lemma 6.2, the following lemma shows that
if A; and A, contain no inlets, they will each be covered by the algorithm. It also establishes that

any D-inlet that contains no subinlets will be covered.

Lemma 6.3 Let B’ = (byby) be an open planar curve such that by, by € L; for some i, and the open
grid line segment b1by does not intersect B'. If the curve B' contains only one bay, the area bounded

by B’ and biby will be covered by a robot beginning at either by or by and following the algorithm.

Since we assume that every straight line intersects the boundary in only a finite number of points,

the following finiteness condition holds.
Lemma 6.4 For any area A', the number of capes on its boundary, k(B(A")), is finite

Lemmas 6.2 and 6.4 imply that there are a finite number of inlets in any given area. The following

lemma shows that each will be covered.

Lemma 6.5 In a given simply connected area A", every D-inlet will be covered by a robot following

the algorithm.

Lemmas 6.3, 6.4, and 6.5 provide the basis for the inductive argument that proves the following

theorem.
Theorem 6.1 Any simply connected area A, will be covered by a robot following the algorithm.

For a nonsimply connected area that contains islands that cross at least one grid line, we show
the following relationships between the number of bays and capes on each island’s boundary as a

second corollary to Lemma 6.1.

41

Corollary 6.2 For every curve B; that is the boundary of an island,

This establishes the presence of the island capes that give rise to artificial inlets. By creating
an artificial inlet for a given island, the robot essentially joins the island to another portion of
the boundary (through the artificial bay), thus effectively eliminating the island. By this means a
nonsimply connected area containing k islands is converted into an area containing & — 1 islands.
Since Theorem 6.1 establishes that every area containing 0 islands will be covered, this provides
the basis for an inductive argument on the number of islands in a nonsimply connected area. This

argument is then used to prove the following theorem.
Theorem 6.2 Any nonsimply connected area A, will be covered by a robot following the algorithm.

This establishes the correctness of the algorithm presented in Sections 3 and 4 for simply and

nonsimply connected areas.

7 Example and Discussion

In this example, the algorithm’s performance is demonstrated using the nonsimply connected area
shown in Figure 30. Planes P_y4, ..., P4 are the grid planes that intersect the surface to be covered.
The planes zmax and zmin are the threshold surfaces. The boundary of the area in this example is
defined by the intersection of the floor with the plane z,a.x. The robot’s starting point S is chosen
arbitrarily.

The path of the robot is shown in panels (a) through (j) (Figures 31 and 32) projected on the
the zy-plane. The robot’s path is shown with dashed lines. Locked doorways are shown as thick line
segments.

While moving along Lg, the robot notices a D-inlet entrance point and moves to it (Figure 31,
panel (a)). It begins to follow the boundary of the inlet and in doing so, enters another D-inlet. It
follows the boundary of this inlet until it reaches the inlet bay. It covers the inlet, locks its doorway
and the continues to follow the boundary (Figure 31, panel (b)).

When it reaches the next bay, the robot zigzags along the grid lines until it arrives at an inlet

42

Figure 30: A sample nonplanar environment for a robot to cover.

doorway. It locks this doorway and moves back to the point from which it detected the entrance
point (Figure 31, panels (c1) and (c2)).

While zigzagging, the robot notices cape points on an island and moves to one of the cape points
as if entering a D-inlet. It follows the boundary of the island until it travels along the bay on the
island’s boundary. After traveling along the bay it is at the D-inlet doorway, so it locks the doorway
and moves back to the point from which it detected the entrance point and continues (Figure 31,
panel (d)). From grid line L_4, the robot detects another presumed D-inlet entrance point. It moves
to this cape point and follows the boundary of the island until it returns to the cape point (Figure 31,
panel (e)).

Knowing that it is on an island and at an island cape point, the robot continues to follow the
boundary of the island until it reaches another island cape point (i.e, the artificial bay point). It
then moves along the artificial bay and zigzags back to the doorway of the artificial inlet. Before
returning to grid line L_y, it locks the artificial inlet’s doorway and bay (Figure 32, panel (f)). When
the robot travels along the bay with endpoints on L_y4, it determines that it must return to .S,. To
return to S, the robot continues to follow the boundary after moving along the bay. When it moves
along a cape to a D-inlet entrance point, it enters the D-inlet by continuing to follow the boundary.
Upon reaching the bay on the D-inlet’s boundary, it begins to zigzag back toward the doorway. The
doorway is locked after it has been covered (Figure 32, panel (g)).

After locking the doorway, a cape on the second island is detected. The robot moves to the lower

43

Figure 31: The first five snapshots of the robot’s path in the environment of Figure 30.

44

30.

igure

ironment of I

’s path in the env

igure 32: The last five snapshots of the robot

F

45

cape point, which it assumes to be a D-inlet entrance point and then moves around the island’s
boundary. After making a full circuit of the island, the robot continues to follow the island boundary
in order to enter the island’s artificial inlet. It reaches the artificial bay point, zigzags back to the
doorway, exits the artificial inlet, and locks the doorway and bay (Figure 32, panel (h)). Then the
robot continues to follow the boundary in order to return to S5,. It moves along the locked doorways
of the inlets just covered and around one of the island capes. When it reaches L again, it moves
along it until it reaches the point S, (Figure 32, panel (i)).

Upon reaching S, the robot moves in the direction opposite to its original direction at S, and
zigrags to cover the rest of the area, finishing at bay point B (Figure 32, panel (j)).

If P, represents the sum of all grid line segments in the interior of the area A, and half the length
of all boundary curves, this is an approximation of a lower bound on the robot’s path length, for
the chosen coordinate system. It represents, roughly, the path length necessary to zigzag along the
grid lines in A4,. In this example, since the area contains inlets and islands, P, is not achievable
and thus does not represent the greatest lower bound. The path generated by our algorithm, with
no knowledge of the environment, is approximately 1.7F,. This could be reduced to approximately
1.5P, if the robot were to start at a bay point and knew it was doing so. In this case, it would not
be necessary for it to return to S, since A; = A,. The incorporation of any further information
about the environment will lead to little improvement in the path length of the robot, as long as
that information is only partial. If the robot were equipped with information about the location of
islands, capes, and bays, the procedures for detecting these phenomena would be trivial. However,
even with this additional information, the robot would have to enter inlets and travel around the
boundaries of islands in order to cover them. The only possible area for improvement would be in
the order in which the inlets and islands are visited. To avoid backtracking, these should be covered
in the order in which they are encountered, which is exactly what our algorithm dictates. Thus, if
information about the locations of these boundary sections were available, it could not be used to
improve significantly the path length of the robot.

It is possible that, with a different coordinate system (which would lead to a different orientation
of the grid lines) the path length could be reduced. However, finding the optimal coordinate system
would not only require complete knowledge of the environment but would also require an exhaustive

search of the possibilities.

46

Perhaps the most restrictive assumption in our model is that the robot have a single, downward-

pointing camera. By relaxing this assumption, the algorithm might be used to cover more general

terrains (e.g., terrains that are not necessarily projectively planar or that contain more steeply

sloping hills). However, to guarantee coverage of the entire terrain, additional assumptions about

the position, range, and motion of the cameras must be made.

References

[Blidberg, 1995]

[Burke, 1992]

[Canny, 1988]

[Choi, 1995]

[Chu, 1992]

[Gordon, 1992]

[Haywood, 1986]

[Henriksen, 1994]

[Hert, 1995]

Blidberg, D. R. and Jalbert, J., 1995, “Mission and System Sensors”, In Un-
derwater Robotic Vehicles: Design and Control, Edited by J. Yuh, TSI Press,
Albuquerque, 1995, pp. 185 — 220.

Burke, S. E. and Rosenstrach, P. A., 1992 “High-resolution monopulse
piezopolymer sonar sensor”, In Proceedings 1992 IEEE Symposium on Au-
tonomous Underwater Vehicle Technology, pp. 209 — 214.

Canny, J. H., 1988, The Complezity of Robot Motion Planning, MIT Press,
Cambridge, MA, 1988.

Choi, S. K., Yuh, J., and Takashige, G. Y., 1995, “Design of an Omni-
Directional Intelligent Navigator”, In Underwater Robotic Vehicles: Design
and Control, Edited by J. Yuh, TSI Press, Albuquerque, 1995, pp. 277 — 298.

Chu, J. S., Lieberman, L. A., and Downes, P.; 1992, “Automatic camera control
for AUVs: a comparison of image assessment methods”, In Proceedings 1992

IEEE Symposium on Autonomous Underwater Vehicle Technology, pp. 191 —
201.

Gordon, A., 1992, “Use of laser scanning systems on mobile underwater plat-
forms”, In Proceedings 1992 IEEE Symposium on Autonomous Underwater
Vehicle Technology, pp. 202 — 205.

Haywood, R., 1986, “Acquisition of a micro scale photographic survey using an
autonomous submersible” | In Proceedings 1986 IEEE Oceans, Vol 5, pages 1423
— 1426.

Henriksen, L., 1994, “Real-time Underwater Object Detection Based on Elec-
trically Scanned High-resolution Sonar”, In Proceedings 1994 IEEE Sympo-
sium on Autonomous Underwater Vehicle Technology, pp. 99 — 104.

Hert, S., Tiwari, S., and Lumelsky V., 1995, A Terrain-Covering Algorithm
for an AUV, University of Wisconsin—-Madison Robotics Laboratory, Technical
Report RI-95001.

47

[Latombe, 1991]

[Lozano-Pérez, 1983]

[Lumelsky, 1990]

[Marks, 1994]

[Oommen, 1987]

[Rao, 1990]

[Rosenblum, 1992]

Latombe, J.-C., 1991, Robot Motion Planning, Kluwer Academic Publishers,
Boston, pp. 146 — 149.

Lozano-Pérez, T., 1983 “Spatial Planning: A Configuration Space Approach”,
IEEE Transactions on Computers, C-32(2): 108 — 120.

Lumelsky, V. J., Mukhopadhyay, S., and Sun, K., 1990, “Dynamic Path Plan-
ning in Sensor-Based Terrain Acquisition”, IFEFE Transactions on Robotics and
Automation 6(4): 462 — 472.

Marks, R. L., Rock, S. M., and Lee, M. J., 1995, “Real-Time Video Mosaicking
of the Ocean Floor”. IEEFE Journal of Oceanic Engineering 20(3): 229 — 241.

Oommen, B. J., Iyengar, S. S., Rao, N. S. V., and Kashyap, R. L.. 1987, “Robot
Navigation in Unknown Terrains Using Learned Visibility Graphs. Part I: The
Disjoint Convex Obstacle Case”, IFEFE Journal of Robotics and Automation
RA-3(6): 672 — 681.

Rao, N. S. V. and Iyengar, S. S., 1990 “Autonomous Robot Navigation in Un-
known Terrains: Incidental Learning and Environmental Exploration”, IFFF
Transactions on System, Man and Cybernetics 20(6): 1443 — 1449.

Rosenblum, L. and Kamgar-Parsi, B., 1992, “3-d reconstruction of small un-
derwater objects using high-resolution sonar data”, In Proceedings 1992 IEEE
Symposium on Autonomous Underwater Vehicle Technology, pp. 228 — 235.

48

