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A B S T R A C T

A new type of micro walking robots named PLIF
(Piezo Light Intelligent Flea) is introduced. These
robots, that walk by using piezoceramic legs, are
very small in size, but, at the same time, fast and
agile. Three different types of PLIF have been
designed and built and several dynamic measures
have been performed. Moreover a self-learning
technique has been implemented and tested in
order to increase the autonomy of these systems.

1 .  I N T R O D U C T I O N

Microrobotics researches require to operate on
autonomous devices with simple design and
limited costs and energy consumption, even if this
fact limits the possible tasks of each single robot.
In the last few years the interest in micro
mechatronic systems is increasing and several
different kind of microrobots have been designed
[1], [2],[3]. Applications of these robots can be
found in micromachinig, inspection of small
environments, micro-surgery, medicine [4], study
of co-operating systems etc.
In  microrobotics particular attention should be
paid in the selection of actuators, keeping in mind
power consumption and  size and weight of the
components [5].  Among the different kind of
actuators that have been adopted for microrobots
we can mention pneumatic [6], electrostatic [7],
shape-memory [8] and piezoelectric [9].
This paper wishes to increase the knowledge in
this robotic area by choosing an innovating design
for the locomotion of the robots. Our aim was to
build  walking microrobots, named PLIF (Piezo
Light Intelligent Flea), that could be fast, agile
small, light, cheap and autonomous in order to
study experimentally self-learning strategies and
collective behavior of robots.   For this reason we
have chosen  piezoelectric actuators that are
robust, strong, low-consuming and have a good
displacement resolution [10],[11].

2 . P I E Z O E L E C T R I C  M A T E R I A L S

Piezoelectric materials are characterized by their
ability to produce charges when they are stressed

and viceversa. This means they are even able to
generate a force if a voltage difference exists

between two faces of the piezoelectric bar
[10],[11]. In particular we used   piezoceramic
bimorph elements  that consists of two thin
piezoelectric layers, 15 mm long, separated by a
common electrode. When voltage difference is
applied between the two terminals, one
piezoelectric layer stretches while the other
shortens so that the entire structure bends toward
the shorter side, as is shown in Fig.1. In our
operative conditions the maximum displacement
that can be obtained is then ∆x=36µm.

3 .  S T R U C T U R E  D E S I G N

3.1 Mechanical part
In our micro-robots the piezoceramic bimorphs
have been adopted not only as actuators, but also
as a part of each micro leg. In particular in order
to build a walking micro-robot the simplest steady
configuration has been chosen: two active legs
moving and one passive as support. Each leg is
composed by two parts realized by using two
bimorph piezoceramic actuators each one  15mm
long: the femur, that acts for the vertical
movements of the leg, and the tibia that acts for
the horizontal movements.
Three different solutions of PLIF, schematically
shown in Fig. 2, have been proposed. In the first
prototype (PLIF I) the moving legs have been
stuck externally to the body, the femur and the
tibia of each leg make an angle of about 130

∆ x

Fig. 1. Piezoelectric effect on bimorph piezoceramic layers.



degrees, which allows a more uniform grip on the
ground. However the difficulties in  assembling
the pieces bring to an asymmetric structure that is
unsuitable for a correct walk.

               PLIF I              PLIF II            PLIF
III

Fig. 2. The structure of the three different PLIF (front view,
upper view and structure of a single leg).

The second prototype (PLIF II, Fig. 3) is smaller
(4cm2 of total surface occupied), having the legs
fixed under the robot body; moreover the two
pieces are orthogonally linked to prevent
assembling problems.

Fig.3.     PLIF II

Finally we worked out a structure (PLIF III, Fig.
4) in which the robot leg articulation imitates the
human one instead of  the spider one . Adopting
this last solution  the best results in both size and
symmetry is reached. This gave us the best
performances in motion too. Obviously we should
assemble the legs with very accurate instruments
to simplify the set up and the movement modeling
and identification.
Thanks to the possible movements of the
piezoelectric pieces at high frequency and taking
advantage of the resonant behavior, a speed up to
18 cm/s has  been achieved. Moreover the
continuous vibrations of the legs avoid the
consequences of static friction that are deleterious
during  micro-positioning.

Fig. 4.      PLIF III

3.2 Control strategy and hardware electronic
During the human being walk the femur is lifted
while tibia is advancing. This is an inferior limit
for the frequency of the steps, in fact if x is the
level above ground of the tibia and T is the
oscillation period of the leg, it should result
approximately

gT2<2x                                  (2)
In our case since  x≈40µm, g≈10ms-2 , this means
as results  that   f  > 360Hz.  It has  been
experimentally verified that under a frequency of
about 400Hz the movements of the robot slow
down and they become tripping until the robot
stops (at about 250 Hz). The steps frequency has
also an upper limit caused by the rising time of
the collector voltage of control transistors adopted
to drive the bimorphs. This is due to a low-pass
filter which consists of the capacity of the
piezoelectric pieces and the collector resistance of
the driving circuit.  In our case the upper limit
was f=2.4kHz.
Even if the actual implementation of the control
board is separate from the robot that is connected
with some small wires, the final project impose
autonomous, intelligent and cheap microrobots.
For these reasons hardware and software solutions
that could  be simply implemented on a custom
chip onboard have been considered [7] [12].
For example  the 100V DC power supply, needed
to move the piezoceramic actuators, has been
realized by using a diode-capacitor voltage
multiplier that permits  to use a solar cell or a
little accumulator as power source, taking into
account the small power consumption achieved by
increasing RC but lowering the upper limit of
steps frequency. The other electronic parts,
including the control circuitry, use very simple
digital and analog electronic components that
could be easily integrated.
There are four stages for a leg to move forward

1) Femur raising.
2) Tibia moving forward.
3) Femur lowering.
4) Tibia moving backward.

1cm



This is the sequence for the leg to move forward ,
substituting stage 2 and 4 we obtain backward
movement. These are the fundamental movements
for each leg, to make the robot move in all
direction we have to coordinate the two leg step
sequence. The implemented step sequences to
move forward are similar to the arms
coordination during two different swimming
style: free-style and butterfly-style in which the
two arms respectively have 180° or 0° phase
difference, while to change direction one leg
moves forward and the other backward. In this
way each PLIF can potentially be moved in every
direction of the plan.

4 .  D Y N A M I C  M E A S U R E S

Several different experimental tests  have been
performed on the robots, in order to verify the
design hypothesis. As a result it has been
observed that the real PLIFs behavior is far away
from the expected one, seldom the desired
direction and the effective movement of the robot
are the same, for almost every frequency the real
direction of the robot remains the same whatever
the one imposed by the control algorithm is. A
great role in the movements is given from the
various characteristic modes of the ground-leg
system that could be differently excited in the
frequencies near  resonance. In fact a small
change in the step frequency around 1kHz causes
the robot to move forward, left, backward, right
even if the algorithm impose always the forward
movement.
This behavior is due to the fact that  a leg can be
more activated than the other at a certain
frequency, and it is difficult to find a reliable
theoretical model of the robot movement, because
we must contemplate leg-ground interactions and
the leg characteristic frequencies that change
above mounting.
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 Fig.5 Final position, X Y (mm), and orientation, θ/2
(degree), of the robot, after 200 steps of forward command , as a
function of frequency.

In order to identify the robot behavior, several
dynamic measurements have been performed. In

particular the acquisition of the robot movements
after 200 steps in each directions, using a 90V
voltage supply, for various frequencies have been
done. In Fig. 5  the results of one of these
measurements are reported. The considered three
degrees of freedom were the planar position of the
middle-point beneath the legs (X,Y in mm) and
the direction angle (in degree, scale 1:2),
assuming that the initial position was X=0, Y=0,
θ=0.
We wish to point out the resonance peaks in
which the robot move very fast (up to 18 cm/s)
but tripping without control.

5 .  I N F R A R E D  I N T E R A C T I O N

As a consequence of the results of the previous
section, in order to achieve reasonable
movements, some kind of feedback should be
given to the robots. Due to the small size and
weight it appears illogical to adopt sophisticated
sensors, moreover to make the PLIFs autonomous
communications with external devices should be
avoided. For these reasons the adoption of small
infrared sensors mounted on board on the robots
has been chosen.  Moreover, since the study of the
cooperation between various microrobots is one of
the most important aim of this project, for the
interaction among the robots, two phototransistors
have been fixed on the PLIF I and an infrared led
on the PLIF III to know the relative position
between the two robots. Small components with a
view angle of  18° that allows greater accuracy in
the positioning have been used. The
phototransistors were fixed on the front of the
robot and separated by opaque material to
improve the difference between the right and left
signals (Fig. 2a).
A simple algorithm to make PLIF I catch PLIF III
has been implemented:  it makes the robot turn on
the more enlighted side and go straight ahead if
the ‘eyes’ are equally excited (Fig. 6).

Fig 6.  PLIF I catching PLIF III (upper view).

These digital conditions are fuzzyfied using two
threshold to implement concepts of the distance
and orientation between the two- robots.
After the set-up of the algorithm and the
thresholds values, the result was that PLIF-I could
catch  PLIF-III quickly and with good precision.



6 .  S E L F  L E A R N I N G

6.1 Introduct ion
Dynamic measures point out how difficult it is to
find the frequencies in which the robot behave as
we want. But in limited frequencies and
movement styles, the robot has quick and precise
movements in every angle and direction besides
the cardinal ones. The problem is how to fix the
frequencies and the movement sequence that
imply the desired direction and angle. In fact
those unknowns depend on various parameters
such as supply, carried-weight, steepness of the
ground and kind of surface the robot walk on.
This strong dependence on various parameters
that may change with time doesn’t allow the robot
setting once and for all.
In our experiments the goal of the robot is to
reach a target represented by an infrared light
source, eventually with some obstacles in the
path. In particular we want the robot  to choose by
itself the right frequency and movement style to
achieve the goal, so that the robot can do a self-
test of  the operative conditions and choose the
new best value for the unknowns if some
parameters change.

6.2 Fundamental  principles
Learning problem is much more complex if it is
applied to a real robot instead of using a robot
behavior simulation with an algorithm, in fact
there are a lot of  influencing parameters, often
unknown [13],[14].
The objective of the designer is to find the control
function   f : S →A, that for each state of the robot
(S) gives the right movement (A). This is possible
only if the task of the robot is simple, if nothing
changes in the influencing parameters and if the
relation between the robot state and the sensor
signal is known. If the robot has to face
unexpected events it must be able to self learn
how to reach the goal.
Learning means the ability to increase our
knowledge and skills by the results of the
experience, that is characterized by the presence
of an aim and an evaluation criterion of the
actions done in its achievement.  How is it
possible to fix an evaluation criterion for the
single action if the aim function has a peak in
only one configuration that may be achieved after
several steps ? In this case we can know nothing
about the effectiveness of the intermediate actions
until we achieve the goal, in fact only at the end
of an experiment we can determine if it was
successful or not.
We search, initially the function Q : S×A→E
where E represents the effectiveness of the action
A if the robot is in the state S. The function f
(control law) can be then extrapolated from
function Q by picking for each state the more
effective action.

Now we have to change E values on the basis of
experience. The codominion of the function Q is
stet randomly or on the basis of acquired
knowledge, then if the robot is in the state Sj  it
perform the most effective action Aj  reaching the
state Sj+1.
This process stops when the robot reaches the
goal or the number of steps becomes too big, then
the effectiveness E of the actions will be
consequently changed.
This technique is called ‘reinforcement learning’
and it permits to quickly achieve a good
knowledge of the right behavior by an
autonomous training of the robot.
This  algorithm can operate in the following
frames with external or internal supervisor or
without supervisor, as regards the learning
process control, and with an award during the
learning session or with an award after the
learning session,
as concerns  the instant in which the training
action is applied.
Lesson means a single sequence of action after
which the effectiveness E of the action will be
increased or decreased, depending upon the
achievement of the goal.
Usually the learning process is more difficult and
slower with an unsupervised algorithm and
premium after lessons, because it is much more
difficult to understand how a past action has been
determinant to reach the goal.
In this kind of algorithm a large number of
lessons are normally required before the robot
learn, that is why this algorithm has been
prevalently used in simulation works.

6.3 Appl icat ion to the  PLIF
To face the robot learning problem, the
‘reinforcement learning’ technique that search for
the Q function and allows the robot to train itself
autonomously and with deferred premium without
supervisor, has been employed [15]. In our case
an experiment consists in a sequence of steps that
a PLIF executes in order to reach the target,
represented by an infrared  light source.  However
the PLIF does not know its state but only the
sensor measurement ; for this reason it was
assumed as an estimate of the state of the robot,
the measure of the two sensors that approximately
gives the robot position with respect to the target.
The Q-learning process has three main problems:

1)the discretization of the state space ;
2)the necessity to operate on each sequence to

reach the optimum ;
3)the difficulties to judge the effectiveness of a

single intermediate movement inside a long
sequence.

The first problem implies the choice of the
number of cells in which to divide the state space.
This number is chosen on the basis of learning



speed, movement precision, noise, calculator
power. For our robot the signal of the two
phototransistors has been divided in 16×16 cells.
The second problem is connected to the others, in
fact to reach the ‘optimum’ it would be necessary
for the robot to do infinite sequences over
infinitesimal state cells. However it would be
necessary an infinite time to reach the optimum,
because after a normal training period  some
redundant movements exist, anyhow bringing the
robot to the goal. To overcome this problem we
can reward the sequences without replying
movement and leading more quickly to the goal.
To overcome the third problem we can give
greater importance to the last steps by increasing
the rate of E changing.
A learning session consists in initializing the Q
function randomly, then performing several
sequences of experiments and learning until a
good result is achieved. Many learning sessions
have been performed, obtaining quickly good
results. In particular the robot learns in 20 lessons
to reach the goal within 1cm and after 100 lessons
the robot is well trained in order to reach the goal
in the range of action of the sensors (about 6-7
cm).
Each lesson lasts  a few seconds, so a complete
learning session should last few minutes, allowing
the robot to quickly set-up each time the operative
conditions change.
The robot has been also trained to overcome an
obstacle in the direction of the goal obtaining
analogous results initializing also in this case
randomly the Q-function.
It is interesting to point out how the robot is able
to accomplish complex maneuvers to overcome
the obstacles. Such maneuvers would be very
difficult to implement in a static algorithm. If we
use for the same task a robot trained without
obstacles the learning time is increased due to the
fact that E values during the past lessons had
increased too much to be quickly changed.
It must be avoided that those values could grow so
differently by implementing a saturation during
the learning process.
In Fig.7  the control law as a function of the state,
divided in 16x16 cells, at the beginning of the
learning session is shown. Each cell represents a
particular light level of the two phototransistors
and to each cell is associated the best  movement,
i.e. the one with the greater value of effectiveness
E , that is randomly initialized and changed at the
end of each lesson.
After the learning process of 100 lessons, the
arrows on the state space are distributed more
uniformly (Fig 8).
The represented matrix gives us the function f
which characterizes  the best movement to reach
the goal for each state in the cell where the robot
is.

→ ↑ ↑ ← → ↑ → ↑ → → ← → ← ↑ ↑ →
→ → ↑ ← ↑ → → ↑ ↑ ← ↑ ← → ↑ ↑ ↑
↑ ← → ← ↑ ← ↑ → ← → ↑ → ↑ ← ↑ →
↑ → → ← → → ↑ ↑ ↑ ← ← ↑ ← ↑ ↑ ↑
← ← → → → ← ↑ ↑ ↑ ↑ → ← ↑ ← ↑ →
→ ↑ ← ↑ → ↑ → ↑ → ← → ↑ ← ↑ ↑ →
↑ ↑ ← ↑ → ← → ← ↑ ↑ ↑ ↑ ← → ↑ ←
→ → → ← ↑ ↑ ↑ ↑ → → ↑ ↑ → ← ↑ ↑
→ ↑ ↑ → ↑ ↑ → ↑ ↑ → ↑ → ↑ ↑ → ↑
→ ↑ ↑ → ↑ ↑ ↑ ↑ ↑ ← → ↑ ← ↑ → →
↑ ↑ → ↑ → → → ↑ ← ↑ ↑ ↑ → → → ↑
← ↑ ↑ → ↑ → → ← → → ↑ ↑ → → ↑ ↑
↑ ↑ ↑ → → → ↑ ↑ → → ↑ → → ↑ ↑ →
↑ → → ↑ ↑ ↑ → ← → ↑ → ↑ → → ↑ ←
→ → ↑ ← ↑ ↑ ↑ ← → ↑ ← ↑ → ↑ ← →
→ → → ↑ ← ← ↑ ↑ ↑ → ↑ → ← ↑ → ↑

In reality only the bottom left of the matrix (the
part not shaded in the figures 7 and 8) has been
affected by the learning process, because the
possible combinations of the transistor signals lay
there. As it was expected, turn left movements are
more concentrated left high, while turn right
movements are more concentrated right bottom.
The forward movement has the best effects on the
reaching of the goal as it is uniformly distributed
over the matrix.

← ↑ ↑ ← → ↑ → ↑ → → ← → ← ↑ ↑ →
↑ ↑ ↑ ← ↑ → → ↑ ↑ ← ↑ ← → ↑ ↑ ↑
↑ ↑ ↑ ← ↑ ← ↑ → ← → ↑ → ↑ ← ↑ →
↑ ↑ ← ← → → ↑ ↑ ↑ ← ← ↑ ← ↑ ↑ ↑
← ↑ ← ← → ← ↑ ↑ ↑ ↑ → ← ↑ ← ↑ →
↑ ↑ ↑ ← → ↑ → ↑ → ← → ↑ ← ↑ ↑ →
↑ ↑ ↑ ↑ → ← → ← ↑ ↑ ↑ ↑ ← → ↑ ←
↑ ← ↑ ↑ ↑ ↑ ↑ ↑ → → ↑ ↑ → ← ↑ ↑
← ← ↑ ↑ ↑ ↑ → ↑ ↑ → ↑ → ↑ ↑ → ↑
→ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← → ↑ ← ↑ → →
↑ ↑ ↑ ↑ ↑ ← → ↑ ← ↑ ↑ ↑ → → → ↑
← ↑ ↑ ← ↑ ↑ → ← → → ↑ ↑ → → ↑ ↑
↑ → ↑ ↑ ↑ ↑ ↑ ↑ → → ↑ → → ↑ ↑ →
← → ↑ ↑ ↑ ↑ ↑ ← → ← → ↑ → → ↑ ←
→ → → → → ↑ ↑ ↑ ↑ ↑ ↑ ↑ → ↑ ← →
← ↑ → → → → ↑ ↑ → → → ↑ → ↑ ↑ ↑

We wish to point out that the ‘Turn left’
movements in the bottom-right zone and the
‘Turn right’ movements in the high-left zone
don’t represents errors of the learning process but
the movements that avoid legs slipping and drive
the robot quickly to the goal.
These movements are the most important in this
kind of algorithm because they are very difficult

Fig.7. Control law random initialization.

Fig.8. Control law after the learning process

↑  Forward     ← Left       →Right
Best movement (Max E) for each state-box



to be discover and then to implement on a
standard movement algorithm.

7 .  C O N C L U S I O N S

In this paper we have shown the possibility of
using piezoelectric materials for precise
microrobot locomotion.
Thanks to their high  frequency range, these
actuators allow PLIF to move quickly in all
directions, up to 18 cm/s. At the same time it is
very accurate in positioning : each step move the
robot 40µm forward and it is easy to lower down
the positioning resolution to few microns using
not the walking of the robot but the piezoelectric
bending, a quadratic function of voltage.
Due to robot dynamic behavior it is necessary an
accurate setup of the structure of the robot to
maintain a perfect symmetry and avoid
uncontrollable movements of the PLIF II.
Even if in the actual implementation the robot are
wire connected to an external controller, the
supply and control have been designed for a
future integration on board on a single custom-
chip, avoiding complex solutions.
Dynamic measures demonstrated that  open loop
control is impossible due to the extreme
difficulties in identifying the relations between
direction, velocity and the influencing
parameters.
To overcome this problem we implemented the
‘Q-learning’ self-learning algorithm that permits
the robot to find quickly and autonomously the
right movement sequences.
Further study is in progress to investigate about
the possibility for the robot to recognize the type
of surface from to the observation of a signal on
the still leg, caused by the vibrations forced by the
other leg. In fact the signal waveform changes
with the kind of substrate, so it is possible for the
robot to recognize the ground in which it walks,
by examining those signals and to change the
movement sequence accordingly.
Another improvement could come from the
application of neural nets during the learning
process [14]. In this case the robot could learn
autonomously the best sequence to be sent to the
four piezoelectric parts to move along the desired
direction.
Further and updated information concerning PLIF
microrobots can be found in the WEB page

http:\\www.scg.dees.unict.it
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