
Cooperative Multiagent Robotic Systems

Ronald C. Arkin and Tucker Balch

Mobile Robot Laboratory

College of Computing

Georgia Institute of Technology

Atlanta, Georgia 30332-0280

1 Introduction

Teams of robotic systems at �rst glance might appear to be more trouble than they are worth. Why

not simply build one robot that is capable of doing everything we need? There are several reasons why

two robots (or more) can be better than one:

� Distributed Action: Many robots can be in many places at the same time

� Inherent Parallelism: Many robots can do many, perhaps di�erent things at the same time

� Divide and Conquer: Certain problems are well suited for decomposition and allocation among

many robots

� Simpler is better: Often each agent in a team of robots can be simpler than a more comprehensive

single robot solution

No doubt there are more reasons as well. Unfortunately there are also drawbacks, in particular regarding

coordination and elimination of interference. The degree of di�culty imposed depends heavily upon the

task and the communication and control strategies chosen.

In this chapter, we study our approach to multiagent robotics in the context of two major real world

systems:

� As part of ARPA's UGV Demo II program, we have studied the ways in which reactive control

can be introduced to the coordination of teams of HMMWVs (Jeep-like vehicles) working together

in dynamic, unstructured, and hazardous environments.

{ The design of formation behaviors is discussed in Section 3.

{ Means for specifying missions for robotic teams using the MissionLab system are presented

in Section 4.

{ Team teleautonomy, where an operator can in
uence the behavior of a collection of robots,

not just one at a time, is discussed in Section 5.

� A three robot team that won the AAAI Clean-up-the-O�ce competition in 1994.

2 Related Work and Background

We �rst brie
y review a sampling of relevant research in multiagent robotics and then present some

background in schema-based reactive control.

2.1 Multiagent Robotic Systems

Fukuda was among the �rst to consider teams of robots working together [9.]. His cellular robot

system (CEBOT) is a collection of heterogeneous robotic agents which are capable of assembling and

disassembling themselves. Imagine, for example, a self-assembling ship in bottle. This ability to allow

complex structures to be constructed on-site and the additional capability of recon�guring the combined

units is of potentially great value for a wide range of applications in space-constrained environments.

1

Mataric, in her dissertation research at MIT, has studied adaptive cooperative behavior in a collection

of homogeneous robotic agents, the so-called Nerd Herd. Using a behavior-based subsumption-style

architecture [14.], she demonstrated, in hardware, group behaviors such as
ocking and foraging for a

team of 10-20 robots. Of interest is the phenomena of interference which occurs due to the robots, at

times, getting in each other's way. In our team of robots used for the AAAI competition, described in

Section 6, kin recognition is used as a means for distributing the agents more uniformly through the

environment, keeping them apart and thus reducing interference.

Parker, now at the Oak Ridge National Laboratories, developed the Alliance architecture as a means

for expressing and controlling heterogeneous teams of robotic systems [15.]. Researchers at the University

of Michigan have used distributed arti�cial intelligence techniques to control small groups of robots [12.].

There is also extensive research being conducted in Japan on multirobot teams [10.].

Canadian researchers have developed a useful taxonomy for characterizing the various research ap-

proaches being developed [8.]. They are subdivided along the following lines:

� Team Size: 1, 2, size-limited, and size-in�nite

� Communication Range: None, Near, In�nite

� Communication Topology: Broadcast, Addressed, Tree, Graph

� Communication Bandwidth: High, Motion-related, Low, Zero

� Team Recon�gurability: Static, Coordinated, Dynamic

� Team Unit Processing Ability: Non-linear summation, Finite State Automata, Push-Down Au-

tomata, Turing Machine Equivalent

� Team Composition: Homogeneous, Heterogeneous

Another starting point for further understanding the general issues and research e�orts ongoing in

robotic teams appears in a review article [7.].

2.2 Reactive Schema-based Behavioral Control

Reactive behavioral control [2.] is now a well established technique for providing rapid real-time response

for a robot by closely tying perception to action. Behaviors, in various forms, are the primary building

blocks for these systems, which typically operate without conventional planning or the use of global

world models.

Schema-based systems [1.] are a form of reactive behavioral control that are further characterized

by their neuroscienti�c and psychological plausibility, the absence of arbitration between behaviors

(schemas), the fusion of behavioral outputs through the use of vector summation in a manner analogous

to the potential �elds method [11.], inherent
exibility due to the dynamic instantiation and deinstantia-

tion of behaviors on an as-needed basis, and easy recon�gurability through the use of high-level planners

or adaptive learning systems.

Motor schemas are the basic building blocks of a schema-based system. These motor behaviors

have an associated perceptual schema which provides only the necessary sensory information for that

behavior to react to its environment, and ideally nothing more. Perceptual schemas are an embodiment

of action-oriented perception, where perception is tailored to the needs of the agent and its surrounding

environment. Each motor schema produces a single vector that provides the direction and strength

of the motor response for a given stimuli. All of the active behaviors' vectors are summed together,

normalized, and sent to the actuators for execution.

Another coordination operator, temporal sequencing, ties together separate collections of behaviors

(assemblages) and provides a means for transitioning between them [4.]. Typically, perceptual triggers

are de�ned which monitor for speci�c events within the environment. If a relevant event is detected,

a state transition occurs resulting in the instantiation of a new behavioral assemblage. Finite state

acceptor (FSA) diagrams are typically used to represent these relationships. Examples of these diagrams

appear in Sections 4 and 6.

2

3 Formation Control

Figure 1: One of Lockheed-Martin's HMMWVs.

Sections 3-5 focus on multiagent research in support of ARPA's Unmanned Ground Vehicle (UGV)

Demo II program. The goal of this project is to �eld a team of robotic scout vehicles for the U.S.

Army. At present, scout platoons are composed of four to six manned vehicles equipped with an array

of observation and communication equipment. The scouts typically move in advance of the main force,

to report on enemy positions and capabilities. It is hoped that robotic scout teams will do as well

as humans for this task, while removing soldiers from harm's way. Lockheed-Martin has built four

prototype robot scout vehicles, based on the HMMWV (Figure 1). This section outlines the design of

an important behavior for scout teams: formation maintenance. The next two sections look at related

issues: a way for humans to express military missions for robot team execution and providing variable

levels of human intervention during an ongoing mission.

Scout teams use speci�c formations for a particular task. In moving quickly down roadways for

instance, it is often best to follow one after the other. When sweeping across desert terrain, line-abreast

may be better. Furthermore, when scouts maintain their positions, they are able to distribute their

sensor assets to reduce overlap. Army manuals [17.] list four important formations for scout vehicles:

diamond;wedge; line and column. Four simulated robots moving in these formations are pictured in

Figure 2.

Figure 2: Four robots in leader-referenced diamond, wedge, line and column formations executing a 90

degree turn in an obstacle �eld.

3

3.1 Motor Schemas for Formation

The formation behavior must work in concert with other navigational behaviors. The robots should

concurrently strive to keep their relative formation positions, avoid obstacles and move to a goal location.

Formation behaviors for 2, 3 and 4 robots have been developed and initially tested in simulation. They

have been further tested on two-robot teams of Denning robots and Lockheed-Martin UGVs. The

formation behaviors were developed using the motor schema paradigm (Sec. 2.2) within Georgia Tech's

MissionLab environment. Each motor schema, or primitive behavior, generates a vector representing a

desired direction and magnitude of travel. This approach provides an easy way to integrate behaviors.

First, each vector is multiplied by a gain value, then all the vectors are summed and the result is

normalized. The gain values express the relative strength of each schema. A high-level representation

of this behavioral integration is illustrated as pseudo-code in Figure 3.

while (task not completed)

{

/* Compute motor vectors in parallel.

Each schema may call embedded perceptual

schemas. The result is multiplied by a

gain value, indicating its relative strength. */

execute_in_parallel

{

/* Compute repulsion from sensed obstacles. */

vector1 = obstacle_gain * avoid_obstacle_schema(sense_obstacles);

/* Compute attraction to the goal location. */

vector2 = goal_gain * move_to_goal_schema(sense_goal);

/* Compute attraction to formation position.

This depends on the type of formation, the heading of the

group, and the locations of the other robots. */

vector3 = formation_gain *

maintain_formation_schema(

detect_formation_position(formation_type,

detect_formation_heading(),

sense_robots()), my_position);

} /* end parallel execution */

/* Move the robot according to the normalized sum of the motor vectors */

move_robot(normalize(vector1 + vector2 + vector3));

}

Figure 3: Pseudo-code showing the behavioral assemblage for a robot to move to a goal, avoid obstacles

and maintain a formation position.

The formation behavior itself is comprised of two main components: a perceptual schema detect-

formation-position, and a motor schema maintain-formation. The perceptual schema determines

where the robot should be located based on the formation type in use, the robot's relative position in

the overall formation, and the locations of the other robots. Maintain-formation generates a vector

towards the correct position, with the magnitude based on how far out of position the robot �nds itself.

Three di�erent approaches for determining a robot's position in formation are described in [5.]. Here

we will present the unit-center approach, where the position depends on the locations of the other

robots, the overall unit heading, and the formation type. A unit-center is computed by averaging the

positions of all the robots involved in the formation, then each robot determines its own formation

position relative to that center.

A vector generated by maintain-formation always directs the robot from its current position

towards the formation position. It varies from zero magnitude to a maximum value depending on how

far out of position the robot is (Figure 5):

� Ballistic zone: the robot is far out of position, so the output vector's magnitude is set at its

4

detect_formation_position(formation_type, formation_heading, robot_positions)

/* The unit-center is the average of the robot locations.*/

unit_center = average(robot_positions);

/* Now compute where the robot should be if in perfect position.

A lookup table stores the proper positions for each robot for

each type of formation. The value must be rotated and added

to the unit-center to shift from local to global coordinates. */

local_position = lookup_table[formation_type, my_position_number];

correct_position = rotate(local_position, formation_heading) + unit_center;

return(correct_position);

maintain_formation_schema(correct_position, current_position);

/* Compute the vector from the present position of the

robot to the correct position for formation. */

initial_vector = correct_position - current_position;

/* Adjust the magnitude of the vector based on

dead-zone-radius and controlled-zone-radius. */

vector = adjust(initial_vector, dead_zone_radius, controlled_zone_radius);

return(vector);

Figure 4: Pseudo-code for the detect-formation-position perceptual schema, and the maintain-

formation-positionmotor schema.

maximum, which equates to the schema's gain value, with its directional component pointing

towards the center of the computed dead zone.

� Controlled zone: the robot is somewhat out of position and the output vector's magnitude

decreases linearly from a maximum at the farthest edge of the zone to zero at the inner edge. The

directional component is towards the dead zone's center.

� Dead zone: the robot is within acceptable positional tolerance. Within the dead zone the vector

magnitude is always zero.

Pseudo-code for this computation and for determining the robot's formation position are given in

Figure 4. These behaviors were ported to Lockheed-Martin's UGVs and successfully demonstrated at

Demo C on two UGVs in Denver, Colorado in the summer of 1995.

4 Mission Speci�cation for Multi-robot Systems

Another pressing problem for the UGV Demo II program in particular and for robotics in general is

how to provide an easy-to-use mechanism for programming teams of robots, making these systems more

accessible to the end-user. Towards that end, the MissionLab mission speci�cation system has been

developed [13.]. An agent-oriented philosophy is used as the underlying methodology, permitting the

recursive formulation of societies of robots.

A society is viewed as an agent consisting of a collection of either homogeneous or heterogeneous

robots. Each individual robotic agent consists of assemblages of behaviors, coordinated in various ways.

Temporal sequencing [4.] a�ords transitions between various behavioral states which are naturally

represented as a �nite state acceptor. Coordination of parallel behaviors can be accomplished via fusion

(vector summation), action-selection, priority (e.g., subsumption) or other means as necessary. These

individual behavioral assemblages consist of groups of primitive perceptual and motor behaviors which

ultimately are grounded to the physical sensors and actuators of a robot.

5

1

3

Ballistic Zone

Controlled Zone

Dead Zone

Figure 5: Zones for the computation of maintain-formationmagnitude

An important feature of MissionLab is the ability to delay binding to a particular behavioral ar-

chitecture (e.g., schema-based, SAUSAGES, subsumption) until after the desired mission behavior has

been speci�ed. Binding to a particular physical robot occurs after speci�cation as well, permitting the

design to be both architecture- and robot-independent.

MissionLab's architecture appears on the left of Figure 6. Separate software libraries exist for

the abstract behaviors, and the speci�c architectures and robots. The user interacts through a design

interface tool (the con�guration editor) which permits the visualization of a speci�cation as it is created.

The right side of Figure 6 illustrates an exampleMissionLab con�guration that embodies the behavioral

control system for one of the robots used in the AAAI robot competition (Sec. 6). The individual

icons correspond to behavior speci�cations which can be created as needed or preferably reused from an

existing repertoire available in the behavioral library. Multiple levels of abstraction are available, which

can be targeted to the abilities of the designer, ranging from whole robot con�gurations, down to the

con�guration description language for a particular behavior.

After the behavioral con�guration is speci�ed, the architecture and robot types are selected and

compilation occurs generating the robot executables. These can be run within the simulation environ-

ment provided by MissionLab (Fig. 7 left) or, through a software switch, they can be downloaded to the

actual robots for execution (Fig. 7 right).

MissionLab was demonstrated at UGV Demo C in the Summer of 1995 to military personnel. Mis-

sionLab is available via the world wide-web at:

http://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab.html.

5 Team Teleautonomy

Another important control aspect is concerned with the real-time introduction of a commander's in-

tentions to the ongoing operation of an autonomous robotic team. We have developed software in the

context of the UGV Demo II program to provide this capability in two di�erent ways.

� The commander as a behavior. In this approach a separate behavior is created that permits

the commander to introduce a heading for the robot team using an on-screen joystick (Fig. 8

left). This biases the ongoing autonomous control for all of the robots in a particular direction.

Indeed, all other behaviors are still active, typically including obstacle avoidance and formation

maintenance. The output of this behavior is a vector which represents the commander's directional

intentions and strength of command. All of the robotic team members have the same behavioral

response to the operator's goals and the team acts in concert without any knowledge of each

other's behavioral state.

� The commander as a supervisor. With this method, the operator is permitted to conduct

behavioral modi�cations on-the-
y. This can occur at two levels.

6

Graphic
Designer

[CDL, Intentions, Situation]

Optimizer

N&S tests

CDL Compiler
syntax semantics

Compiler
Interface

[CNL, Requirements]

Code generator
interface

Architecture
Descriptions

Robot
Descriptions

architecture
behaviors

j

execute on
matching
simulation

execute on
matching
robot

Executable
control programs

Behavior
library

Maintenance
Interface

Architecture
binder
interface

Architecture specific
and robot specific

representations

U
S
E
R

be
ha

vi
or

s

behaviors

robot
architecture
behaviors

i
j

Architecture
binding

Robot
binding

Requirements
checking

Requirements
checking robot

architecture
behaviors

i
j

Code generator
for Code generator

for SAUSAGES
Code generator
for Denning
architecture

Figure 6: MissionLab. The system architecture appears on the left. A �nite state con�guration cor-

responding to the AAAI Robots appears on the right. This FSA di�ers slightly from the version

implemented in Figure 12.

{ For the knowledgeable operator, the low-level gains and parameters of the active behav-

ioral set can be adjusted directly if desired, varying the relative strengths and behavioral

composition as the mission progresses.

{ For the normal operator, behavioral traits (\personality characteristics") are abstracted and

presented to the operator for adjustment. These include such things as aggressiveness (in-

versely adjusting the relative strength of goal attraction and obstacle avoidance) and wan-

derlust (inversely varying the strength of noise relative to goal attraction and/or formation

maintenance) (Fig. 8 right). These abstract qualities are more natural for the operator un-

skilled in behavioral programming and permit the concurrent behavioral modi�cation of all

of the robots in a team according to the commander's wishes in light of incoming intelligence

reports.

An example illustrating the utility of the directional control approach is in the extrication of teams

from potential traps. In Figure 9, a run is shown using two of our Denning Mobile robots. The active

behaviors include avoid-static-obstacle,move-to-goal, and column-formation. The robots wander

into the box canyon and become stuck trying to make their way to the goal point speci�ed behind the

box-canyon (top-left photograph). The operator intervenes, using the joystick to direct the robots to

the right. While moving they continue to avoid obstacles and maintain formation. Once clear of the

trap (top-right photograph), the operator stops directing the robots and they proceed autonomously to

their goal. The overall execution trace is depicted at the bottom of Figure 9.

The directional control team teleautonomy software has been successfully integrated by Lockheed-

Martin into the UGV Demo II software architecture and was demonstrated in simulation to military

7

Figure 7: Left: Simulated Run on Denning Robot. Right: same code executed on actual Denning Robot

Figure 8: Left: On-screen Directional ControlRight: Personality slider bars

observers during UGV Demo C. Both directional and personality control have been integrated into the

MissionLab system described above and is available in the MissionLab release via the world wide web.

Additional information on team teleautonomy can be found in [3.].

6 A Team of Trash-collecting Robots

This section describes a team of robots designed for trash-collecting. Speci�cally, the task for these

robots is to gather items of trash, primarily red soda cans, and deposit them near blue wastebaskets.

They must operate in an o�ce environment including obstacles like tables and chairs. The design we

present builds on motor schema research presented in earlier sections of the chapter. These robots show

how simple individual primitive behaviors may be combined, sequenced and instantiated on several

robots to yield a successful cooperating team. A detailed account of this e�ort is available in [6.].

Io, Ganymede and Callisto (Figure 10) were built primarily with o�-the-shelf, commercially available

components. The base was purchased as a radio-controlled tank with two separately motorized treads.

Motor and perceptual schemas run on a PC-compatible motherboard, while control and sensing tasks

are implemented on a separate micro-controller board. Each robot is equipped with a forward looking

color camera and a gripper for grasping trash (Figure 11).

The robots use color vision to �nd trash items (attractors), other robots (kin), and wastebaskets.

To facilitate the vision task, the robots were painted bright green, trash items are presumed to be red

(Cola Cans) and wastebaskets are blue recycling containers. A set of sequenced behavioral assemblages,

presented next, leads the robots through the states necessary to complete the task.

8

Figure 9: Teleautonomous extrication from a box canyon of a team of 2 Denning mobile robots (viewed

from above).

Top: Robots trapped in box canyon (left) and after teleautonomous removal (right).

Bottom: Execution Trace of Robotic Run, (rotated 90 degrees clockwise relative to the photographs

above).

Figure 10: Ganymede, Io, and Callisto.

9

Bumper

Hands

Soda

Can

Servo

Vehicle

Control Linkages

IR Beam

Figure 11: Close-up of trash manipulator.

6.1 Behaviors for Trash-collecting

This task lends itself to a sequential state-based solution: search for trash objects; if one is found, move

towards it; if close enough, grasp it; now look for a wastebasket; and so on. The sequence of states

is naturally represented as a Finite State Acceptor (FSA). The sequence developed for our robots is

depicted in Figure 12. Paartial pseudo-code for the FSA is shown in Figure 13.

We �rst examine the behavioral design starting at the highest level of abstraction, then successively

narrowing our focus to lower levels of the sensor software. Each state, or behavioral assemblage, in

the FSA represents a group of activated perceptual and motor schemas. Outputs of the active motor

schemas are combined as described earlier (Section 2.2) and output for motor control. Pseudo-code for

one of the assemblages, wander-for-trash is listed in Figure 14.

Wander
for

Trash
to

Move

Trash Trash

Grab
Start

Move

to

Trashcan

Wander

for

Trashcan

trash_detected = 1 IR_beam = 0

IR_beam = 0

Backup1
gripper_closed = 1bumper_pushed = 1

Turn 90 Backup2
always

Drop

Trash

always

always

trashcan_detected = 1at_trashcan = 1

always

IR_beam = 1

(add obstacle)

IR_beam = 1

(add obstacle)

put_can look_for_basket

pick_up_trashlook_for_canstart

Figure 12: Implemented robot behavioral state diagram for the trash-collecting task. The blocks cor-

respond to the more abstract states depicted in Figure 7. Some additional transitions were added for

fault-tolerance.

6.2 Image Processing for Kin Recognition

We now focus the perceptual component of the wander-for-trash behavior concerned with kin recog-

nition. The perceptual schema sense-robots uses a combination of vision and short-term memory to

track other robots. When another robot is detected visually, its position is noted and added to a list

of robots recently seen (a check is made to ensure there are no duplicate entries). Entries are removed

when they get stale after 60 seconds. Short-term memory is important since nearby agents are often

lost from view as the robot moves or turns. Pseudo-code for sense-robots appears in Figure 15.

10

state = START;

do forever

/*

* Execute behavioral assemblages according to which state the

* agent is in.

*

* bumper_pushed == 1 means one of the contact sensors is pushed.

* ir_beam == 1 means the IR beam in the gripper is intact.

* It is 0 if the beam is broken, in the case of

* a potential trash object.

*/

switch(state)

case START:

do forever

start();

if (bumper_pushed == 1)

state = WANDER_FOR_TRASH;

break; /* out of do forever */

break; /* out of this state */

case WANDER_FOR_TRASH:

do forever

wander_for_trash();

if (bumper_pushed == 0 and ir_beam == 0)

state = GRAB_TRASH;

break; /* out of do forever */

else if (trash_detected == 1)

state = MOVE_TO_TRASH;

break; /* out of do forever */

break; /* out of this state */

case MOVE_TO_TRASH:

do forever

move_to_trash();

if (trash_detected == 0)

state = WANDER_FOR_TRASH;

break; /* out of do forever */

else if (bumper_pushed == 0 and ir_beam == 0)

state = GRAB_TRASH;

break; /* out of do forever */

break; /* out of this state */

/* OTHER STATES DELETED FOR BREVITY */

Figure 13: Partial pseudo-code implementing three states of the FSA for a sequenced trash-collecting

behavior. This is the highest level control code for each robot.

11

wander_for_trash();

/* Compute motor vectors in parallel.

Each schema may call embedded perceptual

schemas. The result is multiplied by a

gain value, indicating its relative strength. */

execute_in_parallel {

/* Compute repulsion from sensed obstacles. */

vector1 = obstacle_gain * avoid_obstacle_schema(sense_obstacles);

/* Add a random conponent to motion to avoid local minima */

vector2 = noise_gain * compute_noise();

/* Compute repulsion from sensed robots. */

vector3 = robot_gain * avoid_robot(sense_robots());

} /* end parallel */

/* Move the robot according to the normalized sum of the motor vectors */

move_robot(normalize(vector1 + vector2 + vector3));

Figure 14: Pseudo-code for the wander-for-trash state. In this state, the robot is repulsed by other

robots.

sense_robots();

/* Remove stale memories of other robot locations. */

robot_list = age(robot_list);

/* Get a list of visually acquired robots. */

visual_robots = find_robots_in_image();

/* Add new visually-acquired robots to the list, and

refresh the memory of ones that we've seen again. */

for (each robot in visual_robots)

if (robot not in robot_list)

add_to_list(robot_list, robot);

else

refresh(robot_list, robot);

return(robot_list);

Figure 15: Pseudo-code for the sense-robots perceptual schema.

12

find_robots_in_image();

detected_robot_list = empty;

/* grab the image */

image = digitize_image();

/* enhance and threshold green component */

for (each pixel x and y)

supergreen[x,y] = image.green[x,y] - (image.red[x,y] + image.blue[x,y]);

thresholded[x,y] = threshold(threshold_value, supergreen[x,y]);

/* Extract blobs of pixels above the threshold from the green image */

blobs = find_blobs(thresholded, min_blob_size);

for (each blob in blobs)

/* compute range and azimuth to the blob based on camera parameters */

blob.range = camera_height * arctan(blob.bottom_pixel * degrees_per_pixel);

blob.azimuth = blob.center_pixel * degrees_per_pixel;

/* estimate the other robot's relative position, +x is forward */

local_robot = convert_from_polar(blob.range, blob.azimuth);

/* convert into global coordinates and add to list */

global_robot = rotate(local_robot, -current_heading) + current_position;

add_to_list(detected_robot_list, global_robot);

return(detected_robot_list);

Figure 16: Pseudo-code for �nd-robots-in-image, which processes a color image to �nd the green blobs

corresponding to other robots. For these computations, the center of the camera image is assumed to

be [0,0] and negative azimuth is to the left. The robot's egocentric coordinates have +y straight-ahead

and +x to the right. The robot tracks its position and the position of other robots.

13

Robots are detected visually in the �nd-robots-in-image routine (Figure 16). We were limited to

simple image processing since complex schemes would limit the robot's real-time performance, or might

not have �t in the limited RAM. Overall, the approach is to isolate colored blobs in the robot camera's

view, then use simple trigonometry to estimate the locations of objects associated with the blobs in the

environment. Processing for green blobs �nds the positions of other visible robots (kin).

The �rst step is to extract separate red, green and blue components from the image. One might

begin the search for green objects by simply inspecting the green image component, but a problem with

using just one of the color components occurs because many bright objects (e.g., specular re
ections)

have strong red and blue components in addition to green. In other words, one cannot infer that an

object is green just because it has a large green component alone. To get around the problem, a super-

component for each primary color was computed �rst. Super-components for one color are computed

by subtracting each of the other color components from it. Supergreen, for example, is computed as

green� (red+ blue). So a white blob (as in a specular re
ection) will have low supergreen component,

while a green blob will have a bright supergreen component. This approach signi�cantly improves

performance when searching for speci�cally colored objects. A sample luminance and supergreen image

are shown in Figure 17. Notice how well the green robot stands out.

After the green super-component is computed, the resultant image is thresholded so that pixels below

a certain value are set to 0; those above are set to 255. Although the system is not extremely sensitive,

the best performance results when the threshold value is tuned for ambient lighting conditions. Groups

of adjoining bright pixels (255) are classi�ed as a blob if there are more than a certain number of them

in the group. The minimum blob size is typically set to 100 pixels. The angular o�set (azimuth) to the

object is computed from the �eld of view of the camera (pixels per degree). We are able to compute

range to an object by �nding the lowest pixel of the corresponding blob. Since all perceptual objects

(trash, robots and wastebaskets) rest on the
oor and the camera sits at a �xed height above the ground,

all objects the same distance away will lie equally low on the image plane. Range is estimated using the

trigonometric relation:

r =
h

tan�1(�)
(1)

where r is range, h is the camera height, and � is the apparent angle to the bottom of the object from

the center of the image. � may be computed by counting pixels from the center of the image to the

bottom of the blob, based on the number of degrees covered by one pixel. In a �nal step, the range

and azimuth data are converted to cartesian coordinates within the robot's reference frame. The entire

process takes about one second.

Figure 17: A robot's-eye view of a laboratory scene including another green robot, two red soda cans

and a blue wastebasket. The image on the right shows the image after processing to highlight green

pixels. Notice how well the robot stands out.

14

6.3 Performance of the Trash-collecting Team

The robots competed in three preliminary trials and in the �nal competition, winning the Clean-up task

at the AAAI-94 Mobile Robot Contest [16.]. In our laboratory, the robots have sometimes gathered as

many as 20 soda cans in 10 minutes. But in the best run at the contest, the robots collected only 15

cans. One reason for not equaling the earlier performance is that the contest required the use of black

wastebaskets, rather than the blue ones the robots had been designed for.

The competition team revised the image processing software to seek dark objects, as opposed to

blue ones in the move-to-trashcan phase. Unfortunately, this led to robots occasionally \hiding" soda

cans under tables or other shadowy areas, as they confused them with wastebaskets. Finally, we took

advantage of another perceptual clue for wastebaskets: the fact that from a robot's point of view all

wastebaskets must cut through the horizon. In other words, part of the wastebasket is below camera

level, and part of it is above camera level. This ruled out most non-wastebasket blobs.

Except for the complications regarding black wastebaskets, the system performs very well. The

robots easily �nd red soda cans and move quickly towards them. The robot-robot repulsion is usually

obvious to the observer and clearly helps the team spread out in the search phase.

7 Summary and Open Questions

In this chapter we have presented several of the many aspects of multiagent control. These include the

coordination of motion to maximize e�ort as seen in formation maintenance; methods by which pro-

gramming of multiagent systems can be made easier through the use of visual programming using tools

such as MissionLab; and methods by which a human operator can e�ectively interact with teams of mo-

bile agents without becoming overwhelmed by the sheer numbers of robots. Two very di�erent problem

domains have motivated our research: military scouts and janitorial robots. Successful implementations

of many of these ideas have been completed in these domains.

Other important questions still confront multiagent robotics researchers. A few include:

� How can we introduce adaptation and learning to make these systems more
exible within a

changing environment?

� How can we ensure robust inter-robot communication that is both task and environment sensitive?

� How well will these ideas scale to large swarms of robots on the order of perhaps ten thousand or

more?

� How can biological systems inform us to ensure we are providing a sound ecological �t of the robot

to its environment, producing long-term survivable systems?

Our laboratory and others continue to pursue answers to these and other important questions re-

garding cooperative multiagent robotic systems.

Acknowledgments

Funding to support this research has been provided by the National Science Foundation under Grant

#IRI-9100149 and ARPA/ONR under Grant #N00014-94-1-0215. Doug MacKenzie and Khaled Ali

provided the �gures for MissionLab and team teleautonomy respectively and are primarily responsi-

ble for their development. Matt Morgenthaler and Betty Glass at Lockheed-Martin were primarily

responsible for the porting of software developed in Georgia Tech laboratories to the UGV Demo II

vehicles. Development of the trash-collecting robots was funded by the CIMS/AT&T Intelligent Mecha-

tronics Laboratory at Georgia Tech. The AAAI provided a generous grant for travel to the AAAI-94

competition in Seattle.

15

References

1. Arkin, R.C., 1989. \Motor Schema Based Mobile Robot Navigation", International Journal of

Robotics Research, vol 8(4), pp. 92-112.

2. Arkin, R.C., \Reactive Robotic Systems", article in Handbook of Brain Theory and Neural Networks,

ed. M. Arbib, MIT Press, pp. 793-796, 1995.

3. Arkin, R.C. and Ali, K., \Integration of Reactive and Telerobotic Control in Multi-agent Robotic

Systems", Proc. Third International Conference on Simulation of Adaptive Behavior, (SAB94) [From

Animals to Animats], Brighton, England, Aug. 1994, pp. 473-478.

4. Arkin, R. and MacKenzie, D., \Temporal Coordination of Perceptual Algorithms for Mobile Robot

Navigation", IEEE Transactions on Robotics and Automation, Vol. 10, No. 3, June 1994, pp. 276-286.

5. Balch, T., and Arkin, R.C., \Motor schema-based formation control for multiagent robot teams",

First International Conference on Multiagent Systems, June 1995, San Francisco, pp. 10-16.

6. Balch, T., Boone, G., Collins, T., Forbes, H., MacKenzie, D., and Santamar��a, J. \Io, Ganymede

and Callisto - a multiagent robot trash-collecting team", AI Magazine, 16(2):39{51, 1995.

7. Cao, Y., Fukunaga, A., Kahng, A., and Meng, F., \Cooperative Mobile Robotics: Antecedents

and Directions", Proc. 1995 IEEE/RSJ International Conference on Intelligent Robotics and Systems

(IROS '95), Pittsburgh, PA, Vol. 1, pp. 226-34 Aug. 1995.

8. Dudek, G., Jenkin, M., Milios, E., and Wilkes, D., 1993. \A Taxonomy for Swarm Robots",

Proc. 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Yokohama,

Japan, pp. 441-447.

9. Fukuda, T., Nakagawa, S., Kawauchi, Y., and Buss, M., \Structure Decision for Self Organising

Robots Based on Cell Structures - CEBOT", IEEE International Conference on Robotics and Au-

tomation, Scottsdale Arizona, 1989, pp. 695-700.

10. International Symposium on Distributed Autonomous Robotic Systems, RIKEN, Saitama, Japan,

1992 and 1994.

11. Khatib, O., \Real-time Obstacle Avoidance for Manipulators and Mobile Robots", Proc. IEEE Int.

Conf. Robotics and Automation, p. 500, St. Louis, 1985.

12. Lee, J., Huber, M., Durfee, E., and Kenny, P., \UM-PRS: An Implementation of the Procedural

Reasoning System for Multirobot Applications", AIAA/NASA Conference on Intelligent Robots in

Field, Factory, Service, and Space (CIRFFSS '94), March 1994, pp. 842-849.

13. MacKenzie, D., Cameron, J., Arkin, R., \Speci�cation and Execution of Multiagent Missions",

Proc. 1995 Int. Conf. on Intelligent Robotics and Systems IROS '95, Pittsburgh, PA, Vol. 3, pp. 51-58.

14. Mataric, M., \Minimizing Complexity in Controlling a Mobile Robot Population", Proc. IEEE

International Conference on Robotics and Automation, Nice, FR, May 1992.

15. Parker, L., \Adaptive Action Selection for Cooperative Agent Teams", From Animals to Animats:

Proc. 2nd International Conference on the Simulation of Adaptive Behavior, MIT Press/Bradford

Books, Honolulu, HI, 1993, pp. 442-450.

16. Simmons, R., \The 1994 AAAI mobile robot competition and exhibition", AI Magazine, 16(2):19{

30, 1995.

17. U.S. Army, Field Manual No 7-7J. Department of the Army, Washington, D.C., 1986.

16

