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1 Mobile Robots, Navigate!

Navigation is a special task for mobile robots; after all, isn't getting somewhere

what being mobile is all about? And getting somewhere in a complex environ-

ment means navigation. You may not have given much thought to how you

manage to walk across a crowded parking lot, but programming a robot to do

the same thing is challenging. Coordinating sensor and motor skills are not the

least of the problems, but we'll leave those issues for others to solve for now.

This article will examine path planning: how a robot can select a path to a goal.

There's a section on equipment your robot will need to navigate and a

step-by-step explanation of how to implement an e�cient cost-based algorithm.

Tested C source code is included; it's also available by ftp (see the end of the

article for ftp information).

2 What A Robot Needs to Navigate

There are a few capabilities a robot must have to navigate. Most importantly it

must have some way of sensing where it is supposed to go. This informationmay

be provided by an infrared beacon at the goal, it might be an (x; y) coordinate,

or if the robot is equipped with a positional sensor like GPS, a point on the

earth's surface de�ned by latitude and longitude. It is also important for the

robot to know where it is in relation to the goal. I'll assume this information is

available and that it has been converted into cartesian coordinates. The robot's

location is given by (robot_x, robot_y) and the goal is (goal_x, goal_y).

You might be wondering how accurate these values need to be. It depends. If

your robot directly senses the goal as it moves about, homing on an IR beacon

for instance, the values can be somewhat coarse. The accuracy of this type

of sensory information does not degrade over time. On the other hand, if the

robot depends on internal sensors for position, using timing or shaft encoders for

instance, the data must be more precise. As the robot moves about its estimate

of position will get worse and worse with this type of sensor. In the end you'll
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have to experiment with your particular robot to see if its position sensors are

good enough.

Next, the robot must be able to detect obstacles. Sonar range sensors,

infrared proximity sensors and laser ranging devices are all excellent, but a

good old bump sensor works just �ne.

Last is the issue of computing power and memory. The code listings here

were implemented and tested on a Unix system with lots of memory. I realize

many robots are running around with a 6811 and only 512 bytes of RAM.

There's no reason the code shouldn't work on a 6811 (provided you have a

compiler), but you'll probably need at least 10K of RAM. The code is in C; but

translation to assembly, BASIC, or other languages should be straight forward.

Just remember: grid-based path planners are traditionally compact in code, but

fat in RAM.

Now on to path planning.

3 Representation for Navigation

Lots of approaches to robot path planning have been proposed and implemented.

An important distinction between them is in how they represent the world.

\Representation" refers to how the data is stored in a computer's memory and

how that corresponds to objects in the outside world. In this article, we'll look

at one type of grid-based representation. A good reference for information on

other approaches is the book Robot Motion Planning, by Jean-Claude Latombe.

He covers this approach, and others, in great detail.

With respect to navigation, the world consists of open areas, where a robot

may travel freely and closed areas (obstacles) where the robot cannot travel.

We'll represent these two types of space in a two-dimensional occupancy grid.

Each cell in the grid corresponds to a small section of the real world. The

occupancy grid is �lled in so that a cell is marked \empty" if the corresponding

part of the world is free space, and \full" if it contains an obstacle. Figure 1

shows how an example scene is represented in an occupancy grid. Occupancy

grids are convenient for a robot to update when sensors indicate changes in the

world. They are also easy to use for planning. The primary disadvantage is

memory consumption; a high resolution map might require several megabytes.

The occupancy grid is usually read in from a �le at start-up time. But such

a map may not always be available, or even worse, it might be available but

wrong. Luckily, occupancy grids are easy to update if the robot discovers a

discrepancy. Suppose, for instance, that the robot discovers a new obstacle just

to the north of itself. Since north is in the +Y direction, the occupancy grid is

corrected like this:

occupancy[robot_x][robot_y + 1] = FULL;
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Figure 1: How an example scene (left) is represented in an occupancy grid

(right). The black cells are \full" while the white ones are \empty". Locations

of the goal and the robot are not usually stored in the occupancy grid, but here

they are colored gray for visualization purposes.

Similarly, if space to the east was previously thought to be occupied but

turns out to be free, the correction is made by:

occupancy[robot_x + 1][robot_y] = EMPTY;

Note that changes in the occupancy grid will require a replanning step since

a new obstacle might obstruct the planned route, or newly discovered open space

might o�er a short cut.

One �nal issue regarding the occupancy grid is resolution. The grid's res-

olution refers to how large an area in the real world is represented by one cell

in the grid. The example uses a 1 foot resolution on 10 by 10 foot grid (Fig-

ure 1). For most robot applications this resolution is too low. Low resolution

may lead to a less optimal path and jerky robot motion. The selection of a

resolution should depend on the accuracy of the robot's position sensors, how

fast it will move and how much memory is available. In general, it is best to

use as high a resolution as possible since this will result in the most accurate

representation of obstacles and the \smoothest" plan. But there are reasons to

avoid too high a resolution. It doesn't make sense, for instance, to use a higher

resolution than the precision of the robot's position sensor. Also, if the robot

moves so quickly that it skips over several cells between computation cycles, the

resolution is probably too high. Finally, higher resolution maps will take longer

to plan over and use more space. A good starting point is to set the resolution

to the distance your robot will travel in one computation cycle.

4 Representation of the Plan

The plan is a cost grid. Each cell in the grid is an estimate of the shortest

travel distance from that point to the goal. Usually the cost grid is the same
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8.66 7.66 6.66 5.66 5.24 4.83 4.41 4.00 4.41 4.83

8.24 7.24 6.24 5.24 4.24 3.83 3.41 3.00 3.41 3.83

8.66 7.66 6.66 BIG 3.83 2.83 2.41 2.00 2.41 2.83

9.07 8.07 BIG BIG BIG BIG 1.41 1.00 1.41 2.41

9.49 9.07 9.49 BIG BIG BIG 1.00 0.00 1.00 2.00

10.49 10.07 9.66 9.24 BIG BIG 1.41 1.00 1.41 2.41

10.66 9.66 8.66 8.24 BIG BIG 2.41 2.00 2.41 2.83

10.24 9.24 8.24 7.24 BIG BIG 3.41 3.00 3.41 3.83

9.83 8.83 7.83 6.83 5.83 4.83 4.41 4.00 4.41 4.83

10.24 9.24 8.24 7.24 6.24 5.83 5.41 5.00 5.41 5.83

Figure 2: The cost grid for the example navigation problem.

Figure 3: The cost grid viewed as a three dimensional surface.

resolution as the occupancy grid. This makes referencing one while using the

other more convenient.

For the moment don't worry about how cost cells are �lled in. You'll see

how to do that in the next section. Look at Figure 2. This is a cost grid for the

example in Figure 1. Note that the cost at the goal cell is 0.0, and the cost at

other cells increases the further they are from the goal. To get a better idea of

what the cost grid looks like we can view a three dimensional surface generated

by plotting the cost at each point as a height. Figure 3 shows the plot for this

cost grid. The high spots on the plot are obstacles. The goal is at the low point

at the front right. You can see that following the plan is just like rolling a ball

down hill.
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Figure 4: This sequence shows how cost computation expands outwardly from

the goal. Initially (left), only the cost at the goal is known. The other images,

from left to right, show the cells that have been evaluated after 1, 4 and 7

iterations.

5 How the Cost Grid is Computed

As you may realize by now, the hard part is computing the cost grid. Recall

that the number in each cell is an estimate of the cost of traveling from that

cell to the goal.

First the program sets all the cells in the grid to initial values. Goal and

obstacle cells have constant values throughout the computation. Since the cost

of traveling from the goal to the goal is 0 the goal cell is always set to 0:0. Since

traveling through obstacles is not normally desired (!) we discourage this by

setting the cost at obstacle cells to an arbitrarily large value called BIG_COST.

\Empty" cells are also initially set to BIG_COST, but lower values for them will

be computed later.

After setting the cells to initial values, the program repeatedly scans through

the grid looking for cells it can reset to lower values. The lower cost is computed

by looking at neighboring cells and using an estimate of travel cost from the

adjacent cells to the current cell. For laterally adjacent cells the estimate is

1:0, and for diagonally adjacent cells it's
p
2. This is just the distance from the

center of one cell to the center of the next, assuming each cell measures one

unit on a side. Note that if the cost estimates were multiplied by the resolution

of the grid the values at each cell would re
ect the true distance to the goal.

At each sweep through the grid one more layer of cells is re-evaluated until,

eventually, the entire grid is minimized. Figure 4 shows how the evaluation

spreads outwardly from the goal.

At heart of the planner is the procedure cell_cost() (listing at end of

article). cell_cost() evaluates the cost at one cell by inspecting the cost of

each cell adjacent to it. For the neighboring cells, it adds appropriate lateral or

diagonal travel costs and notes the lowest value. That lowest value is recorded

in the current cell. cell_cost() returns a 0 if there was no change in the cost,

1 otherwise.

We now have all the pieces needed to build a cost-based grid path planner.

Here it is:
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int count = 1;

while (count != 0)

{

count = 0;

for (i = 1; i < GRID_SIZE-1; i++)

{

for (j = 1; j < GRID_SIZE-1; j++)

{

count = count + cell_cost(i,j);

}

}

}

Yes, that really is the entire planner! It repeatedly cycles through the grid

to recompute each cell's cost until it makes a full pass with no changes. Now

for the bad news: as it stands, this planner is extremely ine�cient. If the grid

has N cells along each side, and we plan over a complicated map, it might cycle

through the grid N2 times and make N4 cell evaluations. This will use up a lot

of CPU cycles for a large grid. In a later section we'll see how to make it faster.

6 Using the Cost Grid as a Plan

Let's look at how to employ the cost grid as a plan. Provided the robot knows

its own location, using the plan is as simple as

new_direction = check_plan(robot_x, robot_y);

The function check_plan() knows how to consult the cost grid and return

a heading for the robot. It looks at the region in the cost grid corresponding to

where the robot is in the world. Then it choses the direction along the shortest

path to the goal (i.e. \down hill" on the cost grid).

To do this, check_plan() looks at a sample of nearby cells to compute the

gradient at the position of the robot. The gradient is down hill on the cost grid.

X and Y components of the gradient are computed separately, then the atan2()

function is used to convert them into a direction between 0 and 2�. If one of the

nearby cells contains an obstacle, check_plan() uses the direction towards the

lowest cost neighbor instead of using the gradient. This avoids jittering when

the robot is near obstacles.

7 Pulling it All Together

A robot using a grid-based planner should follow a cycle of planning and acting

something like this:
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1. Initialize variables and read the map.

2. Plan.

3. Check sensors to �nd robot position, goal and nearby obstacles.

4. Update map if sensors show a discrepancy.

5. If the map has changed, recompute the plan.

6. Check plan and initiate movement along shortest path.

7. Go to 3.

This sequence is used in the C code below. But this program is just a

simulation until you replace the sensing and movement \stub" procedures with

appropriate subroutines for your hardware.

The program includes a procedure called readmap() that will read a map of

obstacles into the occupancy grid and initialize the robot and goal locations. If

you want to use this capability, you can make a map of the environment in a

text �le using spaces for open space, the letter `O' for obstacles, the letter `G'

for the goal, and `R' for the robot. The example from Figure 1 can be coded in

a text �le as:

          <CR>

          <CR>

   O      <CR>

  OOOO    <CR>

R  OOO G  <CR>

    OO    <CR>

    OO    <CR>

    OO    <CR>

          <CR>

          <CR>

The t symbol indicates a space, and < CR > indicates the end of a line.

If you run the program using this input �le, it will simulate moving the robot

from its initial location (1; 6) to the goal, (8; 6). The resulting path is shown in

Figure 5. If the computer on your robot cannot read �les, you'll obviously have

to avoid using readmap().

Also, if you'd like, you can print out the cost grid using the function printcost()

8 Making it Faster

Earlier, I pointed out that the present routine for computing the cost grid is

ine�cient. For the example problem 1000 cell evaluations are made. This means
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Figure 5: A simulated robot navigates across the scene on the left. The resulting

path is shown on the right.

each cell in the 10 by 10 grid is evaluated 10 times. It should really only be

necessary to evaluate each cell once. But if e�ciency is not important, you

might want to stick with the slower version since it is less complicated.

The main problem with the old planner is that cells are not evaluated in

an e�cient order. Let's look a better way to order the evaluations. Consider

the �rst time a cell is evaluated. Recall that all the cells are initially set to

BIG_COST. If all the cells adjacent to the current cell contain BIG_COST as well,

there is no way the cell can be lowered. A cell should not be evaluated until after

one of its neighbors has been lowered, otherwise we're wasting time. Initially,

the only cells with a low cost neighbor are the cells next to the goal, so they

should be evaluated �rst. Also, if we can be sure the �rst evaluation is correct,

there is no need to evaluate a cell again.

One way to do this is to arrange for cells to trigger the evaluation of neigh-

boring cells after their cost values have been lowered. To do this we keep a list,

called the open list, of cells whose cost has been lowered. It is automatically

sorted from lowest to highest using linked list routines. Cells are \popped" o�

the top of the list by a routine called expand(). After expand() pops a cell o�

the list, it looks at each of the cell's neighbors to determine if they have been

evaluated. Each cell that has not been evaluated is evaluated at that point,

then pushed onto the open list for later expansion. This ensures that the lowest

cost cells are expanded �rst.

The new planner works by �rst pushing the goal onto the open list. Next it

repeatedly pops cells o� the list and expands them until the open list is empty.

The computation eventually terminates since each cell is expanded only once

and cells outside the boundaries are not pushed onto the list.

This planner makes only 85 cell evaluations on the example problem, so it

runs about 10 times as fast as the old planner for that case. In most situations
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the faster planner will run N times faster where N is the number of cells along

one side of the grid. Due to space considerations, listings for fast version are

not not included below, but they are available by e-mail or ftp.

9 Wrapping Up

There are ways to make an even faster grid-based planner. The A* (pronounced

\A star" with a long \a") algorithm works by only expanding nodes along

a direct path between the goal and the robot. D* (pronounced \dee star"),

developed by Anthony Stentz at CMU, initially computes the grid as outlined

here. But D* keeps additional information so that when errors are found in

the map the plan can be corrected without recomputing the entire grid. For

dynamic or unknown situations D* is better since it does not require a complete

replanning step when errors are found.

If you'd rather not type in the program by hand, you can �nd it via anony-

mous ftp at ftp.cc.gatech.edu in the directory people/tucker/gridnav1.0

Another directory, gridnav2.0 contains the fast planner. Get all the �les from

one directory or the other. If you are familiar with tar and uncompress you

can grab gridnav.tar.Z to get them all at once. If you don't have access to

ftp, send me e-mail indicating which version you want and I'll e-mail the �les

back to you (tucker@cc.gatech.edu). After you have the �les on your local

system, a simple make gridnav should compile it for you.
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