Integratating Robotic Technologies with JavaBots*

Tucker Balch and Ashwin Ram

College of Computing
Georgia Institute of Technology

What’s Holding Back Robotics
Research?

Mobile robotics research advances through develop-
ments in theory, and implementation in hardware and
software. While theory is important, this article is
primarily concerned with hardware and software tech-
nologies. It is our view that significant strides in robot
performance can be made just by combining existing
hardware and software tools. Thus the focus of this pa-
per is answering the question: how can we more easily
integrate robotic technologies?

The typical research robot is a hodge-podge of sen-
sor and actuator components from several vendors in-
tegrated in a common computing resource. Control
system software accesses hardware through software
APIs provided by the hardware developers, and “soft
technologies” through their associated APIs. The fo-
cal point of integration is therefore the control system
software.

The problem with most control system implementa-
tions, from the standpoint of reusability and integra-
tion, is their committment to a robot platform and/or
robot architecture. It is rather difficult for instance,
to move a proven control system from one robot to
another, because the APIs for sensing, steering and
motor commands are often quite different in syntax
and semantics on different robot hardware. Portabil-
ity problems may extend to the software components
of robotic systems as well: extracting the path planner
from a robotic system, for example, is just as challeng-
ing as porting a control system.

Therefore, to advance intelligent mobile robotics in
the “Next Leap”, we must emphasize integration of
technologies from the multiple sub-areas of our field.
We should build systems by integrating, rather than
re-inventing technology. Software frameworks for com-
bining behavior, learning, planning, sensing and actu-
ation should be inclusive rather than constrained to a
particular robot architecture or hardware platform.

We argue that the most effective approach is through

*Published in Working Notes of the AAAI 1998 Spring

Symposium.

standardized interfaces (APIs) to robotic hardware and
soft technologies (e.g. path planning toolkits). Jav-
aBots is an example framework that provides this kind
of integration in simulation and on robot hardware.
A high-level common interface to sensors and actua-
tors allows control systems to run on multiple simu-
lated and real hardware platforms. Conversely, Jav-
aBots supports the evaluation of competing control
systems on the same hardware. In the rest of this arti-
cle we briefly describe JavaBots, and provide examples
of robot systems built using it.

JavaBots

JavaBots is a new system for developing and executing
control systems on mobile robots and in simulation.
Individual and multi-robot simulations are supported
(including multiple robot types in the same simula-
tion). The JavaBot system’s modular design enables
researchers to easily integrate sensors, machine learn-
ing and hardware with robot architectures. It is be-
ing utilized in several ongoing research efforts, includ-
ing RoboCup robot soccer, foraging robot teams and
a “robotic pet” development effort.

JavaBots was initially developed as a simulation tool
for investigating robot soccer (Figure 1) (Balch 1997c;
1997b). The ease with which behaviors can be de-
signed and tested, and the flexibility of the simulation
environment lead us to consider the system for use in
a foraging task on mobile robots (Figure 2). In this
project, two Nomadic Technologies’ Nomad 150 robots
were entered as a multi-robot team in AAAD’s 1997
Mobile Robot Competition. In addition to their holo-
nomic drive and ultrasonic sensors, the stock Nomad
150s were equipped with simple grasping manipulators
and vision. The project was completed in less than
three months, with the robots going on to place first
in the “Find Life on Mars” event. The compressed
time in which the development took place speaks to
the integrative advantages of the Java-based system.

We have recently begun a new project to develop a
robotic pet. The long-term objective of this research
is to build an intelligent, adaptive, user-friendly phys-
ical agent. In order to accomplish these objectives,



I&ulhf&'lun‘l Ftart/Bovos| Pmms

amare: G:0 aber: 61

Figure 1: A simulated RoboCup small-size league game
running in the JavaBot simulator.

Figure 2: These Nomadic Technologies’” Nomad 150
robots, Lewis and Clark, won the multiagent ”Find
Life on Mars” event at the AAAI-97 Mobile Robot

Competition using the JavaBot system.

we need to build an agent that has a personality, in-
teracts with its user on an affective level, and learns
about its environment, in addition to autonomously
and spontaneously pursuing its own goals. An ISR
Pebbles (Figure 4) has been selected as the hardware
platform for this work. It is equipped with a tank-
like differential-drive suspension, sonar, IR and bump
hazard sensors and vision. JavaBots enables us to inte-
grate demonstrated navigational behaviors (developed
for the AAAT Competition) with new research in syn-
thetic agent “emotion.” More details on this ongoing
project will be presented at the Symposium.

System Design

JavaBots is not a robot architecture. It is, rather,
a set of Java classes and APIs that bridge robotic soft-
ware components together. One of those components,
of course, is the robot architecture used in the develop-
ment of a control system. JavaBots includes the robot
architecture Clay (derived from Arkin’s AuRA (Arkin
& Balch 1997)) even though the researcher is free to
use his own (Balch 1997a).

The robot control system interfaces with real and
simulated robot hardware through a common API
(Figure 3). The API provides access to robot sensors
and actuators through a basic set of accessor methods.
Any control system using the interface is automatically

API

{ Hardware } { Simulation }

Figure 3: The same control system can run on hard-
ware and in simulation since a single API describes the
interface to both.

supported in simulation and on mobile robots.

Several types of robots are supported, including
stock Nomad 150s, Nomad 150s outfitted with grip-
pers and vision, RoboCup soccer robots, and ISR’s
Pebbles. All the robots share a common subset of in-
terface methods. Additional methods are added when
a specific platform offers a new or unique sensor or ac-
tuator (e.g. vision or a manipulator). A few examples
of the common methods include:

o getHeading() returns the heading of the robot.
e getPosition() returns the location of the robot.

e setSpeed(s) move the robot on it’s current heading
at s meters/sec.

e setSteer(h) steer the robot in the h direction.

A new platform can be supported by simply imple-
menting the API for that robot. This means that, not
only can the same control system run in simulation and
on hardware, but it can run on different types of robot
as well.

Why JavaBots?

One of our goals in developing JavaBots is to provide
a stable, portable platform for the robotics research
community. We hope JavaBots will serve as a common
platform for the exchange and evaluation of new archi-
tectures, learning techniques and other robot technolo-
gies. The choice of Java as the language for this system
is a crucial design decision supporting our goals:

1. Portability: JavaBots runs under Windows 95,
NT, Solaris, SunOS, Linux and IRIX as well as sev-
eral embedded platforms without an OS. All other
robotic development environments we know of are
firmly tied to specific operating systems. This is an
important issue when one considers the wide range
of platforms in use by robotics researchers.

2. Productivity: It’s our experience that program-

mers produce working code much more quickly in
Java than in C or C4++4. In fact, the present Jav-
aBots distribution was developed in less than nine



Figure 4: JavaBots also supports simulation of (left) and hardware runs on the ISR Pebbles robot (right).

months. Additionally, the object-oriented features
of Java provide for code re-use.

3. Modularity: Packages supporting reinforcement
learning, motor schema-based navigation, vision,
hazard sensing and manipulation have all been in-
tegrated and reused in each of our projects.

The significant benefits afforded in items 1 and 2
stem directly from the choice of Java as a programming
language.

What about speed? Since Java is interpreted,
many conclude it isn’t fast enough for robotics appli-
cations. In contrast, we have experienced no problems
in the performance of our behavior-based control sys-
tem. In simulation on a Pentium 200, ten agents can be
simulated and animated with full double-buffering at
40 Hz. On mobile robots the system, including vision
sensing, sonar sensing and motor control, runs at 10 Hz
on Nomad 150 robots. The primary bottleneck is serial
I/O to vision and robot sensor hardware; each sensor
cycle takes nearly 100 milliseconds. It is also important
to mention that many new Java compilers (including
those available for Windows 95 and IRIX) generate
native machine code. Executables run directly on the
hardware.

What about garbage collection? In Java, the
programmer doesn’t have to worry about memory al-
location or disposal, instead, the language handles
this automatically through periodic garbage collection.
This is a key factor in its ease of use, but a potential ob-
stacle to predictable real-time performance. Garbage
collection can happen at any time and may take several
hundred milliseconds. Our solution to this potential
problem is to explicitly call for garbage collection on
every behavioral execution cycle. In simulation, overall
performance degrades by about 10%, but cycle times
never fluctuate. On mobile robots there is no measur-
able change in performance.

The Next Leap for JavaBots

JavaBots will continue to evolve in the future. One
of our highest priorities is supporting integration with
contributed software and hardware packages. We look
forward to the the acceptance of standardized APIs for
sensing, learning, planning and other robotic technolo-
gies, as these will provide the best avenue for tech-
nology interchange. We invite researchers to down-
load and evaluate JavaBots from the world-wide-web
(http://wuw.cc.gatech.edu/ tucker/JavaBots).

Acknowledgments

JavaBots was initially developed in Georgia Tech’s Mo-
bile Robot Laboratory. We are indebted to the Lab-
oratory’s Director, Ronald Arkin, for providing access
to robots and computing equipment used in this work.
Funding for the Robot Pet project was provided by
Yamaha Motor Corporation.

References
Arkin, R., and Balch, T. 1997. Aura: principles

and practice in review. Journal of Experimental and
Theoretical Artificial Intelligence 9(2). to appear.

Balch, T. 1997a. Clay: Integrating motor schemas
and reinforcement learning. College of Computing
Technical Report GIT-CC-97-11, Georgia Institute of
Technology, Atlanta, Georgia.

Balch, T. 1997b. Social entropy: a new metric for
learning multi-robot teams. In Proc. 10th Interna-
tional FLAIRS Conference (FLAIRS-97).

Balch, T. 1997c. Learning roles: Behavioral diversity
in robot teams. In AAAI-97 Workshop on Multiagent
Learning. Providence, R.I.: AAAI.



