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Abstract

Clay is an evolutionary architecture for autonomous robots that in-
tegrates motor schema-based control and reinforcement learning. Robots
utilizing Clay benefit from the real-time performance of motor schemas in
continuous and dynamic environments while taking advantage of adaptive
reinforcement learning. Clay coordinates assemblages (groups of motor
schemas) using embedded reinforcement learning modules. The coordi-
nation modules activate specific assemblages based on the presently per-
ceived situation. Learning occurs as the robot selects assemblages and
samples a reinforcement signal over time. Experiments in a robot soccer
simulation illustrate the performance and utility of the system.

1 Background and Related Work

1.1 Motor Schemas

Motor schemas are an important example of behavior-based robot control. The
motor schema paradigm is the central method in use at the Georgia Tech Mobile
Robot Laboratory, and is the platform for this research.

Motor schemas are the reactive component of Arkin’s Autonomous Robot
Architecture (AuRA) [2]. AuRA’s design integrates deliberative planning at
a top level with behavior-based motor control at the bottom. The lower lev-
els, concerned with executing the reactive behaviors are incorporated in this
research.
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Figure 1: Motor schema example. The diagram on the left shows a vector field
corresponding to a move-to-goal schema, pulling the robot to a location on
the right. The center diagram shows an avoid-obstacles field, repelling the
robot from two sensed obstacles. On the right, the two schemas are summed,
resulting in a complete behavior for reaching the goal. It is important to note
that the entire field is never computed, only the vectors for the robot’s current
location.

Individual motor schemas, or primitive behaviors, express separate goals or
constraints for a task [1]. As an example, important schemas for a navigational
task would include avoid_obstacles and move_to_goal. Since schemas are
independent, they can run concurrently, providing parallelism and speed. Sensor
input is processed by perceptual schemas embedded in the motor behaviors.
Perceptual processing is minimal and provides just the information pertinent
to the motor schema. For instance, a find_obstacles perceptual schema which
provides a list of sensed obstacles is embedded in the avoid_obstacles motor
schema.

The concurrently running motor schemas are integrated as follows: First,
each produces a vector indicating the direction the robot should move to satisfy
that schema’s goal or constraint. The magnitude of the vector indicates the
importance of achieving it. It is not so critical, for instance, to avoid an obstacle
if it is distant, but crucial if close by. The magnitude of the avoid_obstacle
vector is correspondingly small for distant obstacles and large for close ones.
The importance of motor schemas relative to each other is indicated by a gain
value for each one. The gain is usually set by a human designer, but may also
be determined through automatic means, including on-line learning [5], case-
based reasoning [17] or genetic algorithms [16]. Each motor vector is multiplied
by the associated gain value and the results are summed and normalized. The
resultant vector is sent to the robot hardware for execution. An example of this
process is illustrated in Figure 1.




The approach bears a strong resemblance to potential field methods [6, 9, 8],
but with an important difference: the entire field is never computed, only the
robot’s reaction to its current perception of the world at its present location.
In the example figure an entire field is shown, but this is only for visualization
purposes. Problems with local minima, maxima, and cyclic behavior which
are endemic to many potential fields strategies are handled by several methods
including: the injection of noise into the system [1]; resorting to high-level
planning; repulsion from previously visited locales [4]; continuous adaptation
[5]; and other learning strategies [16, 17]. Schema-based robot control has been
demonstrated to provide robust navigation in complex and dynamic worlds.

1.2 Temporal Sequencing

As illustrated above for navigation, motor schemas may be grouped to form
more complex, emergent behaviors. Groups of behaviors are referred to as
behavioral assemblages. One way behavioral assemblages may be used in solving
complex tasks is to develop an assemblage for each sub-task and to execute
the assemblages in an appropriate sequence. The steps in the sequence are
separate behavioral states. Perceptual events that cause transitions from one
behavioral state to another are called perceptual triggers. The resulting task-
solving strategy can be represented as a Finite State Automaton (FSA). The
technique is referred to as temporal sequencing [3].

As an example use of temporal sequencing, consider the strategy for a robot
soccer player. The salient issue for now is that points are scored by bumping
the ball across the opponent’s goal. Robots must avoid bumping the ball in the
wrong direction, lest they score against their own team. A reasonable approach
is for the robot to first ensure it is behind the ball, then move towards it to
bump it towards the opponent’s goal. Alternately, a goalie robot may remain
in the backfield to block an opponent’s scoring attempt.

A robot can be in one of three behavioral states: move_to_ball, get_behind_ball,
and move_to_backfield. The robot is initialized in the get_behind_ball state. If it
detects that it is behind the ball it immediately transitions to the move_to_ball
or move_to_backfield state, depending on whether it is serving as a “forward”
or “goalie.” The transition occurs on the trigger behind_ball. The robot will
remain in the new state until triggered again by not behind_ball.

At the highest level, the soccer strategy is an assemblage represented as a
finite state automaton (FSA) consisting of two states. FSAs illustrating the
forward and goalie strategies are shown in Figure 2. The robot’s policy may
be equivalently viewed as a look-up table (Figure 3). This paper will focus on
the look-up table representation as it is also useful for viewing the policies of
learning robots. Note, however, that the FSA is potentially a more powerful
representation since it implicitly provides state while look-up tables do not.
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Figure 2: A soccer team’s strategy viewed as FSAs. This strategy is used as
the control in experiments using Clay.

1.3 Learning in Behavior-based Systems

Even though behavior-based approaches are robust for many tasks and environ-
ments, they are not necessarily adaptive. We now consider some of the ways
learning can be integrated into a behavior-based system.

Reinforcement learning offers a powerful set of techniques that allow a robot
to learn a task without requiring its designer to fully specify how it should be
carried out. If the task is feasible, and feedback regarding how well the agent is
doing is provided, several reinforcement learning techniques are guaranteed to
converge (within an arbitrary €) to the optimal solution [20, 19]. The guaran-
tees are tempered by rather strong conditions for convergence; Q-learning for
example, requires all actions to be repeatedly sampled in all states. The reader
is referred to Kaelbling [7] for an excellent survey of reinforcement learning in
robotics.

Reinforcement learning methods fall into two broad groups: model-based
and model-free. Model-free systems like Q-learning are computationally simple,
but require many experience steps to converge. Model-based systems like Dyna
[18] seek to reduce the cost of experience in the real-world (as in risk of damage
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not behind_ball 0 1 0

behind_ball 1 0 0
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not behind_ball 0 1 0
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Figure 3: The control team’s strategy viewed as look-up tables. The 1 in each
row indicates the behavioral assemblage selected by the robot for the perceived
situation indicated on the left. The abbreviations for the assemblages are intro-
duced in the text.

to the robot) by using experience to model interaction with the world, then
developing a policy based on the model. Most learning research in the behavior-
based robotics community to date has focused on model-free methods. The
initial implementation of Clay utilizes a form of Q-learning as a coordination
operator, but there is no reason other types of learning should not be added. In
fact, future research will investigate the utility of alternate learning operators.

Q-learning is a type of reinforcement-learning in which the value of taking
each possible action in each situation is represented as a utility function, Q(s, a).
Where s the state or situation and a is a possible action!. If the function is
properly computed, an agent can act optimally simply by looking up the best-
valued action for any situation. The problem is to find the Q(s, a) that provides
an optimal policy. Watkins [20] has developed an algorithm for determining
Q(s,a) that converges to optimal. He prefers to represent Q(s,a) as a table,
Q[s, a], and asserts in [20] that the algorithm is not guaranteed to converge
otherwise. The following scheme updates Q-values as the agent interacts with
the environment and receives rewards:

Qlst,a)] = (1—a) Qfst, ar] +a (R(se41,ae41) +ymaxQsey1,u]) (1)
———’ u

old value

improved estimate

This update is applied each time action a; is selected in state s;. The first

1Tt is important to distinguish between s and behavioral state. Behavioral state is another
way of referring to which behavioral assemblage (group of motor schemas) is active. Con-
versely, s refers to the environmental state or situation the robot is in. For the purposes of
discussing Q-learning, we will assume the robot’s sensors pass the world state on to the agent
unmodified.



term is the old Q-value, while the second is an improved estimate based on an
actual reward R and the estimated value of the subsequent state. « is a learning
rate that indicates how much “trust” should be given the improved estimate. v
is the rate at which future rewards are discounted.

Q-learning then, is one way for a robot to learn appropriate sequences of ac-
tion to attain a goal. Mahadevan and Connell [13] have applied it in a slightly
different manner: to learn the component behaviors within a pre-defined se-
quence. The particular task they investigate is for a robot to find, then push a
box across a room. They pre-define three behavioral states F, P and U for find-
box, push-box and unwedge-box respectively; they also define conditions under
which the robot transitions from one state to another. Separate reinforcement
functions and tables of Q-values apply for each state. The state vector s is
composed of local sonar occupancy information, infra-red bump sensors, and a
“stuck” sensor. The possible actions are: go forward, turn left, turn hard left,
turn right, and turn hard right. Since the state space is rather large, Mahadevan
sought ways to reduce it, including weighted Hamming distance and statistical
clustering to group similar states. Using this approach, their robot, OBELIX
was able to learn to perform better than hand-coded behaviors for box-pushing.

In research at Carnegie Mellon University [10], Lin developed a method for
Q-learning to be applied hierarchically, so that complex tasks are learned at
several levels. He argues that by by decomposing the task into sub-tasks, and
learning first at the sub-task level, then the task level, the overall rate of learning
is increased compared to monolithic learners.

Similarities between Lin’s decomposition and temporal-sequencing for as-
semblages of motor schemas (Section ?7) are readily apparent. Lin’s sub-tasks
or elementary skills correspond to behavioral assemblages, while a high-level skill
is a sequence of assemblages. Learning at the high-level is equivalent to learn-
ing the state-transitions of an FSA (as in Figure 2) and learning the elementary
skills corresponds to tuning individual states or behavioral assemblages.

The reinforcement learning approaches outlined so far use a centralized
scheme for learning when particular sub-behaviors should be activated. Maes
and Brooks [12] propose a alternative, distributed mechanism. In their ap-
proach, each behavior learns for itself when it ought to be applied. They pre-
define a set of behaviors and a set of binary perceptual conditions. Each behavior
learns when it should be “on” or “off” based the perceptual conditions. Positive
and negative feedback are provided to guide the learning. The approach was
demonstrated on a learning robotic hexapod.

Mataric’s research has focused on developing specialized reinforcement func-
tions for social learning [14, 15]. The overall reinforcement, R(t), for each robot
is composed of separate components, D, O and V. D indicates progress towards
the agent’s present goal. O provides a reinforcement if the present action is a
repetition of another agent’s behavior. V' is a measure of vicarious reinforce-
ment; it follows the reinforcement provided to other agents. She tested her
approach in a foraging task with a group of three robots. Preliminary results



indicate that performance is best when the reinforcement function includes all
three components. In fact the robots’ behavior did not converge otherwise.

1.4 What’s New about Clay

Clay is similar to the approaches outlined above in that it integrates reinforce-
ment learning and behavior-based control, but it differs in several important
aspects: First, behavioral expression in Clay is fully recursive: there is no limit
to the number of levels in a behavioral hierarchy. Second, Clay’s primitive,
the motor schema, provides a rich repertoire for behavioral design [2]. Motor
schemas take full advantage of continuous sensor values and can generate an
infinite range of actuator output; most of the other approaches only select from
a discrete list of actions. Finally, while experiments with Clay have so far only
explored learning at one level, the designer is free to introduce learning at any
level in the behavioral hierarchy.

Georgia Tech’s Mobile Robot Laboratory has developed MissionLab to sup-
port the design and test of sequenced behaviors on robots and in simulation
[11]. MissionLab includes a set of tools for recursively expressing sequenced
behaviors. Behaviors can be designed graphically, using a the cfgedit tool, or

textually in the Configuration Network Language (CNL).

Clay draws from CNL but extends it in several important ways. Like CNL,
Clay provides for recursive expression of behavior, but it adds learning coordi-
nation operators and an object-oriented syntax. The object-oriented approach
provides for a direct expression of schema instantiation and the “embedding” of
perceptual schemas in motor schemas. For example, the statement:

move_to_ball = new MotorSchemaMoveTo(ball_direction);

creates a new instance of the MoveTo motor schema using the embedded
ball_direction perceptual schema. The resulting motor process “move_to_ball,”
will draw the robot towards the perceived ball location.

Finally, since Clay is coded in Java, it’s portable. Clay has been demon-
strated on the Solaris, Irix (SGI), Windows 95, and Linux operating systems.

2 Expressing Behaviors in Clay

Before moving to a discussion of how Clay integrates motor schemas and learn-
ing, it is helpful to show how a basic motor schema-based robotic control system
is specified. We begin by outlining the available primitives and coordination op-
erators. The following generic motor schemas are available in Clay:

e MoveTo: generates a vector with constant magnitude directly towards a
perceptual goal.

e LinearAttraction: generates a vector directly towards a perceptual goal
with magnitude increasing linearly (up to a maximumof 1.0) with distance
from the goal.



e LinearRepulsion: generates a vector directly away from a perceived
object. The magnitude decreases linearly with distance from the object,
falling to zero at the limit of the object’ “sphere of influence.”

e Dodge: generates a “swirling” field around a perceived obstacle. The
robot is nudged around it rather than directly repulsed from it.

When instantiated with appropriate embedded perceptual schemas, the generic
motor schemas become specific. For instance MoveTo serves as move_to_ball
when instantiated with a ball-finding perceptual schema, or move_to_goal
when instantiated with a goal-finder. Among others; Clay includes the following
perceptual schemas germane to soccer:

e EgoBall: provides a vector towards the soccer ball, based on sensor val-
ues.

o DefendedGoal: returns a vector towards the defended goal.

e BehindBall: returns a 1 if the robot is behind the ball, 0 otherwise. This
perceptual feature is used to trigger transitions between behavioral states.

Schemas may be combined and coordinated with these operators:

e CoordinateSum: multiplies each constituent motor schema or assem-
blage output by an associated gain value, then sums the results.

e CoordinateSelection: selects one motor schema or assemblage for out-
put based on an embedded discrete selector process.

Now we revisit the goalie soccer strategy outlined above to show how per-
ceptual and motor schemas are composed and coordinated in Clay. Recall
that the agents are to be provided three behavioral assemblages: move_to_ball,
get_behind_ball and move_to_backfield. The assemblages and their primitive com-
ponents are configured when the robot is initialized. Here is code specifying the
it move_to_ball assemblage:

ball_direction
move_to_ball

new PerceptSchemaEgoBall(m);
new MotorSchemaMoveTo(ball_direction);

When it is initialized, the control system configuration routine is passed a
handle, m, for access to the robot’s sensor and actuator interface. The han-
dle is in turn passed to primitive perceptual schemas so they can access the
sensor hardware. The first line of code above instantiates a new perceptual
schema, ball_direction, which provides a vector from the robot to the sensed
location of the ball. The second line embeds ball_direction in move_to_ball,
an instantiation of the MoveTo motor schema.

Motor and perceptual schemas, once instantiated, are easily reused. This is
illustrated in the declaration move_to_backfield. move_to_backfield is a weighted
combination of move_to_ball and a new schema, stay near_goal:



defended_goal
stay_near_goal

new PerceptSchemaDefendedGoal (m) ;
new MotorSchemalinearAttraction(1.0, 0.25, defended_goal);

move_to_backfield_schemas[0] = move_to_ball;

move_to_backfield_gains[0] = 0.5;
move_to_backfield_schemas[1] = stay_near_goal;
move_to_backfield_gains[1] = 1.5;

move_to_backfield = new CoordinateSum(move_to_backfield_schemas,
move_to_backfield_gains);

The first two lines declare stay mear_goal as a linear attraction motor
schema configured to move the robot towards its defended goal. The parameters
1.0 and 0.25 specify ranges at which the schema’s magnitude is maximized and
minimized, respectively. Next, the schemas comprising move_to_backfield and
their gains are specified: move_to_ball and stay near_goal are assigned gains
of 0.5 and 1.5 respectively. Finally, the component schemas are coordinated by
gain multiplication and summation. The get_behind_ball is declared similarly.

Once the primitive behaviors have been combined as assemblages, they are
coordinated as follows. In the goalie configuration:

behind_ball

new PerceptFeatureBehindBall(m);

assemblages[0] = get_behind_ball;
assemblages[1] = move_to_backfield;
top_level = new CoordinateSelection(assemblages, behind_ball);

top_levelis the output of a selection operator which chooses between get_behind_ball
and move_to_backfield depending on whether the robot is behind the ball. assemblages[0],
or get_behind_ball, is selected when behindball == 0. assemblages[1], or
move_to_backfield is selected when behindball ==

This completes the specification of a goalie robot’s behavior. If a designer
were interested in building a more complicated agent with soccer as one of
several capabilities top_level could be included as just another assemblage for
integration at the next level up. A graphic, hierarchical representation of the
system is illustrated in Figure 4.

A potential difficulty for other hierarchically specified behavioral systems is
that as a behavioral configuration grows more complex, run time computational
demands can explode exponentially. Clay avoids the problem by only executing
currently activated assemblages and schemas. Computational demands are also
be reduced when the designer re-uses schemas in a configuration (as move_to_ball
is re-used above). Synchronization techniques ensure a schema’s output is re-
calculated only once per movement cycle.



behind_ball — top_level

move _to ball gains—* get_behind_ball gains—* move_to_backfield

ball_direction move between dodge ball move to ball stay near goal

ball_direction defended_goal ball_direction ball_direction defended goal

Figure 4: A hierarchical view of the behavioral configuration for soccer robots
discussed in the text. Perceptual schemas are shown in plain text. Motor
schemas are in bold. Assemblages are shown in italic.

3 Integrating Reinforcement Learning

Learning is integrated by the addition of a new coordination operator, Coordi-
nateLearner. CoordinateLearner is “plug compatible” with Coordinate-
Selection but it learns which subordinate assemblage to activate. At configu-
ration time, an instantiation of CoordinateLearner is provided an embedded
“reward schema” that it uses for learning over time. Here is how a Q-learning
soccer robot might be configured:

learner = new Learner((states, actions, alpha, gamma,
randomrate, randomdecay) ;

reward = new RewardOnScore(m);

assemblages[0] = move_to_ball;

assemblages[1] = get_behind_ball;

assemblages[2] = move_to_backfield;

top_level = new CoordinateLearner(assemblages, behind_ball,

reward, learner);

First, a Q-learning module is instantiated (the parameters aren’t important
for this discussion). Next a reward schema is instantiated. RewardOnScore,
is one of several potentially useful reward functions for soccer. It returns 1



when the robot’s team just scored, -1 when the opponents score and 0 other-
wise. The next few lines specify which assemblages are to be selected from.
Finally, top_level is declared with a learning coordination operator. An im-
portant advantage of the declaration syntax is the ease with which alternate
learning techniques and reward functions may be substituted.

After configuration, the coordination runs as follows: At each movement step
the reward schema is queried as to the current reinforcement signal. Next, the
perceptual feature behind _ball is accessed to determine the agent’s perceived
state. Finally, the learning module is queried with the state and provided the
reinforcement signal. The learning module updates its Q-values accordingly and
returns an integer indicating which of the assemblage to activate.

4 Conclusion

Clay is a new robot architecture offering the real time performance of motor
schemas and the adaptive capabilities of reinforcement learning. Unlike ear-
lier architectures integrating behavior-based control and reinforcement learning,
Clay provides for continuous-valued sensing and action at the motor control
level. Discrete learning takes place at a higher assemblage selection level.

Clay provides a fully recursive object-oriented syntax for expressing behav-
iors. The syntax corresponds closely to intuitive notions of schema instantiation
and embedding. It also provides for reuse of identical schemas in multiple as-
semblages.

The expressive power of Clay was illustrated through the design of a learning
soccer robot control system.
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