Making a Clean Sweep: Behavior Based Vacuuming

Douglas C. MacKenzie

Tucker R. Balch

Mobile Robot Laboratory
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280 U.S.A.
doug@cc.gatech.edu

Position Paper for AAAI Fall Symposium,
Instantiating Real-World Agents

I. INTRODUCTION

This position paper discusses how the techniques and
building blocks in use at the Georgia Tech Mobile
Robot Lab could be used to construct an autonomous
vacuum cleaner. Previous research at Georgia Tech us-
ing the Autonomous Robot Architecture (AuRA)[2, 4]
has demonstrated robust operation in dynamic and
partially modeled environments[3, 12]. Although much
of this work has been deployed and tested within the
manufacturing domain, the inherent modularity of the
reactive component of the AuRA architecture facili-
tates major retargeting of the domain with minimal
new development[1]. This paper will focus on how the
existing work at Georgia Tech could be enhanced to
perform the vacuuming task.

II. PRIMITIVE BEHAVIORS

A new language which specifies how behaviors may be
described and coordinated has been developed at the
Georgia Tech Mobile Robotics Laboratory. See [13]
for a more complete discussion. That grammar is used
here to describe a vacuuming robot.

Motor schemas are the basic action units in AuRA.
Motor schemas instantiated with one or more embed-
ded perceptual schemas are primitive sensorimotor be-
haviors. A primitive sensorimotor behavior by is a re-
active channel converting sensations to actions. Figure
1 shows by, a primitive behavior. It uses one sensation
stream, a perceptual module, and a motor module to
generate a stream of actions. The sensor samples the
environment and generates a stream of sensations S.
New sensations are generated when required by per-
ception modules. The perceptual module P acts as a
feature detector. It extracts features using sensations

from one or more sensors S; and generates a stream of
action-oriented features F. Features are generated as
required by motor modules. A motor module M com-
bines the input from one or more perceptual modules
F; to generate a stream of actions A as output.

b1
Sensations

@ |=: @—L——QActions

1
|
S

Fig. 1. A simple primitive behavior

Several primitive sensorimotor behaviors are used in
the construction of the reactive control for the vacu-
uming robot. Some of these behaviors have been de-
veloped and evaluated in other work [1, 2]. A brief
overview of each will be presented here.

e Avoid-static-obstacle(find-obstacle)

The avoid-static-obstacle behavior is used to keep
the robot at a safe distance from non-threatening
obstacles. A repulsive vector is generated from
obstacles perceived to be closer than a threshold
distance to the robot. The embedded perceptual
module find-obstacle reports the locations of ob-
stacles within sensor range.

¢ Noise()

The noise behavior generates a vector with a ran-
dom direction. The strength and persistence of
the noise are set as parameters. The randomness
helps prevent the robot from getting stuck in lo-
cal minima or maxima, acting as a sort of reactive
“grease”. Noise does not require any sensory in-
put.

e Move-to-goal(detect-dirt)
The move-to-goal behavior generates a vector to-
wards a specific location. For the vacuuming
robot the embedded perceptual module detect-
dirt directs the robot towards unvacuumed areas.

e Probe(detect-current-heading)
When active, this motor behavior keeps the robot
moving along its current direction.

e Vacuum-dirt
When vacuum-dirt is activated, the vacuum mo-
tor turns on. Any dirt under the robot is sucked
up. In simulation, a grid-based map is marked to
indicate that the local area has been vacuumed.

Four perceptual modules are utilized by the mo-
tor behaviors and coordination processes. These per-
ceptual modules may be embedded within the motor
behaviors described above, or they may be combined
with a null motor behavior so that their output may
be utilized by a coordination process.

e Detect-dirt
A perceptual module which reports if any areas
in need of vacuuming are visible. Here it is im-
plemented using a grid-based map. To simulate
the limitations of real sensors, Detect-dirt can only
find dirt within a limited range. Move-to-goal uses
detect-dirt to set a goal to move to.

e Over-dirt

A perceptual trigger which reports if the area un-
der the robot is dirty. The simulation implemen-
tation uses the grid-based map described above.
Over-dirt is utilized by one of the coordination
processes to ensure that useful vacuuming is tak-
ing place. If not, a transition to another behavior
is made.

¢ Find-obstacle
Find-obstacle reports locations of obstacles to the
avoid-obstacle motor behavior.

e Detect-current-heading
Detect-current-heading detects and reports the
heading of the robot.

III. ASSEMBLAGES OF BEHAVIORS

The coordination between active motor behaviors de-
fines the emergent behavior of the robot. Here we
present a formal description of this coordination. The
primitive sensorimotor behaviors will each be consid-
ered trivial assemblages. Assemblages can also be con-
structed from coordinated groups of two or more as-
semblages. This recursive definition allows creation

of increasingly complex assemblages[11] grounded in
the primitive sensorimotor behaviors (the trivial as-
semblages).

To generate a non-trivial overt behavior requires ef-
fective use of multiple primitive behaviors. We define
the coordination operator @ as a generic mechanism
that groups two or more assemblages into a larger as-
semblage. Equation 1 formalizes the usage of the co-
ordination operator to form the assemblage A’ from
the group of by, ...,b, primitive sensorimotor behav-
iors and a coordination process @;.

AIH[@l bl:b2:"'7bn] (1)

The coordination operator must consume the multi-
ple action streams and generate a single action stream
for the new assemblage (specific coordination processes
are described below). This definition draws on the
Gapps/Rex([8, 9, 10] idea of specifying reactive systems
in a high level manner. However, it is a generic opera-
tor based on the RS assemblage construct[11], allowing
recursive definitions and arbitrarily complex coordina-
tion procedures. Eventually the robot designer must
specify instances of coordination operators. These spe-
cific instantiations are indicated with a subscript. Fig-
ure 2 shows how assemblage As is constructed using
the coordination operator @; and behaviors b; and b5.

@ |:> Actions

A3

Sensations,; A

Sensdtions,, A,

Fig. 2. Coordination operator creating assemblage As
from behaviors b; and b2 and coordination operator @;

Competition and cooperation are two example coor-
dination processes. Competitive coordination uses an
n to 1 multiplexer to pass the action stream for one
assemblage through as the output for the coordinated
group, effectively arbitrating among the competitive
set of behaviors. The process of determining which of
the n assemblages to select can use a variety of tech-
niques. Examples include encoding a procedure in a
finite state automaton, using activation networks, and
assigning priorities to each stream. Architectures us-
ing competition mechanisms include spreading activa-
tion nets[14], and subsumption architecture[7].

Cooperative coordination uses a function
f(A1, Az, ..., Ap) to merge the output stream of
each assemblage into one output action stream for
the group. Examples include vector summation in

AuRA[4] architecture, and the weighted combination
of inputs in neural networks. Arbitrary coordination
operators can be constructed using combinations of
these classes.

IV. THE VACUUMING TASK

When performing a complex task such as vacuuming,
a robot’s operation must conform to various situations
and environmental conditions. Consider the case when
the local area has been vacuumed, but distant areas
are still dirty. The robot must have appropriate strate-
gies for discovering dirty areas, moving to them and
cleaning them. There might also be various vacuuming
behaviors for different environments. When vacuum-
ing an empty hallway, for example, it is appropriate
for the robot to move rapidly, with little resources de-
voted to obstacle detection and avoidance. However,
when operating in a dining room, slow deliberate mo-
tions are necessary to prevent inadvertent damage to
expensive furnishings. It must also cope with dynamic
objects (people, pets) and unpredictable environments
(toys, shoes, etc).

Avt

Fig. 3. The vacuuming assemblage

To manifest this behavior, we will define distinct
operating states for the robot and use a competitive
coordination operator to control the high-level process
while using cooperative coordination within the low-
level assemblages. The use of states allows greater op-
timization and specificity of individual operating con-
figurations since a transition to a different operating
state can be provided when the conditions required for
the active state cease.

In other work we have developed a set of generic
tasks for multi-agent teams to perform [5]. One such

task is graze. To complete the task, the team of robots
must move over a specified area while simultaneously
collecting small objects which have been uniformly
scattered about the environment. Robots able to per-
form this generic task could easily perform specific
tasks such as mowing lawns, or vacuuming a house.

The approach taken in the multi-agent work is
adapted here for the vacuuming task. We define three
top level states of operation: forage, acquire and vac-
uum (additional states such as mop-floor could easily
be added later). Figure 3 shows a graphical repre-
sentation of the vacuuming task assemblage A,;. It
is constructed from the forage A;, acquire A,, and
vacuum A, assemblages using an FSA as the coordi-
nation operator @4, to appropriately invoke Ay, Ag,
or A,. @4 utilizes two additional assemblages, Agq
(detect-dirt) and A,q (over-dirt), as perceptual inputs
to select the appropriate motor behavior.

e A; (Forage)

While in the forage state the robot explores its
world looking for areas needing to be vacuumed.
When the detect-dirt assemblage A44 finds a dirty
area, a transition to the acquire state occurs.
The primitive behaviors of A; are coordinated by
the operator @;, which sums their outputs. Be-
haviors active in the forage state are:

— by avoid-static-obstacles(find-obstacle)

— by noise()

e A, (Acquire)

While in the acquire state the robot moves to-
wards the dirty area that has been discovered.
Once that area is reached, or if the robot comes
across a new dirty area, the over-dirt assemblage
A,4 causes a transition to the vacuum state. The
coordination process @; sums the motor behavior
outputs. Behaviors active in the acquire state
are:

— by avoid-static-obstacles(find-obstacle)
— by noise()

— bz move-to-goal(detect-dirt)

e A, (Vacuum)
While in the vacuum state the robot vacuums
the floor. If the over-dirt assemblage A,4 reports
that the area is not dirty, a transition is made back
to the forage state. The behaviors of A, are co-
ordinated by @z, which sums the motor outputs.
Behaviors active in the vacuum state are:

— by avoid-static-obstacles(find-obstacle)

— by noise()
— by probe(detect-current-heading)

— b5 vacuum-dirt()

o Aysq (Detect-dirt)
An assemblage used solely for its perceptual out-
put. When in the forage state the overall co-
ordination operator @, will transition to the ac-
quire state if Ay discovers a dirty area. There
is only one behavior active in the detect-dirt as-
semblage:

— bg null-motor(detect-dirt)

Null-motor allows the embedded perceptual mod-
ule detect-dirt to be invoked without any resultant
robot motor action.

e A,q (Over-dirt)
Another assemblage used solely for its perceptual
output. When in the vacuum state the overall
coordination operator @, will transition to the
forage state if A,; reports there is no dirt to vac-
uum up. There is only one behavior active in the
over-dirt assemblage:

— b7 null-motor(over-dirt)

Null-motor allows the embedded perceptual mod-
ule over-dirt to be invoked without any resultant
robot motor action.

Each of the assemblages is formally described below.
The overall vacuum behavior is expressed in (7).

A = [@10, bs] (2)
Aq = [Qgby, bs, b3] (3)
Ay = [@sby, bs, ba, bs] 4)
Ada = [bs] (5)

Ao = [b7] (6)

(7)

Avt = [@4Af 3 Aa: AU) Adda Aod]

V. SIMULATION RESULTS

The system described above was implemented in sim-
ulation on a Sun Sparc under the X-windows environ-
ment. Figure 4 shows a sample run. The area to be
vacuumed is a 64 unit by 64 unit square with 15%
obstacle coverage. The obstacles are represented by
black circles. The robot can vacuum a swath 1 unit
wide. The robot’s path is traced by a solid line or a
dashed line depending on whether it is vacuuming, or
looking for dirty areas, respectively.

Fig. 4. Simulation of an agent vacuuming a room.

For this particular example, the agent required 7692
time units to complete the task. Of that time, 71% was
spent actually vacuuming. The remaining 29% was
spent either searching for or moving towards a “dirty”
area.

VI. MULTI-AGENT VACUUMING

In separate research our group has investigated reac-
tive control for teams of robots[5, 6]. Since the vacu-
uming task is implemented within the existing multi-
agent simulation system, it is easy to extend the vac-
uum task simulation to multiple agents.

A simulation of three agents vacuuming the same
area as before is shown in Figures 5 and 6. Each of
these agents is identical to the single agent described
above. Even though there is no explicit communica-
tion between the agents, implicit communication oc-
curs through the environment. The agents cooperate
by avoiding areas other agents have already vacuumed.
The three agents together were able to complete the
task in 1554 time units, or 2.9 times as fast as one
agent.

In other multi-agent tasks we have found that sim-
ple communication between agents significantly im-
proves cooperation as measured by time to complete

Fig. 5. Simulation of three agents vacuuming a room.
This image shows the agents’ initial progress.

the task[5]. The vacuuming task simulation has been
extended to allow communication, but comparative
performance results are not yet available.

VII. SUMMARY

The AuRA architecture is flexible and extensible, al-
lowing a wide range of tasks to be accomplished with
minimal development effort. New problem domains
are approached by combining existing primitive behav-
iors in new ways or by adding new primitive behaviors.
These behaviors and assemblages of behaviors are de-
scribed using the grammar introduced here.

The vacuuming task offered an opportunity to
demonstrate AuRA’s flexibility. The task was solved
by selectively combining five primitive sensorimotor
behaviors using the generic coordination operator.
The solution was extended further with multiple co-
operating agents.

REFERENCES

[1] Arkin, R.C., et. al. , “Buzz: An Instantiation
of a Schema-Based Reactive Robotic System”,
Proc. International Conference on Intelligent Au-
tonomous Systems: IAS-3, Pittsburgh, PA., Pg
418-427, 1993.

Fig. 6. Simulation of an three agents vacuuming a room.
This image shows the completed simulation run.

[2] Arkin, R.C., “Motor Schema Based Mobile Robot
Navigation”, International Journal of Robotics

Research, Vol 8(4), Pg 92-112, 1989.

[3] Arkin, R.C., Murphy, R.R., Pearson, M. and
Vaughn, D.; “Mobile Robot Docking Operations
in a Manufacturing Environment: Progress in Vi-
sual Perceptual Strategies”, Proc. IEEFE Interna-
tional Workshop on Intelligent Robots and Sys-
tems ’89, Tsukuba, Japan, 1989, Pg 147-154.

[4] Arkin, R.C., “Towards Cosmopolitan Robots: In-
telligent Navigation of a Mobile Robot in Ex-
tended Man-made Environments”, Ph.D. Disser-
tation, COINS TR 87-80, Univ. of Massachusetts,
1987.

[5] Arkin, R.C., Balch, T., Nitz, E., “Communica-
tion of Behavioral State in Multi-agent Retrieval
Tasks”, Proc. 1993 IEEE International Confer-
ence on Robotics and Automation, Atlanta, GA,
1993, Vol. 1, Pg. 678.

[6] Arkin, R.C., Hobbs, J.D., “Dimensions of Com-
munication and Social Organization in Multi-
Agent Robotic Systems”, Proc. Simulation of
Adaptive Behavior 92, Honolulu, HI, Dec. 1992.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Brooks, R., “A Robust Layered Control System
for a Mobile Robot”, IEEE Jour. of Robotics and
Auto., Vol RA-2, no. 1, Pg. 14-23, 1986.

Kaelbling, L.P. and Rosenschein, S.J., “Action
and Planning in Embedded Agents”, Robotics
and Autonomous Systems, Vol. 6, 1990, Pg. 35-
48. Also in Designing Autonomous Agents: The-
ory and Practice from Biology to Engineering and
Back, P. Maes Editor, MIT Press, 1990.

Kaelbling, L.P., “Goals as Parallel Program Spec-
ifications”, Proc. 1988 AAAI Conference , St.
Paul, MN, 1988., Vol. 1, Pg. 60-65.

Kaelbling, L.P., “REX Programmer’s Manual”,
SRI International Technical Note 381, May, 1986.

Lyons, D.M., and Arbib, M.A., “A Formal Model
of Computation for Sensory-Based Robotics”,
IEFEE Transactions on Robotics and Automation,

Vol. 5, No. 3, June 1989.

MacKenzie, D. and Arkin, R.C.; “Perceptual Sup-
port for Ballistic Motion in Docking for a Mobile
Robot”, Proc. SPIE Conference on Mobile Robots
VI, Nov. 1991, Boston, MA.

MacKenzie, D. and Arkin, R.C.,; “Formal Spec-
ification for Behavior-Based Mobile Robots”, to
appear Proc. SPIE Conference on Mobile Robots
VIII, Sept. 1993, Boston, MA.

Maes, P.; “Situated Agents Can Have Goals”,
Robotics and Autonomous Systems, Vol. 6, 1990,
Pg. 49-70. Also in Designing Autonomous Agents:
Theory and Practice from Biology to Engineering
and Back, P. Maes Editor, MIT Press, 1990.

